// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// GraphCycles provides incremental cycle detection on a dynamic
// graph using the following algorithm:
//
// A dynamic topological sort algorithm for directed acyclic graphs
// David J. Pearce, Paul H. J. Kelly
// Journal of Experimental Algorithmics (JEA) JEA Homepage archive
// Volume 11, 2006, Article No. 1.7
//
// Brief summary of the algorithm:
//
// (1) Maintain a rank for each node that is consistent
// with the topological sort of the graph. I.e., path from x to y
// implies rank[x] < rank[y].
// (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y].
// (3) Otherwise: adjust ranks in the neighborhood of x and y.
#include "absl/base/attributes.h"
// This file is a no-op if the required LowLevelAlloc support is missing.
#include "absl/base/internal/low_level_alloc.h"
#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING
#include "absl/synchronization/internal/graphcycles.h"
#include <algorithm>
#include <array>
#include "absl/base/internal/hide_ptr.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
// Do not use STL. This module does not use standard memory allocation.
namespace absl {
namespace synchronization_internal {
namespace {
// Avoid LowLevelAlloc's default arena since it calls malloc hooks in
// which people are doing things like acquiring Mutexes.
static absl::base_internal::SpinLock arena_mu(
absl::base_internal::kLinkerInitialized);
static base_internal::LowLevelAlloc::Arena* arena;
static void InitArenaIfNecessary() {
arena_mu.Lock();
if (arena == nullptr) {
arena = base_internal::LowLevelAlloc::NewArena(0);
}
arena_mu.Unlock();
}
// Number of inlined elements in Vec. Hash table implementation
// relies on this being a power of two.
static const uint32_t kInline = 8;
// A simple LowLevelAlloc based resizable vector with inlined storage
// for a few elements. T must be a plain type since constructor
// and destructor are not run on elements of type T managed by Vec.
template <typename T>
class Vec {
public:
Vec() { Init(); }
~Vec() { Discard(); }
void clear() {
Discard();
Init();
}
bool empty() const { return size_ == 0; }
uint32_t size() const { return size_; }
T* begin() { return ptr_; }
T* end() { return ptr_ + size_; }
const T& operator[](uint32_t i) const { return ptr_[i]; }
T& operator[](uint32_t i) { return ptr_[i]; }
const T& back() const { return ptr_[size_-1]; }
void pop_back() { size_--; }
void push_back(const T& v) {
if (size_ == capacity_) Grow(size_ + 1);
ptr_[size_] = v;
size_++;
}
void resize(uint32_t n) {
if (n > capacity_) Grow(n);
size_ = n;
}
void fill(const T& val) {
for (uint32_t i = 0; i < size(); i++) {
ptr_[i] = val;
}
}
// Guarantees src is empty at end.
// Provided for the hash table resizing code below.
void MoveFrom(Vec<T>* src) {
if (src->ptr_ == src->space_) {
// Need to actually copy
resize(src->size_);
std::copy(src->ptr_, src->ptr_ + src->size_, ptr_);
src->size_ = 0;
} else {
Discard();
ptr_ = src->ptr_;
size_ = src->size_;
capacity_ = src->capacity_;
src->Init();
}
}
private:
T* ptr_;
T space_[kInline];
uint32_t size_;
uint32_t capacity_;
void Init() {
ptr_ = space_;
size_ = 0;
capacity_ = kInline;
}
void Discard() {
if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_);
}
void Grow(uint32_t n) {
while (capacity_ < n) {
capacity_ *= 2;
}
size_t request = static_cast<size_t>(capacity_) * sizeof(T);
T* copy = static_cast<T*>(
base_internal::LowLevelAlloc::AllocWithArena(request, arena));
std::copy(ptr_, ptr_ + size_, copy);
Discard();
ptr_ = copy;
}
Vec(const Vec&) = delete;
Vec& operator=(const Vec&) = delete;
};
// A hash set of non-negative int32_t that uses Vec for its underlying storage.
class NodeSet {
public:
NodeSet() { Init(); }
void clear() { Init(); }
bool contains(int32_t v) const { return table_[FindIndex(v)] == v; }
bool insert(int32_t v) {
uint32_t i = FindIndex(v);
if (table_[i] == v) {
return false;
}
if (table_[i] == kEmpty) {
// Only inserting over an empty cell increases the number of occupied
// slots.
occupied_++;
}
table_[i] = v;
// Double when 75% full.
