about summary refs log blame commit diff
path: root/absl/strings/cord.cc
blob: 0403cc6eb767e588e64c968db5b0b086de2c04bc (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
















                                                                           
                 












                                           
                             

                                       
                                          































                                                                            


                                                                               





                                                                                
                                 






























































                                                                                











































                                                                             

                                                                               

 


                                                       

                                                                         











































                                                                                


                                         

                                                                        













































                                                                                
                                                            









































































































                                                                            
                                               









































































































































































































































































































































































































































































































                                                                                
                                                              







































                                                                            
                                                              













































































                                                                        

                                                            



































                                                                     
                    














                                                                         
                                           





















                                                                       

                                                                

                                  
                                                










                                                    












                                                                   
              
                      




























                                                                     
                                                                     
              
                                                   









                                                      
                                               






                                         
                                                                   































                                                                          


                                                                         



































































































                                                                             
                                                                        






                                                
                                             




















                                                                              
                                                                        






                                                

                                                 




































































































































                                                                               
                                                        

                                                             




































                                                                         
                                                         

                                                             














































































































                                                                                
                                                          

























































                                                                                
                                    





























































































































                                                                                
                                                                         

                            

                                                          



                                               
                                                     
               
                                                    



















                                                                                
                                                                    











                                           
                                                              





                                            
                                                          
                                              
                                            

                                 
                                    
















































                                                                              
                                                                     

































































                                                                               
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/cord.h"

#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <iomanip>
#include <limits>
#include <ostream>
#include <sstream>
#include <type_traits>
#include <unordered_set>
#include <vector>

#include "absl/base/casts.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/container/fixed_array.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

using ::absl::cord_internal::CordRep;
using ::absl::cord_internal::CordRepConcat;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepSubstring;

// Various representations that we allow
enum CordRepKind {
  CONCAT        = 0,
  EXTERNAL      = 1,
  SUBSTRING     = 2,

  // We have different tags for different sized flat arrays,
  // starting with FLAT
  FLAT          = 3,
};

namespace {

// Type used with std::allocator for allocating and deallocating
// `CordRepExternal`. std::allocator is used because it opaquely handles the
// different new / delete overloads available on a given platform.
struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
  unsigned char value[absl::cord_internal::ExternalRepAlignment()];
};

// Returns the number of objects to pass in to std::allocator<ExternalAllocType>
// allocate() and deallocate() to create enough room for `CordRepExternal` with
// `releaser_size` bytes on the end.
constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
  // Be sure to round up since `releaser_size` could be smaller than
  // `sizeof(ExternalAllocType)`.
  return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
          1) /
         sizeof(ExternalAllocType);
}

// Allocates enough memory for `CordRepExternal` and a releaser with size
// `releaser_size` bytes.
void* AllocateExternal(size_t releaser_size) {
  return std::allocator<ExternalAllocType>().allocate(
      GetExternalAllocNumObjects(releaser_size));
}

// Deallocates the memory for a `CordRepExternal` assuming it was allocated with
// a releaser of given size and alignment.
void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
  std::allocator<ExternalAllocType>().deallocate(
      reinterpret_cast<ExternalAllocType*>(p),
      GetExternalAllocNumObjects(releaser_size));
}

// Returns a pointer to the type erased releaser for the given CordRepExternal.
void* GetExternalReleaser(CordRepExternal* rep) {
  return rep + 1;
}

}  // namespace

namespace cord_internal {

inline CordRepConcat* CordRep::concat() {
  assert(tag == CONCAT);
  return static_cast<CordRepConcat*>(this);
}

inline const CordRepConcat* CordRep::concat() const {
  assert(tag == CONCAT);
  return static_cast<const CordRepConcat*>(this);
}

inline CordRepSubstring* CordRep::substring() {
  assert(tag == SUBSTRING);
  return static_cast<CordRepSubstring*>(this);
}

inline const CordRepSubstring* CordRep::substring() const {
  assert(tag == SUBSTRING);
  return static_cast<const CordRepSubstring*>(this);
}

inline CordRepExternal* CordRep::external() {
  assert(tag == EXTERNAL);
  return static_cast<CordRepExternal*>(this);
}

inline const CordRepExternal* CordRep::external() const {
  assert(tag == EXTERNAL);
  return static_cast<const CordRepExternal*>(this);
}

}  // namespace cord_internal

static const size_t kFlatOverhead = offsetof(CordRep, data);

// Largest and smallest flat node lengths we are willing to allocate
// Flat allocation size is stored in tag, which currently can encode sizes up
// to 4K, encoded as multiple of either 8 or 32 bytes.
// If we allow for larger sizes, we need to change this to 8/64, 16/128, etc.
static constexpr size_t kMaxFlatSize = 4096;
static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead;
static constexpr size_t kMinFlatLength = 32 - kFlatOverhead;

