// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: cord.h
// -----------------------------------------------------------------------------
//
// This file defines the `absl::Cord` data structure and operations on that data
// structure. A Cord is a string-like sequence of characters optimized for
// specific use cases. Unlike a `std::string`, which stores an array of
// contiguous characters, Cord data is stored in a structure consisting of
// separate, reference-counted "chunks." (Currently, this implementation is a
// tree structure, though that implementation may change.)
//
// Because a Cord consists of these chunks, data can be added to or removed from
// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a
// `std::string`, a Cord can therefore accomodate data that changes over its
// lifetime, though it's not quite "mutable"; it can change only in the
// attachment, detachment, or rearrangement of chunks of its constituent data.
//
// A Cord provides some benefit over `std::string` under the following (albeit
// narrow) circumstances:
//
// * Cord data is designed to grow and shrink over a Cord's lifetime. Cord
// provides efficient insertions and deletions at the start and end of the
// character sequences, avoiding copies in those cases. Static data should
// generally be stored as strings.
// * External memory consisting of string-like data can be directly added to
// a Cord without requiring copies or allocations.
// * Cord data may be shared and copied cheaply. Cord provides a copy-on-write
// implementation and cheap sub-Cord operations. Copying a Cord is an O(1)
// operation.
//
// As a consequence to the above, Cord data is generally large. Small data
// should generally use strings, as construction of a Cord requires some
// overhead. Small Cords (<= 15 bytes) are represented inline, but most small
// Cords are expected to grow over their lifetimes.
//
// Note that because a Cord is made up of separate chunked data, random access
// to character data within a Cord is slower than within a `std::string`.
//
// Thread Safety
//
// Cord has the same thread-safety properties as many other types like
// std::string, std::vector<>, int, etc -- it is thread-compatible. In
// particular, if threads do not call non-const methods, then it is safe to call
// const methods without synchronization. Copying a Cord produces a new instance
// that can be used concurrently with the original in arbitrary ways.
#ifndef ABSL_STRINGS_CORD_H_
#define ABSL_STRINGS_CORD_H_
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iostream>
#include <iterator>
#include <string>
#include <type_traits>
#include "absl/base/internal/endian.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/container/inlined_vector.h"
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class CordTestPeer;
template <typename Releaser>
Cord MakeCordFromExternal(absl::string_view, Releaser&&);
void CopyCordToString(const Cord& src, std::string* dst);
namespace hash_internal {
template <typename H>
H HashFragmentedCord(H, const Cord&);
}
// Cord
//
// A Cord is a sequence of characters, designed to be more efficient than a
// `std::string` in certain circumstances: namely, large string data that needs
// to change over its lifetime or shared, especially when such data is shared
// across API boundaries.
//
// A Cord stores its character data in a structure that allows efficient prepend
// and append operations. This makes a Cord useful for large string data sent
// over in a wire format that may need to be prepended or appended at some point
// during the data exchange (e.g. HTTP, protocol buffers). For example, a
// Cord is useful for storing an HTTP request, and prepending an HTTP header to
// such a request.
//
// Cords should not be used for storing general string data, however. They
// require overhead to construct and are slower than strings for random access.
//
// The Cord API provides the following common API operations:
//
// * Create or assign Cords out of existing string data, memory, or other Cords
// * Append and prepend data to an existing Cord
// * Create new Sub-Cords from existing Cord data
// * Swap Cord data and compare Cord equality
// * Write out Cord data by constructing a `std::string`
//
// Additionally, the API provides iterator utilities to iterate through Cord
// data via chunks or character bytes.
//
class Cord {
private:
template <typename T>
using EnableIfString =
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
public:
// Cord::Cord() Constructors
// Creates an empty Cord
constexpr Cord() noexcept;
// Creates a Cord from an existing Cord. Cord is copyable and efficiently
// movable. The moved-from state is valid but unspecified.
Cord(const Cord& src);
Cord(Cord&& src) noexcept;
Cord& operator=(const Cord& x);
Cord& operator=(Cord&& x) noexcept;
// Creates a Cord from a `src` string. This constructor is marked explicit to
// prevent implicit Cord constructions from arguments convertible to an
// `absl::string_view`.
explicit Cord(absl::string_view src);
Cord& operator=(absl::string_view src);
// Creates a Cord from a `std::string&&` rvalue. These constructors are
// templated to avoid ambiguities for types that are convertible to both
// `absl::string_view` and `std::string`, such as `const char*`.