if (occupied_ >= table_.size() - table_.size()/4) Grow();
return true;
}
void erase(uint32_t v) {
uint32_t i = FindIndex(v);
if (static_cast<uint32_t>(table_[i]) == v) {
table_[i] = kDel;
}
}
// Iteration: is done via HASH_FOR_EACH
// Example:
// HASH_FOR_EACH(elem, node->out) { ... }
#define HASH_FOR_EACH(elem, eset) \
for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); )
bool Next(int32_t* cursor, int32_t* elem) {
while (static_cast<uint32_t>(*cursor) < table_.size()) {
int32_t v = table_[*cursor];
(*cursor)++;
if (v >= 0) {
*elem = v;
return true;
}
}
return false;
}
private:
enum : int32_t { kEmpty = -1, kDel = -2 };
Vec<int32_t> table_;
uint32_t occupied_; // Count of non-empty slots (includes deleted slots)
static uint32_t Hash(uint32_t a) { return a * 41; }
// Return index for storing v. May return an empty index or deleted index
int FindIndex(int32_t v) const {
// Search starting at hash index.
const uint32_t mask = table_.size() - 1;
uint32_t i = Hash(v) & mask;
int deleted_index = -1; // If >= 0, index of first deleted element we see
while (true) {
int32_t e = table_[i];
if (v == e) {
return i;
} else if (e == kEmpty) {
// Return any previously encountered deleted slot.
return (deleted_index >= 0) ? deleted_index : i;
} else if (e == kDel && deleted_index < 0) {
// Keep searching since v might be present later.
deleted_index = i;
}
i = (i + 1) & mask; // Linear probing; quadratic is slightly slower.
}
}
void Init() {
table_.clear();
table_.resize(kInline);
table_.fill(kEmpty);
occupied_ = 0;
}
void Grow() {
Vec<int32_t> copy;
copy.MoveFrom(&table_);
occupied_ = 0;
table_.resize(copy.size() * 2);
table_.fill(kEmpty);
for (const auto& e : copy) {
if (e >= 0) insert(e);
}
}
NodeSet(const NodeSet&) = delete;
NodeSet& operator=(const NodeSet&) = delete;
};
// We encode a node index and a node version in GraphId. The version
// number is incremented when the GraphId is freed which automatically
// invalidates all copies of the GraphId.
inline GraphId MakeId(int32_t index, uint32_t version) {
GraphId g;
g.handle =
(static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index);
return g;
}
inline int32_t NodeIndex(GraphId id) {
return static_cast<uint32_t>(id.handle & 0xfffffffful);
}
inline uint32_t NodeVersion(GraphId id) {
return static_cast<uint32_t>(id.handle >> 32);
}
struct Node {
int32_t rank; // rank number assigned by Pearce-Kelly algorithm
uint32_t version; // Current version number
int32_t next_hash; // Next entry in hash table
bool visited; // Temporary marker used by depth-first-search
uintptr_t masked_ptr; // User-supplied pointer
NodeSet in; // List of immediate predecessor nodes in graph
NodeSet out; // List of immediate successor nodes in graph
int priority; // Priority of recorded stack trace.
int nstack; // Depth of recorded stack trace.
void* stack[40]; // stack[0,nstack-1] holds stack trace for node.
};
// Hash table for pointer to node index lookups.
class PointerMap {
public:
explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) {
table_.fill(-1);
}
int32_t Find(void* ptr) {
auto masked = base_internal::HidePtr(ptr);
for (int32_t i = table_[Hash(ptr)]; i != -1;) {
Node* n = (*nodes_)[i];
if (n->masked_ptr == masked) return i;
i = n->next_hash;
}
return -1;
}
void Add(void* ptr, int32_t i) {
int32_t* head = &table_[Hash(ptr)];
(*nodes_)[i]->next_hash = *head;
*head = i;
}
int32_t Remove(void* ptr) {
// Advance through linked list while keeping track of the
// predecessor slot that points to the current entry.
auto masked = base_internal::HidePtr(ptr);
for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) {
int32_t index = *slot;
Node* n = (*nodes_)[index];
if (n->masked_ptr == masked) {
*slot = n->next_hash; // Remove n from linked list
n->next_hash = -1;
return index;
}
slot = &n->next_hash;
}
return -1;
}
private:
// Number of buckets in hash table for pointer lookups.
static constexpr uint32_t kHashTableSize = 8171; // should be prime
const Vec<Node*>* nodes_;
std::array<int32_t, kHashTableSize> table_;
static uint32_t Hash(void* ptr) {
return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize;
}
};
} // namespace
struct GraphCycles::Rep {
Vec<Node*> nodes_;
Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_
PointerMap ptrmap_;
// Temporary state.