// Prefer copying blocks of at most this size, otherwise reference count.
static const size_t kMaxBytesToCopy = 511;

// Helper functions for rounded div, and rounding to exact sizes.
static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; }
static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; }

// Returns the size to the nearest equal or larger value that can be
// expressed exactly as a tag value.
static size_t RoundUpForTag(size_t size) {
  return RoundUp(size, (size <= 1024) ? 8 : 32);
}

// Converts the allocated size to a tag, rounding down if the size
// does not exactly match a 'tag expressible' size value. The result is
// undefined if the size exceeds the maximum size that can be encoded in
// a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>).
static uint8_t AllocatedSizeToTag(size_t size) {
  const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32;
  assert(tag <= std::numeric_limits<uint8_t>::max());
  return tag;
}

// Converts the provided tag to the corresponding allocated size
static constexpr size_t TagToAllocatedSize(uint8_t tag) {
  return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32);
}

// Converts the provided tag to the corresponding available data length
static constexpr size_t TagToLength(uint8_t tag) {
  return TagToAllocatedSize(tag) - kFlatOverhead;
}

// Enforce that kMaxFlatSize maps to a well-known exact tag value.
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");

constexpr uint64_t Fibonacci(unsigned char n, uint64_t a = 0, uint64_t b = 1) {
  return n == 0 ? a : Fibonacci(n - 1, b, a + b);
}

static_assert(Fibonacci(63) == 6557470319842,
              "Fibonacci values computed incorrectly");

// Minimum length required for a given depth tree -- a tree is considered
// balanced if
//      length(t) >= min_length[depth(t)]
// The root node depth is allowed to become twice as large to reduce rebalancing
// for larger strings (see IsRootBalanced).
static constexpr uint64_t min_length[] = {
    Fibonacci(2),          Fibonacci(3),  Fibonacci(4),  Fibonacci(5),
    Fibonacci(6),          Fibonacci(7),  Fibonacci(8),  Fibonacci(9),
    Fibonacci(10),         Fibonacci(11), Fibonacci(12), Fibonacci(13),
    Fibonacci(14),         Fibonacci(15), Fibonacci(16), Fibonacci(17),
    Fibonacci(18),         Fibonacci(19), Fibonacci(20), Fibonacci(21),
    Fibonacci(22),         Fibonacci(23), Fibonacci(24), Fibonacci(25),
    Fibonacci(26),         Fibonacci(27), Fibonacci(28), Fibonacci(29),
    Fibonacci(30),         Fibonacci(31), Fibonacci(32), Fibonacci(33),
    Fibonacci(34),         Fibonacci(35), Fibonacci(36), Fibonacci(37),
    Fibonacci(38),         Fibonacci(39), Fibonacci(40), Fibonacci(41),
    Fibonacci(42),         Fibonacci(43), Fibonacci(44), Fibonacci(45),
    Fibonacci(46),         Fibonacci(47),
    0xffffffffffffffffull,  // Avoid overflow
};

static const int kMinLengthSize = ABSL_ARRAYSIZE(min_length);

// The inlined size to use with absl::InlinedVector.
//
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
// the same value for their inlined size. The fact that they do is historical.
// It may be desirable for each to use a different inlined size optimized for
// that InlinedVector's usage.
//
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
// the inlined vector size (47 exists for backward compatibility).
static const int kInlinedVectorSize = 47;

static inline bool IsRootBalanced(CordRep* node) {
  if (node->tag != CONCAT) {
    return true;
  } else if (node->concat()->depth() <= 15) {
    return true;
  } else if (node->concat()->depth() > kMinLengthSize) {
    return false;
  } else {
    // Allow depth to become twice as large as implied by fibonacci rule to
    // reduce rebalancing for larger strings.
    return (node->length >= min_length[node->concat()->depth() / 2]);
  }
}

static CordRep* Rebalance(CordRep* node);
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os);
static bool VerifyNode(CordRep* root, CordRep* start_node,
                       bool full_validation);

static inline CordRep* VerifyTree(CordRep* node) {
  // Verification is expensive, so only do it in debug mode.
  // Even in debug mode we normally do only light validation.
  // If you are debugging Cord itself, you should define the
  // macro EXTRA_CORD_VALIDATION, e.g. by adding
  // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
#ifdef EXTRA_CORD_VALIDATION
  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
#else   // EXTRA_CORD_VALIDATION
  assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
#endif  // EXTRA_CORD_VALIDATION
  static_cast<void>(&VerifyNode);

  return node;
}

// --------------------------------------------------------------------
// Memory management

inline CordRep* Ref(CordRep* rep) {
  if (rep != nullptr) {
    rep->refcount.Increment();
  }
  return rep;
}

