#include "absl/strings/internal/str_format/float_conversion.h"
#include <string.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <limits>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/internal/bits.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/types/span.h"
namespace absl {
namespace str_format_internal {
namespace {
// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
// the carry.
template <typename Int>
inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
using NextInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
static_assert(sizeof(void *) >= sizeof(Int),
"Don't want to use uint128 in 32-bit mode. It is too slow.");
NextInt tmp = 10 * static_cast<NextInt>(*v) + carry;
*v = static_cast<Int>(tmp);
return static_cast<Int>(tmp >> (sizeof(Int) * 8));
}
// Calculates `(2^64 * carry + *v) / 10`.
// Stores the quotient in `*v` and returns the remainder.
// Requires: `0 <= carry <= 9`
inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
constexpr uint64_t divisor = 10;
// 2^64 / divisor = word_quotient + word_remainder / divisor
constexpr uint64_t word_quotient = (uint64_t{1} << 63) / (divisor / 2);
constexpr uint64_t word_remainder = uint64_t{} - word_quotient * divisor;
const uint64_t mod = *v % divisor;
const uint64_t next_carry = word_remainder * carry + mod;
*v = *v / divisor + carry * word_quotient + next_carry / divisor;
return next_carry % divisor;
}
int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); }
int LeadingZeros(uint128 v) {
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
return high != 0 ? base_internal::CountLeadingZeros64(high)
: 64 + base_internal::CountLeadingZeros64(low);
}
int TrailingZeros(uint64_t v) {
return base_internal::CountTrailingZerosNonZero64(v);
}
int TrailingZeros(uint128 v) {
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
return low == 0 ? 64 + base_internal::CountTrailingZerosNonZero64(high)
: base_internal::CountTrailingZerosNonZero64(low);
}
// The buffer must have an extra digit that is known to not need rounding.
// This is done below by having an extra '0' digit on the left.
void RoundUp(char *last_digit) {
char *p = last_digit;
while (*p == '9' || *p == '.') {
if (*p == '9') *p = '0';
--p;
}
++*p;
}
void RoundToEven(char *last_digit) {
char *p = last_digit;
if (*p == '.') --p;
if (*p % 2 == 1) RoundUp(p);
}
char *PrintIntegralDigitsFromRightDynamic(uint128 v, Span<uint32_t> array,
int exp, char *p) {
if (v == 0) {
*--p = '0';
return p;
}
int w = exp / 32;
const int offset = exp % 32;
// Left shift v by exp bits.
array[w] = static_cast<uint32_t>(v << offset);
for (v >>= (32 - offset); v; v >>= 32) array[++w] = static_cast<uint32_t>(v);
// While we have more than one word available, go in chunks of 1e9.
// We are guaranteed to have at least those many digits.
// `w` holds the largest populated word, so keep it updated.
while (w > 0) {
uint32_t carry = 0;
for (int i = w; i >= 0; --i) {
uint64_t tmp = uint64_t{array[i]} + (uint64_t{carry} << 32);
array[i] = tmp / uint64_t{1000000000};
carry = tmp % uint64_t{1000000000};
}
// If the highest word is now empty, remove it from view.
if (array[w] == 0) --w;
for (int i = 0; i < 9; ++i, carry /= 10) {
*--p = carry % 10 + '0';
}
}
// Print the leftover of the last word.
for (auto last = array[0]; last != 0; last /= 10) {
*--p = last % 10 + '0';
}
return p;
}
struct FractionalResult {
const char *end;
int precision;
};
FractionalResult PrintFractionalDigitsDynamic(uint128 v, Span<uint32_t> array,
char *p, int exp, int precision) {
int w = exp / 32;
const int offset = exp % 32;
// Right shift `v` by `exp` bits.
array[w] = static_cast<uint32_t>(v << (32 - offset));
v >>= offset;
// Make sure we don't overflow the array. We already calculated that non-zero
// bits fit, so we might not have space for leading zero bits.
for (int pos = w; v; v >>= 32) array[--pos] = static_cast<uint32_t>(v);
// Multiply the whole sequence by 10.
// On each iteration, the leftover carry word is the next digit.
// `w` holds the largest populated word, so keep it updated.
for (; w >= 0 && precision > 0; --precision) {
uint32_t carry = 0;
for (int i = w; i >= 0; --i) {
carry = MultiplyBy10WithCarry(&array[i], carry);
}
// If the lowest word is now empty, remove it from view.
if (array[w] == 0) --w;
*p++ = carry + '0';
}
constexpr uint32_t threshold = 0x80000000;
if (array[0] < threshold) {
// We round down, so nothing to do.