//
// Note that these functions reserve the right to use the `string&&`'s
// memory and that they will do so in the future.
template <typename T, EnableIfString<T> = 0>
explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
template <typename T, EnableIfString<T> = 0>
Cord& operator=(T&& src);
// Cord::~Cord()
//
// Destructs the Cord
~Cord() {
if (contents_.is_tree()) DestroyCordSlow();
}
// Cord::MakeCordFromExternal(data, callable)
//
// Creates a Cord that takes ownership of external string memory. The
// contents of `data` are not copied to the Cord; instead, the external
// memory is added to the Cord and reference-counted. This data may not be
// changed for the life of the Cord, though it may be prepended or appended
// to.
//
// `MakeCordFromExternal()` takes a callable "releaser" that is invoked when
// the reference count for `data` reaches zero. As noted above, this data must
// remain live until the releaser is invoked. The callable releaser also must:
//
// * be move constructible
// * support `void operator()(absl::string_view) const` or `void operator()`
// * not have alignment requirement greater than what is guaranteed by
// `::operator new`. This alignment is dictated by
// `alignof(std::max_align_t)` (pre-C++17 code) or
// `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).
//
// Example:
//
// Cord MakeCord(BlockPool* pool) {
// Block* block = pool->NewBlock();
// FillBlock(block);
// return absl::MakeCordFromExternal(
// block->ToStringView(),
// [pool, block](absl::string_view v) {
// pool->FreeBlock(block, v);
// });
// }
//
// WARNING: Because a Cord can be reference-counted, it's likely a bug if your
// releaser doesn't do anything. For example, consider the following:
//
// void Foo(const char* buffer, int len) {
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
// [](absl::string_view) {});
//
// // BUG: If Bar() copies its cord for any reason, including keeping a
// // substring of it, the lifetime of buffer might be extended beyond
// // when Foo() returns.
// Bar(c);
// }
template <typename Releaser>
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
// Cord::Clear()
//
// Releases the Cord data. Any nodes that share data with other Cords, if
// applicable, will have their reference counts reduced by 1.
void Clear();
// Cord::Append()
//
// Appends data to the Cord, which may come from another Cord or other string
// data.
void Append(const Cord& src);
void Append(Cord&& src);
void Append(absl::string_view src);
template <typename T, EnableIfString<T> = 0>
void Append(T&& src);
// Cord::Prepend()
//
// Prepends data to the Cord, which may come from another Cord or other string
// data.
void Prepend(const Cord& src);
void Prepend(absl::string_view src);
template <typename T, EnableIfString<T> = 0>
void Prepend(T&& src);
// Cord::RemovePrefix()
//
// Removes the first `n` bytes of a Cord.
void RemovePrefix(size_t n);
void RemoveSuffix(size_t n);
// Cord::Subcord()
//
// Returns a new Cord representing the subrange [pos, pos + new_size) of
// *this. If pos >= size(), the result is empty(). If
// (pos + new_size) >= size(), the result is the subrange [pos, size()).
Cord Subcord(size_t pos, size_t new_size) const;
// swap()
//
// Swaps the data of Cord `x` with Cord `y`.
friend void swap(Cord& x, Cord& y) noexcept;
// Cord::size()
//
// Returns the size of the Cord.
size_t size() const;
// Cord::empty()
//
// Determines whether the given Cord is empty, returning `true` is so.
bool empty() const;
// Cord::EstimatedMemoryUsage()
//
// Returns the *approximate* number of bytes held in full or in part by this
// Cord (which may not remain the same between invocations). Note that Cords
// that share memory could each be "charged" independently for the same shared
// memory.
size_t EstimatedMemoryUsage() const;
// Cord::Compare()
//
// Compares 'this' Cord with rhs. This function and its relatives treat Cords
// as sequences of unsigned bytes. The comparison is a straightforward
// lexicographic comparison. `Cord::Compare()` returns values as follows:
//
// -1 'this' Cord is smaller
// 0 two Cords are equal
// 1 'this' Cord is larger
int Compare(absl::string_view rhs) const;
int Compare(const Cord& rhs) const;
// Cord::StartsWith()
//
// Determines whether the Cord starts with the passed string data `rhs`.
bool StartsWith(const Cord& rhs) const;
bool StartsWith(absl::string_view rhs) const;
// Cord::EndsWidth()
//
// Determines whether the Cord ends with the passed string data `rhs`.
bool EndsWith(absl::string_view rhs) const;
bool EndsWith(const Cord& rhs) const;
// Cord::operator std::string()
//
// Converts a Cord into a `std::string()`. This operator is marked explicit to
// prevent unintended Cord usage in functions that take a string.
explicit operator std::string() const;
// CopyCordToString()
//
// Copies the contents of a `src` Cord into a `*dst` string.