// This internal routine is called from the cold path of Unref below. Keeping it
// in a separate routine allows good inlining of Unref into many profitable call
// sites. However, the call to this function can be highly disruptive to the
// register pressure in those callers. To minimize the cost to callers, we use
// a special LLVM calling convention that preserves most registers. This allows
// the call to this routine in cold paths to not disrupt the caller's register
// pressure. This calling convention is not available on all platforms; we
// intentionally allow LLVM to ignore the attribute rather than attempting to
// hardcode the list of supported platforms.
#if defined(__clang__) && !defined(__i386__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wattributes"
__attribute__((preserve_most))
#pragma clang diagnostic pop
#endif
static void UnrefInternal(CordRep* rep) {
  assert(rep != nullptr);

  absl::InlinedVector<CordRep*, kInlinedVectorSize> pending;
  while (true) {
    if (rep->tag == CONCAT) {
      CordRepConcat* rep_concat = rep->concat();
      CordRep* right = rep_concat->right;
      if (!right->refcount.Decrement()) {
        pending.push_back(right);
      }
      CordRep* left = rep_concat->left;
      delete rep_concat;
      rep = nullptr;
      if (!left->refcount.Decrement()) {
        rep = left;
        continue;
      }
    } else if (rep->tag == EXTERNAL) {
      CordRepExternal* rep_external = rep->external();
      absl::string_view data(rep_external->base, rep->length);
      void* releaser = GetExternalReleaser(rep_external);
      size_t releaser_size = rep_external->releaser_invoker(releaser, data);
      rep_external->~CordRepExternal();
      DeallocateExternal(rep_external, releaser_size);
      rep = nullptr;
    } else if (rep->tag == SUBSTRING) {
      CordRepSubstring* rep_substring = rep->substring();
      CordRep* child = rep_substring->child;
      delete rep_substring;
      rep = nullptr;
      if (!child->refcount.Decrement()) {
        rep = child;
        continue;
      }
    } else {
      // Flat CordReps are allocated and constructed with raw ::operator new
      // and placement new, and must be destructed and deallocated
      // accordingly.
#if defined(__cpp_sized_deallocation)
      size_t size = TagToAllocatedSize(rep->tag);
      rep->~CordRep();
      ::operator delete(rep, size);
#else
      rep->~CordRep();
      ::operator delete(rep);
#endif
      rep = nullptr;
    }

    if (!pending.empty()) {
      rep = pending.back();
      pending.pop_back();
    } else {
      break;
    }
  }
}

inline void Unref(CordRep* rep) {
  // Fast-path for two common, hot cases: a null rep and a shared root.
  if (ABSL_PREDICT_TRUE(rep == nullptr ||
                        rep->refcount.DecrementExpectHighRefcount())) {
    return;
  }

  UnrefInternal(rep);
}

// Return the depth of a node
static int Depth(const CordRep* rep) {
  if (rep->tag == CONCAT) {
    return rep->concat()->depth();
  } else {
    return 0;
  }
}

static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
                              CordRep* right) {
  concat->left = left;
  concat->right = right;

  concat->length = left->length + right->length;
  concat->set_depth(1 + std::max(Depth(left), Depth(right)));
}

// Create a concatenation of the specified nodes.
// Does not change the refcounts of "left" and "right".
// The returned node has a refcount of 1.
static CordRep* RawConcat(CordRep* left, CordRep* right) {
  // Avoid making degenerate concat nodes (one child is empty)
  if (left == nullptr || left->length == 0) {
    Unref(left);
    return right;
  }
  if (right == nullptr || right->length == 0) {
    Unref(right);
    return left;
  }

  CordRepConcat* rep = new CordRepConcat();
  rep->tag = CONCAT;
  SetConcatChildren(rep, left, right);

  return rep;
}

static CordRep* Concat(CordRep* left, CordRep* right) {
  CordRep* rep = RawConcat(left, right);
  if (rep != nullptr && !IsRootBalanced(rep)) {
    rep = Rebalance(rep);
  }
  return VerifyTree(rep);
}

// Make a balanced tree out of an array of leaf nodes.
static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
  // Make repeated passes over the array, merging adjacent pairs
  // until we are left with just a single node.
  while (n > 1) {
    size_t dst = 0;
    for (size_t src = 0; src < n; src += 2) {
      if (src + 1 < n) {
        reps[dst] = Concat(reps[src], reps[src + 1]);
      } else {
        reps[dst] = reps[src];
      }
      dst++;
    }
    n = dst;
  }

  return reps[0];
}

// Create a new flat node.
static CordRep* NewFlat(size_t length_hint) {
  if (length_hint <= kMinFlatLength) {
    length_hint = kMinFlatLength;
  } else if (length_hint > kMaxFlatLength) {
    length_hint = kMaxFlatLength;
  }