Vec<int32_t> deltaf_; // Results of forward DFS
Vec<int32_t> deltab_; // Results of backward DFS
Vec<int32_t> list_; // All nodes to reprocess
Vec<int32_t> merged_; // Rank values to assign to list_ entries
Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches
Rep() : ptrmap_(&nodes_) {}
};
static Node* FindNode(GraphCycles::Rep* rep, GraphId id) {
Node* n = rep->nodes_[NodeIndex(id)];
return (n->version == NodeVersion(id)) ? n : nullptr;
}
GraphCycles::GraphCycles() {
InitArenaIfNecessary();
rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena))
Rep;
}
GraphCycles::~GraphCycles() {
for (auto* node : rep_->nodes_) {
node->Node::~Node();
base_internal::LowLevelAlloc::Free(node);
}
rep_->Rep::~Rep();
base_internal::LowLevelAlloc::Free(rep_);
}
bool GraphCycles::CheckInvariants() const {
Rep* r = rep_;
NodeSet ranks; // Set of ranks seen so far.
for (uint32_t x = 0; x < r->nodes_.size(); x++) {
Node* nx = r->nodes_[x];
void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr);
if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) {
ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr);
}
if (nx->visited) {
ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x);
}
if (!ranks.insert(nx->rank)) {
ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank);
}
HASH_FOR_EACH(y, nx->out) {
Node* ny = r->nodes_[y];
if (nx->rank >= ny->rank) {
ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y,
nx->rank, ny->rank);
}
}
}
return true;
}
GraphId GraphCycles::GetId(void* ptr) {
int32_t i = rep_->ptrmap_.Find(ptr);
if (i != -1) {
return MakeId(i, rep_->nodes_[i]->version);
} else if (rep_->free_nodes_.empty()) {
Node* n =
new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena))
Node;
n->version = 1; // Avoid 0 since it is used by InvalidGraphId()
n->visited = false;
n->rank = rep_->nodes_.size();
n->masked_ptr = base_internal::HidePtr(ptr);
n->nstack = 0;
n->priority = 0;
rep_->nodes_.push_back(n);
rep_->ptrmap_.Add(ptr, n->rank);
return MakeId(n->rank, n->version);
} else {
// Preserve preceding rank since the set of ranks in use must be
// a permutation of [0,rep_->nodes_.size()-1].
int32_t r = rep_->free_nodes_.back();
rep_->free_nodes_.pop_back();
Node* n = rep_->nodes_[r];
n->masked_ptr = base_internal::HidePtr(ptr);
n->nstack = 0;
n->priority = 0;
rep_->ptrmap_.Add(ptr, r);
return MakeId(r, n->version);
}
}
void GraphCycles::RemoveNode(void* ptr) {
int32_t i = rep_->ptrmap_.Remove(ptr);
if (i == -1) {
return;
}
Node* x = rep_->nodes_[i];
HASH_FOR_EACH(y, x->out) {
rep_->nodes_[y]->in.erase(i);
}
HASH_FOR_EACH(y, x->in) {
rep_->nodes_[y]->out.erase(i);
}
x->in.clear();
x->out.clear();
x->masked_ptr = base_internal::HidePtr<void>(nullptr);
if (x->version == std::numeric_limits<uint32_t>::max()) {
// Cannot use x any more
} else {
x->version++; // Invalidates all copies of node.
rep_->free_nodes_.push_back(i);
}
}
void* GraphCycles::Ptr(GraphId id) {
Node* n = FindNode(rep_, id);
return n == nullptr ? nullptr
: base_internal::UnhidePtr<void>(n->masked_ptr);
}
bool GraphCycles::HasNode(GraphId node) {
return FindNode(rep_, node) != nullptr;
}
bool GraphCycles::HasEdge(GraphId x, GraphId y) const {
Node* xn = FindNode(rep_, x);
return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y));
}
void GraphCycles::RemoveEdge(GraphId x, GraphId y) {
Node* xn = FindNode(rep_, x);
Node* yn = FindNode(rep_, y);
if (xn && yn) {
xn->out.erase(NodeIndex(y));
yn->in.erase(NodeIndex(x));
// No need to update the rank assignment since a previous valid
// rank assignment remains valid after an edge deletion.
}
}
static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound);
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound);
static void Reorder(GraphCycles::Rep* r);
static void Sort(const Vec<Node*>&, Vec<int32_t>* delta);
static void MoveToList(
GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst);
bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) {
Rep* r = rep_;
const int32_t x = NodeIndex(idx);
const int32_t y = NodeIndex(idy);
Node* nx = FindNode(r, idx);
Node* ny = FindNode(r, idy);
if (nx == nullptr || ny == nullptr) return true; // Expired ids
if (nx == ny) return false; // Self edge
if (!nx->out.insert(y)) {
// Edge already exists.
return true;
}
ny->in.insert(x);
if (nx->rank <= ny->rank) {
// New edge is consistent with existing rank assignment.
return true;
}
// Current rank assignments are incompatible with the new edge. Recompute.