} else if (array[0] > threshold ||
std::any_of(&array[1], &array[w + 1],
[](uint32_t word) { return word != 0; })) {
RoundUp(p - 1);
} else {
RoundToEven(p - 1);
}
return {p, precision};
}
// Generic digit printer.
// `bits` determines how many bits of termporary space it needs for the
// calcualtions.
template <int bits, typename = void>
class DigitPrinter {
static constexpr int kInts = (bits + 31) / 32;
public:
// Quick upper bound for the number of decimal digits we need.
// This would be std::ceil(std::log10(std::pow(2, bits))), but that is not
// constexpr.
static constexpr int kDigits10 = 1 + (bits + 9) / 10 * 3 + bits / 900;
using InputType = uint128;
static char *PrintIntegralDigitsFromRight(InputType v, int exp, char *end) {
std::array<uint32_t, kInts> array{};
return PrintIntegralDigitsFromRightDynamic(v, absl::MakeSpan(array), exp,
end);
}
static FractionalResult PrintFractionalDigits(InputType v, char *p, int exp,
int precision) {
std::array<uint32_t, kInts> array{};
return PrintFractionalDigitsDynamic(v, absl::MakeSpan(array), p, exp,
precision);
}
};
// Specialiation for 64-bit working space.
// This is a performance optimization over the generic primary template.
// Only enabled in 64-bit platforms. The generic one is faster in 32-bit
// platforms.
template <int bits>
class DigitPrinter<bits, absl::enable_if_t<bits == 64 && (sizeof(void *) >=
sizeof(uint64_t))>> {
public:
static constexpr size_t kDigits10 = 20;
using InputType = uint64_t;
static char *PrintIntegralDigitsFromRight(uint64_t v, int exp, char *p) {
v <<= exp;
do {
*--p = DivideBy10WithCarry(&v, 0) + '0';
} while (v != 0);
return p;
}
static FractionalResult PrintFractionalDigits(uint64_t v, char *p, int exp,
int precision) {
v <<= (64 - exp);
while (precision > 0) {
if (!v) return {p, precision};
*p++ = MultiplyBy10WithCarry(&v, uint64_t{}) + '0';
--precision;
}
// We need to round.
if (v < 0x8000000000000000) {
// We round down, so nothing to do.
} else if (v > 0x8000000000000000) {
// We round up.
RoundUp(p - 1);
} else {
RoundToEven(p - 1);
}
assert(precision == 0);
// Precision can only be zero here. Return a constant instead.
return {p, 0};
}
};
// Specialiation for 128-bit working space.
// This is a performance optimization over the generic primary template.
template <int bits>
class DigitPrinter<bits, absl::enable_if_t<bits == 128 && (sizeof(void *) >=
sizeof(uint64_t))>> {
public:
static constexpr size_t kDigits10 = 40;
using InputType = uint128;
static char *PrintIntegralDigitsFromRight(uint128 v, int exp, char *p) {
v <<= exp;
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
do {
uint64_t carry = DivideBy10WithCarry(&high, 0);
carry = DivideBy10WithCarry(&low, carry);
*--p = carry + '0';
} while (high != 0u);
while (low != 0u) {
*--p = DivideBy10WithCarry(&low, 0) + '0';
}
return p;
}
static FractionalResult PrintFractionalDigits(uint128 v, char *p, int exp,
int precision) {
v <<= (128 - exp);
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
// While we have digits to print and `low` is not empty, do the long
// multiplication.
while (precision > 0 && low != 0) {
uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{});
carry = MultiplyBy10WithCarry(&high, carry);
*p++ = carry + '0';
--precision;
}
// Now `low` is empty, so use a faster approach for the rest of the digits.
// This block is pretty much the same as the main loop for the 64-bit case
// above.
while (precision > 0) {
if (!high) return {p, precision};
*p++ = MultiplyBy10WithCarry(&high, uint64_t{}) + '0';
--precision;
}
// We need to round.
if (high < 0x8000000000000000) {
// We round down, so nothing to do.
} else if (high > 0x8000000000000000 || low != 0) {
// We round up.
RoundUp(p - 1);
} else {
RoundToEven(p - 1);
}
assert(precision == 0);
// Precision can only be zero here. Return a constant instead.
return {p, 0};
}
};
struct FormatState {
char sign_char;
int precision;
const ConversionSpec &conv;
FormatSinkImpl *sink;
};
void FinalPrint(string_view data, int trailing_zeros,
const FormatState &state) {
if (state.conv.width() < 0) {
// No width specified. Fast-path.