  // Round size up so it matches a size we can exactly express in a tag.
  const size_t size = RoundUpForTag(length_hint + kFlatOverhead);
  void* const raw_rep = ::operator new(size);
  CordRep* rep = new (raw_rep) CordRep();
  rep->tag = AllocatedSizeToTag(size);
  return VerifyTree(rep);
}

// Create a new tree out of the specified array.
// The returned node has a refcount of 1.
static CordRep* NewTree(const char* data,
                        size_t length,
                        size_t alloc_hint) {
  if (length == 0) return nullptr;
  absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
  size_t n = 0;
  do {
    const size_t len = std::min(length, kMaxFlatLength);
    CordRep* rep = NewFlat(len + alloc_hint);
    rep->length = len;
    memcpy(rep->data, data, len);
    reps[n++] = VerifyTree(rep);
    data += len;
    length -= len;
  } while (length != 0);
  return MakeBalancedTree(reps.data(), n);
}

namespace cord_internal {

ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
    absl::string_view data, ExternalReleaserInvoker invoker,
    size_t releaser_size) {
  assert(!data.empty());

  void* raw_rep = AllocateExternal(releaser_size);
  auto* rep = new (raw_rep) CordRepExternal();
  rep->length = data.size();
  rep->tag = EXTERNAL;
  rep->base = data.data();
  rep->releaser_invoker = invoker;
  return {VerifyTree(rep), GetExternalReleaser(rep)};
}

}  // namespace cord_internal

static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
  // Never create empty substring nodes
  if (length == 0) {
    Unref(child);
    return nullptr;
  } else {
    CordRepSubstring* rep = new CordRepSubstring();
    assert((offset + length) <= child->length);
    rep->length = length;
    rep->tag = SUBSTRING;
    rep->start = offset;
    rep->child = child;
    return VerifyTree(rep);
  }
}

// --------------------------------------------------------------------
// Cord::InlineRep functions

// This will trigger LNK2005 in MSVC.
#ifndef COMPILER_MSVC
const unsigned char Cord::InlineRep::kMaxInline;
#endif  // COMPILER_MSVC

inline void Cord::InlineRep::set_data(const char* data, size_t n,
                                      bool nullify_tail) {
  static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");

  cord_internal::SmallMemmove(data_, data, n, nullify_tail);
  data_[kMaxInline] = static_cast<char>(n);
}

inline char* Cord::InlineRep::set_data(size_t n) {
  assert(n <= kMaxInline);
  memset(data_, 0, sizeof(data_));
  data_[kMaxInline] = static_cast<char>(n);
  return data_;
}

inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
  size_t len = data_[kMaxInline];
  CordRep* result;
  if (len > kMaxInline) {
    memcpy(&result, data_, sizeof(result));
  } else {
    result = NewFlat(len + extra_hint);
    result->length = len;
    memcpy(result->data, data_, len);
    set_tree(result);
  }
  return result;
}

inline void Cord::InlineRep::reduce_size(size_t n) {
  size_t tag = data_[kMaxInline];
  assert(tag <= kMaxInline);
  assert(tag >= n);
  tag -= n;
  memset(data_ + tag, 0, n);
  data_[kMaxInline] = static_cast<char>(tag);
}

inline void Cord::InlineRep::remove_prefix(size_t n) {
  cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
  reduce_size(n);
}

void Cord::InlineRep::AppendTree(CordRep* tree) {
  if (tree == nullptr) return;
  size_t len = data_[kMaxInline];
  if (len == 0) {
    set_tree(tree);
  } else {
    set_tree(Concat(force_tree(0), tree));
  }
}

void Cord::InlineRep::PrependTree(CordRep* tree) {
  if (tree == nullptr) return;
  size_t len = data_[kMaxInline];
  if (len == 0) {
    set_tree(tree);
  } else {
    set_tree(Concat(tree, force_tree(0)));
  }
}

// Searches for a non-full flat node at the rightmost leaf of the tree. If a
// suitable leaf is found, the function will update the length field for all
// nodes to account for the size increase. The append region address will be
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(CordRep* root, char** region,
                                       size_t* size, size_t max_length) {
  // Search down the right-hand path for a non-full FLAT node.
  CordRep* dst = root;
  while (dst->tag == CONCAT && dst->refcount.IsOne()) {
    dst = dst->concat()->right;
  }

  if (dst->tag < FLAT || !dst->refcount.IsOne()) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  const size_t in_use = dst->length;
  const size_t capacity = TagToLength(dst->tag);
  if (in_use == capacity) {
    *region = nullptr;
    *size = 0;
    return false;
  }

  size_t size_increase = std::min(capacity - in_use, max_length);