//
// This function optimizes the case of reusing the destination string since it
// can reuse previously allocated capacity. However, this function does not
// guarantee that pointers previously returned by `dst->data()` remain valid
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
// object, prefer to simply use the conversion operator to `std::string`.
friend void CopyCordToString(const Cord& src, std::string* dst);
class CharIterator;
//----------------------------------------------------------------------------
// Cord::ChunkIterator
//----------------------------------------------------------------------------
//
// A `Cord::ChunkIterator` allows iteration over the constituent chunks of its
// Cord. Such iteration allows you to perform non-const operatons on the data
// of a Cord without modifying it.
//
// Generally, you do not instantiate a `Cord::ChunkIterator` directly;
// instead, you create one implicitly through use of the `Cord::Chunks()`
// member function.
//
// The `Cord::ChunkIterator` has the following properties:
//
// * The iterator is invalidated after any non-const operation on the
// Cord object over which it iterates.
// * The `string_view` returned by dereferencing a valid, non-`end()`
// iterator is guaranteed to be non-empty.
// * Two `ChunkIterator` objects can be compared equal if and only if they
// remain valid and iterate over the same Cord.
// * The iterator in this case is a proxy iterator; the `string_view`
// returned by the iterator does not live inside the Cord, and its
// lifetime is limited to the lifetime of the iterator itself. To help
// prevent lifetime issues, `ChunkIterator::reference` is not a true
// reference type and is equivalent to `value_type`.
// * The iterator keeps state that can grow for Cords that contain many
// nodes and are imbalanced due to sharing. Prefer to pass this type by
// const reference instead of by value.
class ChunkIterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = absl::string_view;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = value_type;
ChunkIterator() = default;
ChunkIterator& operator++();
ChunkIterator operator++(int);
bool operator==(const ChunkIterator& other) const;
bool operator!=(const ChunkIterator& other) const;
reference operator*() const;
pointer operator->() const;
friend class Cord;
friend class CharIterator;
private:
// Constructs a `begin()` iterator from `cord`.
explicit ChunkIterator(const Cord* cord);
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
// `current_chunk_.size()`.
void RemoveChunkPrefix(size_t n);
Cord AdvanceAndReadBytes(size_t n);
void AdvanceBytes(size_t n);
// Iterates `n` bytes, where `n` is expected to be greater than or equal to
// `current_chunk_.size()`.
void AdvanceBytesSlowPath(size_t n);
// A view into bytes of the current `CordRep`. It may only be a view to a
// suffix of bytes if this is being used by `CharIterator`.
absl::string_view current_chunk_;
// The current leaf, or `nullptr` if the iterator points to short data.
// If the current chunk is a substring node, current_leaf_ points to the
// underlying flat or external node.
absl::cord_internal::CordRep* current_leaf_ = nullptr;
// The number of bytes left in the `Cord` over which we are iterating.
size_t bytes_remaining_ = 0;
absl::InlinedVector<absl::cord_internal::CordRep*, 4>
stack_of_right_children_;
};
// Cord::ChunkIterator::chunk_begin()
//
// Returns an iterator to the first chunk of the `Cord`.
//
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
// iterating over the chunks of a Cord. This method may be useful for getting
// a `ChunkIterator` where range-based for-loops are not useful.
//
// Example:
//
// absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,
// absl::string_view s) {
// return std::find(c.chunk_begin(), c.chunk_end(), s);
// }
ChunkIterator chunk_begin() const;
// Cord::ChunkItertator::chunk_end()
//
// Returns an iterator one increment past the last chunk of the `Cord`.
//
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
// iterating over the chunks of a Cord. This method may be useful for getting
// a `ChunkIterator` where range-based for-loops may not be available.
ChunkIterator chunk_end() const;
//----------------------------------------------------------------------------
// Cord::ChunkIterator::ChunkRange
//----------------------------------------------------------------------------
//
// `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,
// producing an iterator which can be used within a range-based for loop.
// Construction of a `ChunkRange` will return an iterator pointing to the
// first chunk of the Cord. Generally, do not construct a `ChunkRange`
// directly; instead, prefer to use the `Cord::Chunks()` method.
//
// Implementation note: `ChunkRange` is simply a convenience wrapper over
// `Cord::chunk_begin()` and `Cord::chunk_end()`.
class ChunkRange {
public:
explicit ChunkRange(const Cord* cord) : cord_(cord) {}
ChunkIterator begin() const;
ChunkIterator end() const;
private:
const Cord* cord_;
};
// Cord::Chunks()
//
// Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks
// of a `Cord` with a range-based for-loop. For most iteration tasks on a
// Cord, use `Cord::Chunks()` to retrieve this iterator.