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(data);
state.sink->Append(trailing_zeros, '0');
return;
}
int left_spaces = 0, zeros = 0, right_spaces = 0;
int total_size = (state.sign_char != 0 ? 1 : 0) +
static_cast<int>(data.size()) + trailing_zeros;
int missing_chars = std::max(state.conv.width() - total_size, 0);
if (state.conv.flags().left) {
right_spaces = missing_chars;
} else if (state.conv.flags().zero) {
zeros = missing_chars;
} else {
left_spaces = missing_chars;
}
state.sink->Append(left_spaces, ' ');
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(zeros, '0');
state.sink->Append(data);
state.sink->Append(trailing_zeros, '0');
state.sink->Append(right_spaces, ' ');
}
template <int num_bits, typename Int>
void FormatFPositiveExp(Int v, int exp, const FormatState &state) {
using IntegralPrinter = DigitPrinter<num_bits>;
char buffer[IntegralPrinter::kDigits10 + /* . */ 1];
buffer[IntegralPrinter::kDigits10] = '.';
const char *digits = IntegralPrinter::PrintIntegralDigitsFromRight(
static_cast<typename IntegralPrinter::InputType>(v), exp,
buffer + sizeof(buffer) - 1);
size_t size = buffer + sizeof(buffer) - digits;
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) {
--size;
}
FinalPrint(string_view(digits, size), state.precision, state);
}
template <int num_bits, typename Int>
void FormatFNegativeExp(Int v, int exp, const FormatState &state) {
constexpr int input_bits = sizeof(Int) * 8;
using IntegralPrinter = DigitPrinter<input_bits>;
using FractionalPrinter = DigitPrinter<num_bits>;
static constexpr size_t integral_size =
1 + /* in case we need to round up an extra digit */
IntegralPrinter::kDigits10 + 1;
char buffer[integral_size + /* . */ 1 + num_bits];
buffer[integral_size] = '.';
char *const integral_digits_end = buffer + integral_size;
char *integral_digits_start;
char *const fractional_digits_start = buffer + integral_size + 1;
if (exp < input_bits) {
integral_digits_start = IntegralPrinter::PrintIntegralDigitsFromRight(
v >> exp, 0, integral_digits_end);
} else {
integral_digits_start = integral_digits_end - 1;
*integral_digits_start = '0';
}
// PrintFractionalDigits may pull a carried 1 all the way up through the
// integral portion.
integral_digits_start[-1] = '0';
auto fractional_result = FractionalPrinter::PrintFractionalDigits(
static_cast<typename FractionalPrinter::InputType>(v),
fractional_digits_start, exp, state.precision);
if (integral_digits_start[-1] != '0') --integral_digits_start;
size_t size = fractional_result.end - integral_digits_start;
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) {
--size;
}
FinalPrint(string_view(integral_digits_start, size),
fractional_result.precision, state);
}
template <typename Int>
void FormatF(Int mantissa, int exp, const FormatState &state) {
// Remove trailing zeros as they are not useful.
// This helps use faster implementations/less stack space in some cases.
if (mantissa != 0) {
int trailing = TrailingZeros(mantissa);
mantissa >>= trailing;
exp += trailing;
}
// The table driven dispatch gives us two benefits: fast distpatch and
// prevent inlining.
// We must not inline any of the functions below (other than the ones for
// 64-bit) to avoid blowing up this stack frame.
if (exp >= 0) {
// We will left shift the mantissa. Calculate how many bits we need.
// Special case 64-bit as we will use a uint64_t for it. Use a table for the
// rest and unconditionally use uint128.
const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
if (total_bits <= 64) {
return FormatFPositiveExp<64>(mantissa, exp, state);
} else {
using Formatter = void (*)(uint128, int, const FormatState &);
static constexpr Formatter kFormatters[] = {
FormatFPositiveExp<1 << 7>, FormatFPositiveExp<1 << 8>,
FormatFPositiveExp<1 << 9>, FormatFPositiveExp<1 << 10>,
FormatFPositiveExp<1 << 11>, FormatFPositiveExp<1 << 12>,
FormatFPositiveExp<1 << 13>, FormatFPositiveExp<1 << 14>,
FormatFPositiveExp<1 << 15>,
};
static constexpr int max_total_bits =
sizeof(Int) * 8 + std::numeric_limits<long double>::max_exponent;
assert(total_bits <= max_total_bits);
static_assert(max_total_bits <= (1 << 15), "");
const int log2 =
64 - LeadingZeros((static_cast<uint64_t>(total_bits) - 1) / 128);
assert(log2 < std::end(kFormatters) - std::begin(kFormatters));
kFormatters[log2](mantissa, exp, state);
}
} else {
exp = -exp;
// We know we don't need more than Int itself for the integral part.