  // We need to update the length fields for all nodes, including the leaf node.
  for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
    rep->length += size_increase;
  }
  dst->length += size_increase;

  *region = dst->data + in_use;
  *size = size_increase;
  return true;
}

void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
                                      size_t max_length) {
  if (max_length == 0) {
    *region = nullptr;
    *size = 0;
    return;
  }

  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
    *region = data_ + inline_length;
    *size = max_length;
    data_[kMaxInline] = static_cast<char>(inline_length + max_length);
    return;
  }

  CordRep* root = force_tree(max_length);

  if (PrepareAppendRegion(root, region, size, max_length)) {
    return;
  }

  // Allocate new node.
  CordRep* new_node =
      NewFlat(std::max(static_cast<size_t>(root->length), max_length));
  new_node->length =
      std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length);
  *region = new_node->data;
  *size = new_node->length;
  replace_tree(Concat(root, new_node));
}

void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
  const size_t max_length = std::numeric_limits<size_t>::max();

  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline) {
    *region = data_ + inline_length;
    *size = kMaxInline - inline_length;
    data_[kMaxInline] = kMaxInline;
    return;
  }

  CordRep* root = force_tree(max_length);

  if (PrepareAppendRegion(root, region, size, max_length)) {
    return;
  }

  // Allocate new node.
  CordRep* new_node = NewFlat(root->length);
  new_node->length = TagToLength(new_node->tag);
  *region = new_node->data;
  *size = new_node->length;
  replace_tree(Concat(root, new_node));
}

// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
  if (rep->tag >= FLAT) {
    *total_mem_usage += TagToAllocatedSize(rep->tag);
    return true;
  }
  if (rep->tag == EXTERNAL) {
    *total_mem_usage += sizeof(CordRepConcat) + rep->length;
    return true;
  }
  return false;
}

void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
  ClearSlow();

  memcpy(data_, src.data_, sizeof(data_));
  if (is_tree()) {
    Ref(tree());
  }
}

void Cord::InlineRep::ClearSlow() {
  if (is_tree()) {
    Unref(tree());
  }
  memset(data_, 0, sizeof(data_));
}

// --------------------------------------------------------------------
// Constructors and destructors

Cord::Cord(const Cord& src) : contents_(src.contents_) {
  Ref(contents_.tree());  // Does nothing if contents_ has embedded data
}

Cord::Cord(absl::string_view src) {
  const size_t n = src.size();
  if (n <= InlineRep::kMaxInline) {
    contents_.set_data(src.data(), n, false);
  } else {
    contents_.set_tree(NewTree(src.data(), n, 0));
  }
}

// The destruction code is separate so that the compiler can determine
// that it does not need to call the destructor on a moved-from Cord.
void Cord::DestroyCordSlow() {
  Unref(VerifyTree(contents_.tree()));
}

// --------------------------------------------------------------------
// Mutators

void Cord::Clear() {
  Unref(contents_.clear());
}

Cord& Cord::operator=(absl::string_view src) {

  const char* data = src.data();
  size_t length = src.size();
  CordRep* tree = contents_.tree();
  if (length <= InlineRep::kMaxInline) {
    // Embed into this->contents_
    contents_.set_data(data, length, true);
    Unref(tree);
    return *this;
  }
  if (tree != nullptr && tree->tag >= FLAT &&
      TagToLength(tree->tag) >= length && tree->refcount.IsOne()) {
    // Copy in place if the existing FLAT node is reusable.
    memmove(tree->data, data, length);
    tree->length = length;
    VerifyTree(tree);
    return *this;
  }
  contents_.set_tree(NewTree(data, length, 0));
  Unref(tree);
  return *this;
}

// TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
// we keep it here to make diffs easier.
void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
  if (src_size == 0) return;  // memcpy(_, nullptr, 0) is undefined.
  // Try to fit in the inline buffer if possible.
  size_t inline_length = data_[kMaxInline];
  if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
    // Append new data to embedded array
    data_[kMaxInline] = static_cast<char>(inline_length + src_size);
    memcpy(data_ + inline_length, src_data, src_size);
    return;
  }

  CordRep* root = tree();

  size_t appended = 0;
  if (root) {
    char* region;
    if (PrepareAppendRegion(root, &region, &appended, src_size)) {
      memcpy(region, src_data, appended);
    }
  } else {
    // It is possible that src_data == data_, but when we transition from an
    // InlineRep to a tree we need to assign data_ = root via set_tree. To
    // avoid corrupting the source data before we copy it, delay calling
    // set_tree until after we've copied data.
    // We are going from an inline size to beyond inline size. Make the new size
    // either double the inlined size, or the added size + 10%.
    const size_t size1 = inline_length * 2 + src_size;
    const size_t size2 = inline_length + src_size / 10;
    root = NewFlat(std::max<size_t>(size1, size2));
    appended = std::min(src_size, TagToLength(root->tag) - inline_length);
    memcpy(root->data, data_, inline_length);
    memcpy(root->data + inline_length, src_data, appended);
    root->length = inline_length + appended;
    set_tree(root);
  }

  src_data += appended;
  src_size -= appended;
  if (src_size == 0) {
    return;
  }