//
// Example:
//
// void ProcessChunks(const Cord& cord) {
// for (absl::string_view chunk : cord.Chunks()) { ... }
// }
//
// Note that the ordinary caveats of temporary lifetime extension apply:
//
// void Process() {
// for (absl::string_view chunk : CordFactory().Chunks()) {
// // The temporary Cord returned by CordFactory has been destroyed!
// }
// }
ChunkRange Chunks() const;
//----------------------------------------------------------------------------
// Cord::CharIterator
//----------------------------------------------------------------------------
//
// A `Cord::CharIterator` allows iteration over the constituent characters of
// a `Cord`.
//
// Generally, you do not instantiate a `Cord::CharIterator` directly; instead,
// you create one implicitly through use of the `Cord::Chars()` member
// function.
//
// A `Cord::CharIterator` has the following properties:
//
// * The iterator is invalidated after any non-const operation on the
// Cord object over which it iterates.
// * Two `CharIterator` objects can be compared equal if and only if they
// remain valid and iterate over the same Cord.
// * The iterator keeps state that can grow for Cords that contain many
// nodes and are imbalanced due to sharing. Prefer to pass this type by
// const reference instead of by value.
// * This type cannot act as a forward iterator because a `Cord` can reuse
// sections of memory. This fact violates the requirement for forward
// iterators to compare equal if dereferencing them returns the same
// object.
class CharIterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = char;
using difference_type = ptrdiff_t;
using pointer = const char*;
using reference = const char&;
CharIterator() = default;
CharIterator& operator++();
CharIterator operator++(int);
bool operator==(const CharIterator& other) const;
bool operator!=(const CharIterator& other) const;
reference operator*() const;
pointer operator->() const;
friend Cord;
private:
explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}
ChunkIterator chunk_iterator_;
};
// Cord::CharIterator::AdvanceAndRead()
//
// Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes
// advanced as a separate `Cord`. `n_bytes` must be less than or equal to the
// number of bytes within the Cord; otherwise, behavior is undefined. It is
// valid to pass `char_end()` and `0`.
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
// Cord::CharIterator::Advance()
//
// Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than
// or equal to the number of bytes remaining within the Cord; otherwise,
// behavior is undefined. It is valid to pass `char_end()` and `0`.
static void Advance(CharIterator* it, size_t n_bytes);
// Cord::CharIterator::ChunkRemaining()
//
// Returns the longest contiguous view starting at the iterator's position.
//
// `it` must be dereferenceable.
static absl::string_view ChunkRemaining(const CharIterator& it);
// Cord::CharIterator::char_begin()
//
// Returns an iterator to the first character of the `Cord`.
//
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
// iterating over the chunks of a Cord. This method may be useful for getting
// a `CharIterator` where range-based for-loops may not be available.
CharIterator char_begin() const;
// Cord::CharIterator::char_end()
//
// Returns an iterator to one past the last character of the `Cord`.
//
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
// iterating over the chunks of a Cord. This method may be useful for getting
// a `CharIterator` where range-based for-loops are not useful.
CharIterator char_end() const;
// Cord::CharIterator::CharRange
//
// `CharRange` is a helper class for iterating over the characters of a
// producing an iterator which can be used within a range-based for loop.
// Construction of a `CharRange` will return an iterator pointing to the first
// character of the Cord. Generally, do not construct a `CharRange` directly;
// instead, prefer to use the `Cord::Chars()` method show below.
//
// Implementation note: `CharRange` is simply a convenience wrapper over
// `Cord::char_begin()` and `Cord::char_end()`.
class CharRange {
public:
explicit CharRange(const Cord* cord) : cord_(cord) {}
CharIterator begin() const;
CharIterator end() const;
private:
const Cord* cord_;
};
// Cord::CharIterator::Chars()
//
// Returns a `Cord::CharIterator` for iterating over the characters of a
// `Cord` with a range-based for-loop. For most character-based iteration
// tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.
//
// Example:
//
// void ProcessCord(const Cord& cord) {
// for (char c : cord.Chars()) { ... }
// }
//
// Note that the ordinary caveats of temporary lifetime extension apply:
//
// void Process() {
// for (char c : CordFactory().Chars()) {
// // The temporary Cord returned by CordFactory has been destroyed!
// }
// }
CharRange Chars() const;
// Cord::operator[]
//
// Get the "i"th character of the Cord and returns it, provided that
// 0 <= i < Cord.size().
//
// NOTE: This routine is reasonably efficient. It is roughly
// logarithmic based on the number of chunks that make up the cord. Still,
// if you need to iterate over the contents of a cord, you should
// use a CharIterator/ChunkIterator rather than call operator[] or Get()
// repeatedly in a loop.
char operator[](size_t i) const;
// Cord::TryFlat()
//
// If this cord's representation is a single flat array, return a
// string_view referencing that array. Otherwise return nullopt.
absl::optional<absl::string_view> TryFlat() const;
// Cord::Flatten()
//
// Flattens the cord into a single array and returns a view of the data.