// We need `precision` fractional digits, but there are at most `exp`
// non-zero digits after the decimal point. The rest will be zeros.
// Special case 64-bit as we will use a uint64_t for it. Use a table for the
// rest and unconditionally use uint128.
if (exp <= 64) {
return FormatFNegativeExp<64>(mantissa, exp, state);
} else {
using Formatter = void (*)(uint128, int, const FormatState &);
static constexpr Formatter kFormatters[] = {
FormatFNegativeExp<1 << 7>, FormatFNegativeExp<1 << 8>,
FormatFNegativeExp<1 << 9>, FormatFNegativeExp<1 << 10>,
FormatFNegativeExp<1 << 11>, FormatFNegativeExp<1 << 12>,
FormatFNegativeExp<1 << 13>, FormatFNegativeExp<1 << 14>};
static_assert(
-std::numeric_limits<long double>::min_exponent <= (1 << 14), "");
const int log2 =
64 - LeadingZeros((static_cast<uint64_t>(exp) - 1) / 128);
assert(log2 < std::end(kFormatters) - std::begin(kFormatters));
kFormatters[log2](mantissa, exp, state);
}
}
}
char *CopyStringTo(string_view v, char *out) {
std::memcpy(out, v.data(), v.size());
return out + v.size();
}
template <typename Float>
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
int w = conv.width() >= 0 ? conv.width() : 0;
int p = conv.precision() >= 0 ? conv.precision() : -1;
char fmt[32];
{
char *fp = fmt;
*fp++ = '%';
fp = CopyStringTo(conv.flags().ToString(), fp);
fp = CopyStringTo("*.*", fp);
if (std::is_same<long double, Float>()) {
*fp++ = 'L';
}
*fp++ = conv.conv().Char();
*fp = 0;
assert(fp < fmt + sizeof(fmt));
}
std::string space(512, '\0');
string_view result;
while (true) {
int n = snprintf(&space[0], space.size(), fmt, w, p, v);
if (n < 0) return false;
if (static_cast<size_t>(n) < space.size()) {
result = string_view(space.data(), n);
break;
}
space.resize(n + 1);
}
sink->Append(result);
return true;
}
// 128-bits in decimal: ceil(128*log(2)/log(10))
// or std::numeric_limits<__uint128_t>::digits10
constexpr int kMaxFixedPrecision = 39;
constexpr int kBufferLength = /*sign*/ 1 +
/*integer*/ kMaxFixedPrecision +
/*point*/ 1 +
/*fraction*/ kMaxFixedPrecision +
/*exponent e+123*/ 5;
struct Buffer {
void push_front(char c) {
assert(begin > data);
*--begin = c;
}
void push_back(char c) {
assert(end < data + sizeof(data));
*end++ = c;
}
void pop_back() {
assert(begin < end);
--end;
}
char &back() {
assert(begin < end);
return end[-1];
}
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
int size() const { return static_cast<int>(end - begin); }
char data[kBufferLength];
char *begin;
char *end;
};
enum class FormatStyle { Fixed, Precision };
// If the value is Inf or Nan, print it and return true.
// Otherwise, return false.
template <typename Float>
bool ConvertNonNumericFloats(char sign_char, Float v,
const ConversionSpec &conv, FormatSinkImpl *sink) {
char text[4], *ptr = text;
if (sign_char != '\0') *ptr++ = sign_char;
if (std::isnan(v)) {
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr);
} else if (std::isinf(v)) {
ptr = std::copy_n(conv.conv().upper() ? "INF" : "inf", 3, ptr);
} else {
return false;
}
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
conv.flags().left);
}
// Round up the last digit of the value.
// It will carry over and potentially overflow. 'exp' will be adjusted in that
// case.
template <FormatStyle mode>
void RoundUp(Buffer *buffer, int *exp) {
char *p = &buffer->back();
while (p >= buffer->begin && (*p == '9' || *p == '.')) {
if (*p == '9') *p = '0';
--p;
}
if (p < buffer->begin) {
*p = '1';
buffer->begin = p;
if (mode == FormatStyle::Precision) {
std::swap(p[1], p[2]); // move the .