  // Use new block(s) for any remaining bytes that were not handled above.
  // Alloc extra memory only if the right child of the root of the new tree is
  // going to be a FLAT node, which will permit further inplace appends.
  size_t length = src_size;
  if (src_size < kMaxFlatLength) {
    // The new length is either
    // - old size + 10%
    // - old_size + src_size
    // This will cause a reasonable conservative step-up in size that is still
    // large enough to avoid excessive amounts of small fragments being added.
    length = std::max<size_t>(root->length / 10, src_size);
  }
  set_tree(Concat(root, NewTree(src_data, src_size, length - src_size)));
}

inline CordRep* Cord::TakeRep() const& {
  return Ref(contents_.tree());
}

inline CordRep* Cord::TakeRep() && {
  CordRep* rep = contents_.tree();
  contents_.clear();
  return rep;
}

template <typename C>
inline void Cord::AppendImpl(C&& src) {
  if (empty()) {
    // In case of an empty destination avoid allocating a new node, do not copy
    // data.
    *this = std::forward<C>(src);
    return;
  }

  // For short cords, it is faster to copy data if there is room in dst.
  const size_t src_size = src.contents_.size();
  if (src_size <= kMaxBytesToCopy) {
    CordRep* src_tree = src.contents_.tree();
    if (src_tree == nullptr) {
      // src has embedded data.
      contents_.AppendArray(src.contents_.data(), src_size);
      return;
    }
    if (src_tree->tag >= FLAT) {
      // src tree just has one flat node.
      contents_.AppendArray(src_tree->data, src_size);
      return;
    }
    if (&src == this) {
      // ChunkIterator below assumes that src is not modified during traversal.
      Append(Cord(src));
      return;
    }
    // TODO(mec): Should we only do this if "dst" has space?
    for (absl::string_view chunk : src.Chunks()) {
      Append(chunk);
    }
    return;
  }

  contents_.AppendTree(std::forward<C>(src).TakeRep());
}

void Cord::Append(const Cord& src) { AppendImpl(src); }

void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }

void Cord::Prepend(const Cord& src) {
  CordRep* src_tree = src.contents_.tree();
  if (src_tree != nullptr) {
    Ref(src_tree);
    contents_.PrependTree(src_tree);
    return;
  }

  // `src` cord is inlined.
  absl::string_view src_contents(src.contents_.data(), src.contents_.size());
  return Prepend(src_contents);
}

void Cord::Prepend(absl::string_view src) {
  if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
  size_t cur_size = contents_.size();
  if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) {
    // Use embedded storage.
    char data[InlineRep::kMaxInline + 1] = {0};
    data[InlineRep::kMaxInline] = cur_size + src.size();  // set size
    memcpy(data, src.data(), src.size());
    memcpy(data + src.size(), contents_.data(), cur_size);
    memcpy(reinterpret_cast<void*>(&contents_), data,
           InlineRep::kMaxInline + 1);
  } else {
    contents_.PrependTree(NewTree(src.data(), src.size(), 0));
  }
}

static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
  if (n >= node->length) return nullptr;
  if (n == 0) return Ref(node);
  absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;

  while (node->tag == CONCAT) {
    assert(n <= node->length);
    if (n < node->concat()->left->length) {
      // Push right to stack, descend left.
      rhs_stack.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Drop left, descend right.
      n -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }
  assert(n <= node->length);

  if (n == 0) {
    Ref(node);
  } else {
    size_t start = n;
    size_t len = node->length - n;
    if (node->tag == SUBSTRING) {
      // Consider in-place update of node, similar to in RemoveSuffixFrom().
      start += node->substring()->start;
      node = node->substring()->child;
    }
    node = NewSubstring(Ref(node), start, len);
  }
  while (!rhs_stack.empty()) {
    node = Concat(node, Ref(rhs_stack.back()));
    rhs_stack.pop_back();
  }
  return node;
}

// RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
// exception that removing a suffix has an optimization where a node may be
// edited in place iff that node and all its ancestors have a refcount of 1.
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
  if (n >= node->length) return nullptr;
  if (n == 0) return Ref(node);
  absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
  bool inplace_ok = node->refcount.IsOne();

  while (node->tag == CONCAT) {
    assert(n <= node->length);
    if (n < node->concat()->right->length) {
      // Push left to stack, descend right.
      lhs_stack.push_back(node->concat()->left);
      node = node->concat()->right;
    } else {
      // Drop right, descend left.
      n -= node->concat()->right->length;
      node = node->concat()->left;
    }
    inplace_ok = inplace_ok && node->refcount.IsOne();
  }
  assert(n <= node->length);

  if (n == 0) {
    Ref(node);
  } else if (inplace_ok && node->tag != EXTERNAL) {
    // Consider making a new buffer if the current node capacity is much
    // larger than the new length.
    Ref(node);
    node->length -= n;
  } else {
    size_t start = 0;
    size_t len = node->length - n;
    if (node->tag == SUBSTRING) {
      start = node->substring()->start;
      node = node->substring()->child;
    }
    node = NewSubstring(Ref(node), start, len);
  }
  while (!lhs_stack.empty()) {
    node = Concat(Ref(lhs_stack.back()), node);
    lhs_stack.pop_back();
  }
  return node;
}

void Cord::RemovePrefix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested prefix size ", n,
                                   " exceeds Cord's size ", size()));
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.remove_prefix(n);
  } else {
    CordRep* newrep = RemovePrefixFrom(tree, n);
    Unref(tree);
    contents_.replace_tree(VerifyTree(newrep));
  }
}

void Cord::RemoveSuffix(size_t n) {
  ABSL_INTERNAL_CHECK(n <= size(),
                      absl::StrCat("Requested suffix size ", n,
                                   " exceeds Cord's size ", size()));
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    contents_.reduce_size(n);
  } else {
    CordRep* newrep = RemoveSuffixFrom(tree, n);
    Unref(tree);
    contents_.replace_tree(VerifyTree(newrep));
  }
}

// Work item for NewSubRange().
struct SubRange {
  SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
      : node(a_node), pos(a_pos), n(a_n) {}
  CordRep* node;  // nullptr means concat last 2 results.
  size_t pos;
  size_t n;
};

static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
  absl::InlinedVector<CordRep*, kInlinedVectorSize> results;
  absl::InlinedVector<SubRange, kInlinedVectorSize> todo;
  todo.push_back(SubRange(node, pos, n));
  do {
    const SubRange& sr = todo.back();
    node = sr.node;
    pos = sr.pos;
    n = sr.n;
    todo.pop_back();

    if (node == nullptr) {
      assert(results.size() >= 2);
      CordRep* right = results.back();
      results.pop_back();
      CordRep* left = results.back();
      results.pop_back();
      results.push_back(Concat(left, right));
    } else if (pos == 0 && n == node->length) {
      results.push_back(Ref(node));
    } else if (node->tag != CONCAT) {
      if (node->tag == SUBSTRING) {
        pos += node->substring()->start;
        node = node->substring()->child;
      }
      results.push_back(NewSubstring(Ref(node), pos, n));
    } else if (pos + n <= node->concat()->left->length) {
      todo.push_back(SubRange(node->concat()->left, pos, n));
    } else if (pos >= node->concat()->left->length) {
      pos -= node->concat()->left->length;
      todo.push_back(SubRange(node->concat()->right, pos, n));
    } else {
      size_t left_n = node->concat()->left->length - pos;
      todo.push_back(SubRange(nullptr, 0, 0));  // Concat()
      todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
      todo.push_back(SubRange(node->concat()->left, pos, left_n));
    }
  } while (!todo.empty());
  assert(results.size() == 1);
  return results[0];
}

Cord Cord::Subcord(size_t pos, size_t new_size) const {
  Cord sub_cord;
  size_t length = size();
  if (pos > length) pos = length;
  if (new_size > length - pos) new_size = length - pos;
  CordRep* tree = contents_.tree();
  if (tree == nullptr) {
    // sub_cord is newly constructed, no need to re-zero-out the tail of
    // contents_ memory.
    sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
  } else if (new_size == 0) {
    // We want to return empty subcord, so nothing to do.
  } else if (new_size <= InlineRep::kMaxInline) {
    Cord::ChunkIterator it = chunk_begin();
    it.AdvanceBytes(pos);
    char* dest = sub_cord.contents_.data_;
    size_t remaining_size = new_size;
    while (remaining_size > it->size()) {
      cord_internal::SmallMemmove(dest, it->data(), it->size());
      remaining_size -= it->size();
      dest += it->size();
      ++it;
    }
    cord_internal::SmallMemmove(dest, it->data(), remaining_size);
    sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
  } else {
    sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
  }
  return sub_cord;
}

// --------------------------------------------------------------------
// Balancing

class CordForest {
 public:
  explicit CordForest(size_t length)
      : root_length_(length), trees_(kMinLengthSize, nullptr) {}

  void Build(CordRep* cord_root) {
    std::vector<CordRep*> pending = {cord_root};

    while (!pending.empty()) {
      CordRep* node = pending.back();
      pending.pop_back();
      CheckNode(node);
      if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
        AddNode(node);
        continue;
      }