//
// If the cord was already flat, the contents are not modified.
absl::string_view Flatten();
private:
friend class CordTestPeer;
template <typename H>
friend H absl::hash_internal::HashFragmentedCord(H, const Cord&);
friend bool operator==(const Cord& lhs, const Cord& rhs);
friend bool operator==(const Cord& lhs, absl::string_view rhs);
// Call the provided function once for each cord chunk, in order. Unlike
// Chunks(), this API will not allocate memory.
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
// Allocates new contiguous storage for the contents of the cord. This is
// called by Flatten() when the cord was not already flat.
absl::string_view FlattenSlowPath();
// Actual cord contents are hidden inside the following simple
// class so that we can isolate the bulk of cord.cc from changes
// to the representation.
//
// InlineRep holds either a tree pointer, or an array of kMaxInline bytes.
class InlineRep {
public:
static const unsigned char kMaxInline = 15;
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
// Tag byte & kMaxInline means we are storing a pointer.
static const unsigned char kTreeFlag = 1 << 4;
// Tag byte & kProfiledFlag means we are profiling the Cord.
static const unsigned char kProfiledFlag = 1 << 5;
constexpr InlineRep() : data_{} {}
InlineRep(const InlineRep& src);
InlineRep(InlineRep&& src);
InlineRep& operator=(const InlineRep& src);
InlineRep& operator=(InlineRep&& src) noexcept;
void Swap(InlineRep* rhs);
bool empty() const;
size_t size() const;
const char* data() const; // Returns nullptr if holding pointer
void set_data(const char* data, size_t n,
bool nullify_tail); // Discards pointer, if any
char* set_data(size_t n); // Write data to the result
// Returns nullptr if holding bytes
absl::cord_internal::CordRep* tree() const;
// Discards old pointer, if any
void set_tree(absl::cord_internal::CordRep* rep);
// Replaces a tree with a new root. This is faster than set_tree, but it
// should only be used when it's clear that the old rep was a tree.
void replace_tree(absl::cord_internal::CordRep* rep);
// Returns non-null iff was holding a pointer
absl::cord_internal::CordRep* clear();
// Convert to pointer if necessary
absl::cord_internal::CordRep* force_tree(size_t extra_hint);
void reduce_size(size_t n); // REQUIRES: holding data
void remove_prefix(size_t n); // REQUIRES: holding data
void AppendArray(const char* src_data, size_t src_size);
absl::string_view FindFlatStartPiece() const;
void AppendTree(absl::cord_internal::CordRep* tree);
void PrependTree(absl::cord_internal::CordRep* tree);
void GetAppendRegion(char** region, size_t* size, size_t max_length);
void GetAppendRegion(char** region, size_t* size);
bool IsSame(const InlineRep& other) const {
return memcmp(data_, other.data_, sizeof(data_)) == 0;
}
int BitwiseCompare(const InlineRep& other) const {
uint64_t x, y;
// Use memcpy to avoid anti-aliasing issues.
memcpy(&x, data_, sizeof(x));
memcpy(&y, other.data_, sizeof(y));
if (x == y) {
memcpy(&x, data_ + 8, sizeof(x));
memcpy(&y, other.data_ + 8, sizeof(y));
if (x == y) return 0;
}
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
? -1
: 1;
}
void CopyTo(std::string* dst) const {
// memcpy is much faster when operating on a known size. On most supported
// platforms, the small string optimization is large enough that resizing
// to 15 bytes does not cause a memory allocation.
absl::strings_internal::STLStringResizeUninitialized(dst,
sizeof(data_) - 1);
memcpy(&(*dst)[0], data_, sizeof(data_) - 1);
// erase is faster than resize because the logic for memory allocation is
// not needed.
dst->erase(data_[kMaxInline]);
}
// Copies the inline contents into `dst`. Assumes the cord is not empty.
void CopyToArray(char* dst) const;
bool is_tree() const { return data_[kMaxInline] > kMaxInline; }
private:
friend class Cord;
void AssignSlow(const InlineRep& src);
// Unrefs the tree, stops profiling, and zeroes the contents
void ClearSlow();
// If the data has length <= kMaxInline, we store it in data_[0..len-1],
// and store the length in data_[kMaxInline]. Else we store it in a tree
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];
};
InlineRep contents_;
// Helper for MemoryUsage()
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
// Helper for GetFlat() and TryFlat()
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
absl::string_view* fragment);
// Helper for ForEachChunk()
static void ForEachChunkAux(
absl::cord_internal::CordRep* rep,
absl::FunctionRef<void(absl::string_view)> callback);
// The destructor for non-empty Cords.