// We only need to consider nodes that fall in the range [ny->rank,nx->rank].
if (!ForwardDFS(r, y, nx->rank)) {
// Found a cycle. Undo the insertion and tell caller.
nx->out.erase(y);
ny->in.erase(x);
// Since we do not call Reorder() on this path, clear any visited
// markers left by ForwardDFS.
for (const auto& d : r->deltaf_) {
r->nodes_[d]->visited = false;
}
return false;
}
BackwardDFS(r, x, ny->rank);
Reorder(r);
return true;
}
static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) {
// Avoid recursion since stack space might be limited.
// We instead keep a stack of nodes to visit.
r->deltaf_.clear();
r->stack_.clear();
r->stack_.push_back(n);
while (!r->stack_.empty()) {
n = r->stack_.back();
r->stack_.pop_back();
Node* nn = r->nodes_[n];
if (nn->visited) continue;
nn->visited = true;
r->deltaf_.push_back(n);
HASH_FOR_EACH(w, nn->out) {
Node* nw = r->nodes_[w];
if (nw->rank == upper_bound) {
return false; // Cycle
}
if (!nw->visited && nw->rank < upper_bound) {
r->stack_.push_back(w);
}
}
}
return true;
}
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) {
r->deltab_.clear();
r->stack_.clear();
r->stack_.push_back(n);
while (!r->stack_.empty()) {
n = r->stack_.back();
r->stack_.pop_back();
Node* nn = r->nodes_[n];
if (nn->visited) continue;
nn->visited = true;
r->deltab_.push_back(n);
HASH_FOR_EACH(w, nn->in) {
Node* nw = r->nodes_[w];
if (!nw->visited && lower_bound < nw->rank) {
r->stack_.push_back(w);
}
}
}
}
static void Reorder(GraphCycles::Rep* r) {
Sort(r->nodes_, &r->deltab_);
Sort(r->nodes_, &r->deltaf_);
// Adds contents of delta lists to list_ (backwards deltas first).
r->list_.clear();
MoveToList(r, &r->deltab_, &r->list_);
MoveToList(r, &r->deltaf_, &r->list_);
// Produce sorted list of all ranks that will be reassigned.
r->merged_.resize(r->deltab_.size() + r->deltaf_.size());
std::merge(r->deltab_.begin(), r->deltab_.end(),
r->deltaf_.begin(), r->deltaf_.end(),
r->merged_.begin());
// Assign the ranks in order to the collected list.
for (uint32_t i = 0; i < r->list_.size(); i++) {
r->nodes_[r->list_[i]]->rank = r->merged_[i];
}
}
static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) {
struct ByRank {
const Vec<Node*>* nodes;
bool operator()(int32_t a, int32_t b) const {
return (*nodes)[a]->rank < (*nodes)[b]->rank;
}
};
ByRank cmp;
cmp.nodes = &nodes;
std::sort(delta->begin(), delta->end(), cmp);
}
static void MoveToList(
GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) {
for (auto& v : *src) {
int32_t w = v;
v = r->nodes_[w]->rank; // Replace v entry with its rank
r->nodes_[w]->visited = false; // Prepare for future DFS calls
dst->push_back(w);
}
}
int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len,
GraphId path[]) const {
Rep* r = rep_;
if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0;
const int32_t x = NodeIndex(idx);
const int32_t y = NodeIndex(idy);
// Forward depth first search starting at x until we hit y.
// As we descend into a node, we push it onto the path.
// As we leave a node, we remove it from the path.
int path_len = 0;
NodeSet seen;
r->stack_.clear();
r->stack_.push_back(x);
while (!r->stack_.empty()) {
int32_t n = r->stack_.back();
r->stack_.pop_back();
if (n < 0) {
// Marker to indicate that we are leaving a node
path_len--;
continue;
}
if (path_len < max_path_len) {
path[path_len] = MakeId(n, rep_->nodes_[n]->version);
}
path_len++;
r->stack_.push_back(-1); // Will remove tentative path entry
if (n == y) {
return path_len;
}
HASH_FOR_EACH(w, r->nodes_[n]->out) {
if (seen.insert(w)) {
r->stack_.push_back(w);
}
}
}
return 0;
}
bool GraphCycles::IsReachable(GraphId x, GraphId y) const {
return FindPath(x, y, 0, nullptr) > 0;
}
void GraphCycles::UpdateStackTrace(GraphId id, int priority,
int (*get_stack_trace)(void** stack, int)) {
Node* n = FindNode(rep_, id);
if (n == nullptr || n->priority >= priority) {
return;
}
n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack));
n->priority = priority;
}
int GraphCycles::GetStackTrace(GraphId id, void*** ptr) {
Node* n = FindNode(rep_, id);
if (n == nullptr) {
*ptr = nullptr;
return 0;
} else {
*ptr = n->stack;
return n->nstack;
}
}
} // namespace synchronization_internal
} // namespace absl
#endif // ABSL_LOW_LEVEL_ALLOC_MISSING