++*exp;
buffer->pop_back();
}
} else {
++*p;
}
}
void PrintExponent(int exp, char e, Buffer *out) {
out->push_back(e);
if (exp < 0) {
out->push_back('-');
exp = -exp;
} else {
out->push_back('+');
}
// Exponent digits.
if (exp > 99) {
out->push_back(exp / 100 + '0');
out->push_back(exp / 10 % 10 + '0');
out->push_back(exp % 10 + '0');
} else {
out->push_back(exp / 10 + '0');
out->push_back(exp % 10 + '0');
}
}
template <typename Float, typename Int>
constexpr bool CanFitMantissa() {
return
#if defined(__clang__) && !defined(__SSE3__)
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
// Casting from long double to uint64_t is miscompiled and drops bits.
(!std::is_same<Float, long double>::value ||
!std::is_same<Int, uint64_t>::value) &&
#endif
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
}
template <typename Float>
struct Decomposed {
using MantissaType =
absl::conditional_t<std::is_same<long double, Float>::value, uint128,
uint64_t>;
static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
"");
MantissaType mantissa;
int exponent;
};
// Decompose the double into an integer mantissa and an exponent.
template <typename Float>
Decomposed<Float> Decompose(Float v) {
int exp;
Float m = std::frexp(v, &exp);
m = std::ldexp(m, std::numeric_limits<Float>::digits);
exp -= std::numeric_limits<Float>::digits;
return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
}
// Print 'digits' as decimal.
// In Fixed mode, we add a '.' at the end.
// In Precision mode, we add a '.' after the first digit.
template <FormatStyle mode, typename Int>
int PrintIntegralDigits(Int digits, Buffer *out) {
int printed = 0;
if (digits) {
for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
printed = out->size();
if (mode == FormatStyle::Precision) {
out->push_front(*out->begin);
out->begin[1] = '.';
} else {
out->push_back('.');
}
} else if (mode == FormatStyle::Fixed) {
out->push_front('0');
out->push_back('.');
printed = 1;
}
return printed;
}
// Back out 'extra_digits' digits and round up if necessary.
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
Buffer *out, int *exp_out) {
if (extra_digits <= 0) return false;
// Back out the extra digits
out->end -= extra_digits;
bool needs_to_round_up = [&] {
// We look at the digit just past the end.
// There must be 'extra_digits' extra valid digits after end.
if (*out->end > '5') return true;
if (*out->end < '5') return false;
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
[](char c) { return c != '0'; }))
return true;
// Ends in ...50*, round to even.
return out->last_digit() % 2 == 1;
}();
if (needs_to_round_up) {
RoundUp<FormatStyle::Precision>(out, exp_out);
}
return true;
}
// Print the value into the buffer.
// This will not include the exponent, which will be returned in 'exp_out' for
// Precision mode.
template <typename Int, typename Float, FormatStyle mode>
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
int *exp_out) {
assert((CanFitMantissa<Float, Int>()));
const int int_bits = std::numeric_limits<Int>::digits;
// In precision mode, we start printing one char to the right because it will
// also include the '.'
// In fixed mode we put the dot afterwards on the right.
out->begin = out->end =
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
if (exp >= 0) {
if (std::numeric_limits<Float>::digits + exp > int_bits) {
// The value will overflow the Int
return false;
}
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
int digits_to_zero_pad = precision;
if (mode == FormatStyle::Precision) {
*exp_out = digits_printed - 1;
digits_to_zero_pad -= digits_printed - 1;
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
return true;
}
}
for (; digits_to_zero_pad-- > 0;) out->push_back('0');
return true;
}
exp = -exp;
// We need at least 4 empty bits for the next decimal digit.
// We will multiply by 10.
if (exp > int_bits - 4) return false;
const Int mask = (Int{1} << exp) - 1;
// Print the integral part first.
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
int_mantissa &= mask;
int fractional_count = precision;
if (mode == FormatStyle::Precision) {
if (digits_printed == 0) {
// Find the first non-zero digit, when in Precision mode.
*exp_out = 0;
if (int_mantissa) {
while (int_mantissa <= mask) {
int_mantissa *= 10;
--*exp_out;
}
}
out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
out->push_back('.');
int_mantissa &= mask;
} else {
// We already have a digit, and a '.'
*exp_out = digits_printed - 1;
fractional_count -= *exp_out;
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
exp_out)) {
// If we had enough digits, return right away.