void DestroyCordSlow();
// Out-of-line implementation of slower parts of logic.
void CopyToArraySlowPath(char* dst) const;
int CompareSlowPath(absl::string_view rhs, size_t compared_size,
size_t size_to_compare) const;
int CompareSlowPath(const Cord& rhs, size_t compared_size,
size_t size_to_compare) const;
bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;
bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;
int CompareImpl(const Cord& rhs) const;
template <typename ResultType, typename RHS>
friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
size_t size_to_compare);
static absl::string_view GetFirstChunk(const Cord& c);
static absl::string_view GetFirstChunk(absl::string_view sv);
// Returns a new reference to contents_.tree(), or steals an existing
// reference if called on an rvalue.
absl::cord_internal::CordRep* TakeRep() const&;
absl::cord_internal::CordRep* TakeRep() &&;
// Helper for Append()
template <typename C>
void AppendImpl(C&& src);
};
ABSL_NAMESPACE_END
} // namespace absl
namespace absl {
ABSL_NAMESPACE_BEGIN
// allow a Cord to be logged
extern std::ostream& operator<<(std::ostream& out, const Cord& cord);
// ------------------------------------------------------------------
// Internal details follow. Clients should ignore.
namespace cord_internal {
// Fast implementation of memmove for up to 15 bytes. This implementation is
// safe for overlapping regions. If nullify_tail is true, the destination is
// padded with '\0' up to 16 bytes.
inline void SmallMemmove(char* dst, const char* src, size_t n,
bool nullify_tail = false) {
if (n >= 8) {
assert(n <= 16);
uint64_t buf1;
uint64_t buf2;
memcpy(&buf1, src, 8);
memcpy(&buf2, src + n - 8, 8);
if (nullify_tail) {
memset(dst + 8, 0, 8);
}
memcpy(dst, &buf1, 8);
memcpy(dst + n - 8, &buf2, 8);
} else if (n >= 4) {
uint32_t buf1;
uint32_t buf2;
memcpy(&buf1, src, 4);
memcpy(&buf2, src + n - 4, 4);
if (nullify_tail) {
memset(dst + 4, 0, 4);
memset(dst + 8, 0, 8);
}
memcpy(dst, &buf1, 4);
memcpy(dst + n - 4, &buf2, 4);
} else {
if (n != 0) {
dst[0] = src[0];
dst[n / 2] = src[n / 2];
dst[n - 1] = src[n - 1];
}
if (nullify_tail) {
memset(dst + 8, 0, 8);
memset(dst + n, 0, 8);
}
}
}
struct ExternalRepReleaserPair {
CordRep* rep;
void* releaser_address;
};
// Allocates a new external `CordRep` and returns a pointer to it and a pointer
// to `releaser_size` bytes where the desired releaser can be constructed.
// Expects `data` to be non-empty.
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
absl::string_view data, ExternalReleaserInvoker invoker,
size_t releaser_size);
struct Rank1 {};
struct Rank0 : Rank1 {};
template <typename Releaser, typename = ::absl::base_internal::InvokeT<
Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
}
template <typename Releaser,
typename = ::absl::base_internal::InvokeT<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
}
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
// to it, or `nullptr` if `data` was empty.
template <typename Releaser>
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
static_assert(
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,
#else
alignof(Releaser) <= alignof(max_align_t),
#endif
"Releasers with alignment requirement greater than what is returned by "
"default `::operator new()` are not supported.");
using ReleaserType = absl::decay_t<Releaser>;
if (data.empty()) {
// Never create empty external nodes.
InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
data);
return nullptr;
}
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
my_releaser->~ReleaserType();
return sizeof(Releaser);
};
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(
data, releaser_invoker, sizeof(releaser));
::new (external.releaser_address)
ReleaserType(std::forward<Releaser>(releaser));
return external.rep;
}
// Overload for function reference types that dispatches using a function
// pointer because there are no `alignof()` or `sizeof()` a function reference.
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
inline CordRep* NewExternalRep(absl::string_view data,
void (&releaser)(absl::string_view)) {
return NewExternalRep(data, &releaser);
}
} // namespace cord_internal
template <typename Releaser>
Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
Cord cord;
cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(
data, std::forward<Releaser>(releaser)));
return cord;
}
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
}
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {
memcpy(data_, src.data_, sizeof(data_));
memset(src.data_, 0, sizeof(data_));
}
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
if (this == &src) {
return *this;
}
if (!is_tree() && !src.is_tree()) {
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
return *this;
}
AssignSlow(src);
return *this;
}
inline Cord::InlineRep& Cord::InlineRep::operator=(
Cord::InlineRep&& src) noexcept {
if (is_tree()) {
ClearSlow();
}
memcpy(data_, src.data_, sizeof(data_));
memset(src.data_, 0, sizeof(data_));
return *this;
}
inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
if (rhs == this) {
return;
}
Cord::InlineRep tmp;
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));
}
inline const char* Cord::InlineRep::data() const {
return is_tree() ? nullptr : data_;
}
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
if (is_tree()) {
absl::cord_internal::CordRep* rep;
memcpy(&rep, data_, sizeof(rep));
return rep;
} else {
return nullptr;
}
}
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }
inline size_t Cord::InlineRep::size() const {
const char tag = data_[kMaxInline];
if (tag <= kMaxInline) return tag;
return static_cast<size_t>(tree()->length);
}
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {
if (rep == nullptr) {
memset(data_, 0, sizeof(data_));
} else {
bool was_tree = is_tree();
memcpy(data_, &rep, sizeof(rep));
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
if (!was_tree) {
data_[kMaxInline] = kTreeFlag;
}
}
}
inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {
ABSL_ASSERT(is_tree());
if (ABSL_PREDICT_FALSE(rep == nullptr)) {
set_tree(rep);
return;
}
memcpy(data_, &rep, sizeof(rep));
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
}
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
const char tag = data_[kMaxInline];
absl::cord_internal::CordRep* result = nullptr;
if (tag > kMaxInline) {
memcpy(&result, data_, sizeof(result));
}
memset(data_, 0, sizeof(data_)); // Clear the cord
return result;
}
inline void Cord::InlineRep::CopyToArray(char* dst) const {
assert(!is_tree());
size_t n = data_[kMaxInline];
assert(n != 0);
cord_internal::SmallMemmove(dst, data_, n);
}
constexpr inline Cord::Cord() noexcept {}
inline Cord& Cord::operator=(const Cord& x) {
contents_ = x.contents_;
return *this;
}
inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}
inline Cord& Cord::operator=(Cord&& x) noexcept {
contents_ = std::move(x.contents_);
return *this;
}
template <typename T, Cord::EnableIfString<T>>
inline Cord& Cord::operator=(T&& src) {
*this = absl::string_view(src);
return *this;
}
inline size_t Cord::size() const {
// Length is 1st field in str.rep_
return contents_.size();
}
inline bool Cord::empty() const { return contents_.empty(); }
inline size_t Cord::EstimatedMemoryUsage() const {
size_t result = sizeof(Cord);
if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
result += MemoryUsageAux(rep);
}
return result;
}
inline absl::optional<absl::string_view> Cord::TryFlat() const {
absl::cord_internal::CordRep* rep = contents_.tree();
if (rep == nullptr) {
return absl::string_view(contents_.data(), contents_.size());
}
absl::string_view fragment;
if (GetFlatAux(rep, &fragment)) {
return fragment;
}
return absl::nullopt;
}
inline absl::string_view Cord::Flatten() {
absl::cord_internal::CordRep* rep = contents_.tree();
if (rep == nullptr) {
return absl::string_view(contents_.data(), contents_.size());
} else {
absl::string_view already_flat_contents;
if (GetFlatAux(rep, &already_flat_contents)) {
return already_flat_contents;
}
}
return FlattenSlowPath();
}
inline void Cord::Append(absl::string_view src) {
contents_.AppendArray(src.data(), src.size());
}
template <typename T, Cord::EnableIfString<T>>
inline void Cord::Append(T&& src) {
// Note that this function reserves the right to reuse the `string&&`'s
// memory and that it will do so in the future.
Append(absl::string_view(src));
}
template <typename T, Cord::EnableIfString<T>>
inline void Cord::Prepend(T&& src) {
// Note that this function reserves the right to reuse the `string&&`'s
// memory and that it will do so in the future.