// The code below will try to round again otherwise.
return true;
}
}
}
auto get_next_digit = [&] {
int_mantissa *= 10;
int digit = static_cast<int>(int_mantissa >> exp);
int_mantissa &= mask;
return digit;
};
// Print fractional_count more digits, if available.
for (; fractional_count > 0; --fractional_count) {
out->push_back(get_next_digit() + '0');
}
int next_digit = get_next_digit();
if (next_digit > 5 ||
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
RoundUp<mode>(out, exp_out);
}
return true;
}
template <FormatStyle mode, typename Float>
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
int *exp) {
if (precision > kMaxFixedPrecision) return false;
// Try with uint64_t.
if (CanFitMantissa<Float, std::uint64_t>() &&
FloatToBufferImpl<std::uint64_t, Float, mode>(
static_cast<std::uint64_t>(decomposed.mantissa),
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
return true;
#if defined(ABSL_HAVE_INTRINSIC_INT128)
// If that is not enough, try with __uint128_t.
return CanFitMantissa<Float, __uint128_t>() &&
FloatToBufferImpl<__uint128_t, Float, mode>(
static_cast<__uint128_t>(decomposed.mantissa),
static_cast<__uint128_t>(decomposed.exponent), precision, out,
exp);
#endif
return false;
}
void WriteBufferToSink(char sign_char, string_view str,
const ConversionSpec &conv, FormatSinkImpl *sink) {
int left_spaces = 0, zeros = 0, right_spaces = 0;
int missing_chars =
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
static_cast<int>(sign_char != 0),
0)
: 0;
if (conv.flags().left) {
right_spaces = missing_chars;
} else if (conv.flags().zero) {
zeros = missing_chars;
} else {
left_spaces = missing_chars;
}
sink->Append(left_spaces, ' ');
if (sign_char != '\0') sink->Append(1, sign_char);
sink->Append(zeros, '0');
sink->Append(str);
sink->Append(right_spaces, ' ');
}
template <typename Float>
bool FloatToSink(const Float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
// Print the sign or the sign column.
Float abs_v = v;
char sign_char = 0;
if (std::signbit(abs_v)) {
sign_char = '-';
abs_v = -abs_v;
} else if (conv.flags().show_pos) {
sign_char = '+';
} else if (conv.flags().sign_col) {
sign_char = ' ';
}
// Print nan/inf.
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
return true;
}
int precision = conv.precision() < 0 ? 6 : conv.precision();
int exp = 0;
auto decomposed = Decompose(abs_v);
Buffer buffer;
switch (conv.conv().id()) {
case ConversionChar::f:
case ConversionChar::F:
FormatF(decomposed.mantissa, decomposed.exponent,
{sign_char, precision, conv, sink});
return true;
case ConversionChar::e:
case ConversionChar::E:
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
break;
case ConversionChar::g:
case ConversionChar::G:
precision = std::max(0, precision - 1);
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if (precision + 1 > exp && exp >= -4) {
if (exp < 0) {
// Have 1.23456, needs 0.00123456
// Move the first digit
buffer.begin[1] = *buffer.begin;
// Add some zeros
for (; exp < -1; ++exp) *buffer.begin-- = '0';
*buffer.begin-- = '.';
*buffer.begin = '0';
} else if (exp > 0) {
// Have 1.23456, needs 1234.56
// Move the '.' exp positions to the right.
std::rotate(buffer.begin + 1, buffer.begin + 2,
buffer.begin + exp + 2);
}
exp = 0;
}
if (!conv.flags().alt) {
while (buffer.back() == '0') buffer.pop_back();
if (buffer.back() == '.') buffer.pop_back();
}
if (exp) PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
break;
case ConversionChar::a:
case ConversionChar::A:
return FallbackToSnprintf(v, conv, sink);
default:
return false;
}
WriteBufferToSink(sign_char,
string_view(buffer.begin, buffer.end - buffer.begin), conv,
sink);
return true;
}
} // namespace
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
if (std::numeric_limits<long double>::digits ==
2 * std::numeric_limits<double>::digits) {
// This is the `double-double` representation of `long double`.
// We do not handle it natively. Fallback to snprintf.
return FallbackToSnprintf(v, conv, sink);
}
return FloatToSink(v, conv, sink);
}
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
// DivideBy10WithCarry is not actually used in some builds. This here silences
// the "unused" warning. We just need to put it in any function that is really
// used.
(void)&DivideBy10WithCarry;
return FloatToSink(v, conv, sink);
}
bool ConvertFloatImpl(double v, const ConversionSpec &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
}
} // namespace str_format_internal
} // namespace absl