Prepend(absl::string_view(src));
}
inline int Cord::Compare(const Cord& rhs) const {
if (!contents_.is_tree() && !rhs.contents_.is_tree()) {
return contents_.BitwiseCompare(rhs.contents_);
}
return CompareImpl(rhs);
}
// Does 'this' cord start/end with rhs
inline bool Cord::StartsWith(const Cord& rhs) const {
if (contents_.IsSame(rhs.contents_)) return true;
size_t rhs_size = rhs.size();
if (size() < rhs_size) return false;
return EqualsImpl(rhs, rhs_size);
}
inline bool Cord::StartsWith(absl::string_view rhs) const {
size_t rhs_size = rhs.size();
if (size() < rhs_size) return false;
return EqualsImpl(rhs, rhs_size);
}
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
: bytes_remaining_(cord->size()) {
if (cord->empty()) return;
if (cord->contents_.is_tree()) {
stack_of_right_children_.push_back(cord->contents_.tree());
operator++();
} else {
current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());
}
}
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
ChunkIterator tmp(*this);
operator++();
return tmp;
}
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
return bytes_remaining_ == other.bytes_remaining_;
}
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
return !(*this == other);
}
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
return current_chunk_;
}
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
return ¤t_chunk_;
}
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
assert(n < current_chunk_.size());
current_chunk_.remove_prefix(n);
bytes_remaining_ -= n;
}
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
RemoveChunkPrefix(n);
} else if (n != 0) {
AdvanceBytesSlowPath(n);
}
}
inline Cord::ChunkIterator Cord::chunk_begin() const {
return ChunkIterator(this);
}
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
return cord_->chunk_begin();
}
inline Cord::ChunkIterator Cord::ChunkRange::end() const {
return cord_->chunk_end();
}
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
inline Cord::CharIterator& Cord::CharIterator::operator++() {
if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {
chunk_iterator_.RemoveChunkPrefix(1);
} else {
++chunk_iterator_;
}
return *this;
}
inline Cord::CharIterator Cord::CharIterator::operator++(int) {
CharIterator tmp(*this);
operator++();
return tmp;
}
inline bool Cord::CharIterator::operator==(const CharIterator& other) const {
return chunk_iterator_ == other.chunk_iterator_;
}
inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {
return !(*this == other);
}
inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {
return *chunk_iterator_->data();
}
inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {
return chunk_iterator_->data();
}
inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {
assert(it != nullptr);
return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);
}
inline void Cord::Advance(CharIterator* it, size_t n_bytes) {
assert(it != nullptr);
it->chunk_iterator_.AdvanceBytes(n_bytes);
}
inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {
return *it.chunk_iterator_;
}
inline Cord::CharIterator Cord::char_begin() const {
return CharIterator(this);
}
inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }
inline Cord::CharIterator Cord::CharRange::begin() const {
return cord_->char_begin();
}
inline Cord::CharIterator Cord::CharRange::end() const {
return cord_->char_end();
}
inline Cord::CharRange Cord::Chars() const { return CharRange(this); }
inline void Cord::ForEachChunk(
absl::FunctionRef<void(absl::string_view)> callback) const {
absl::cord_internal::CordRep* rep = contents_.tree();
if (rep == nullptr) {
callback(absl::string_view(contents_.data(), contents_.size()));
} else {
return ForEachChunkAux(rep, callback);
}
}
// Nonmember Cord-to-Cord relational operarators.
inline bool operator==(const Cord& lhs, const Cord& rhs) {
if (lhs.contents_.IsSame(rhs.contents_)) return true;
size_t rhs_size = rhs.size();
if (lhs.size() != rhs_size) return false;
return lhs.EqualsImpl(rhs, rhs_size);
}
inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }
inline bool operator<(const Cord& x, const Cord& y) {
return x.Compare(y) < 0;
}
inline bool operator>(const Cord& x, const Cord& y) {
return x.Compare(y) > 0;
}
inline bool operator<=(const Cord& x, const Cord& y) {
return x.Compare(y) <= 0;
}
inline bool operator>=(const Cord& x, const Cord& y) {
return x.Compare(y) >= 0;
}
// Nonmember Cord-to-absl::string_view relational operators.
//
// Due to implicit conversions, these also enable comparisons of Cord with
// with std::string, ::string, and const char*.
inline bool operator==(const Cord& lhs, absl::string_view rhs) {
size_t lhs_size = lhs.size();
size_t rhs_size = rhs.size();
if (lhs_size != rhs_size) return false;
return lhs.EqualsImpl(rhs, rhs_size);
}
inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }
inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }
inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }
inline bool operator<(const Cord& x, absl::string_view y) {
return x.Compare(y) < 0;
}
inline bool operator<(absl::string_view x, const Cord& y) {
return y.Compare(x) > 0;
}
inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }
inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }
inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }
inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }
inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }
inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }
// Overload of swap for Cord. The use of non-const references is
// required. :(
inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); }
// Some internals exposed to test code.
namespace strings_internal {
class CordTestAccess {
public:
static size_t FlatOverhead();
static size_t MaxFlatLength();
static size_t SizeofCordRepConcat();
static size_t SizeofCordRepExternal();
static size_t SizeofCordRepSubstring();
static size_t FlatTagToLength(uint8_t tag);
static uint8_t LengthToTag(size_t s);
};
} // namespace strings_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_CORD_H_