      CordRepConcat* concat_node = node->concat();
      if (concat_node->depth() >= kMinLengthSize ||
          concat_node->length < min_length[concat_node->depth()]) {
        pending.push_back(concat_node->right);
        pending.push_back(concat_node->left);

        if (concat_node->refcount.IsOne()) {
          concat_node->left = concat_freelist_;
          concat_freelist_ = concat_node;
        } else {
          Ref(concat_node->right);
          Ref(concat_node->left);
          Unref(concat_node);
        }
      } else {
        AddNode(node);
      }
    }
  }

  CordRep* ConcatNodes() {
    CordRep* sum = nullptr;
    for (auto* node : trees_) {
      if (node == nullptr) continue;

      sum = PrependNode(node, sum);
      root_length_ -= node->length;
      if (root_length_ == 0) break;
    }
    ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
    return VerifyTree(sum);
  }

 private:
  CordRep* AppendNode(CordRep* node, CordRep* sum) {
    return (sum == nullptr) ? node : MakeConcat(sum, node);
  }

  CordRep* PrependNode(CordRep* node, CordRep* sum) {
    return (sum == nullptr) ? node : MakeConcat(node, sum);
  }

  void AddNode(CordRep* node) {
    CordRep* sum = nullptr;

    // Collect together everything with which we will merge with node
    int i = 0;
    for (; node->length > min_length[i + 1]; ++i) {
      auto& tree_at_i = trees_[i];

      if (tree_at_i == nullptr) continue;
      sum = PrependNode(tree_at_i, sum);
      tree_at_i = nullptr;
    }

    sum = AppendNode(node, sum);

    // Insert sum into appropriate place in the forest
    for (; sum->length >= min_length[i]; ++i) {
      auto& tree_at_i = trees_[i];
      if (tree_at_i == nullptr) continue;

      sum = MakeConcat(tree_at_i, sum);
      tree_at_i = nullptr;
    }

    // min_length[0] == 1, which means sum->length >= min_length[0]
    assert(i > 0);
    trees_[i - 1] = sum;
  }

  // Make concat node trying to resue existing CordRepConcat nodes we
  // already collected in the concat_freelist_.
  CordRep* MakeConcat(CordRep* left, CordRep* right) {
    if (concat_freelist_ == nullptr) return RawConcat(left, right);

    CordRepConcat* rep = concat_freelist_;
    if (concat_freelist_->left == nullptr) {
      concat_freelist_ = nullptr;
    } else {
      concat_freelist_ = concat_freelist_->left->concat();
    }
    SetConcatChildren(rep, left, right);

    return rep;
  }

  static void CheckNode(CordRep* node) {
    ABSL_INTERNAL_CHECK(node->length != 0u, "");
    if (node->tag == CONCAT) {
      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
      ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
                                           node->concat()->right->length),
                          "");
    }
  }

  size_t root_length_;

  // use an inlined vector instead of a flat array to get bounds checking
  absl::InlinedVector<CordRep*, kInlinedVectorSize> trees_;

  // List of concat nodes we can re-use for Cord balancing.
  CordRepConcat* concat_freelist_ = nullptr;
};

static CordRep* Rebalance(CordRep* node) {
  VerifyTree(node);
  assert(node->tag == CONCAT);

  if (node->length == 0) {
    return nullptr;
  }

  CordForest forest(node->length);
  forest.Build(node);
  return forest.ConcatNodes();
}

// --------------------------------------------------------------------
// Comparators

namespace {

int ClampResult(int memcmp_res) {
  return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
}

int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
                  size_t* size_to_compare) {
  size_t compared_size = std::min(lhs->size(), rhs->size());
  assert(*size_to_compare >= compared_size);
  *size_to_compare -= compared_size;

  int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
  if (memcmp_res != 0) return memcmp_res;

  lhs->remove_prefix(compared_size);
  rhs->remove_prefix(compared_size);

  return 0;
}

// This overload set computes comparison results from memcmp result. This
// interface is used inside GenericCompare below. Differet implementations
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
// set. For bool we just interested in "value == 0".
template <typename ResultType>
ResultType ComputeCompareResult(int memcmp_res) {
  return ClampResult(memcmp_res);
}
template <>
bool ComputeCompareResult<bool>(int memcmp_res) {
  return memcmp_res == 0;
}

}  // namespace

// Helper routine. Locates the first flat chunk of the Cord without
// initializing the iterator.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
  size_t n = data_[kMaxInline];
  if (n <= kMaxInline) {
    return absl::string_view(data_, n);
  }

  CordRep* node = tree();
  if (node->tag >= FLAT) {
    return absl::string_view(node->data, node->length);
  }

  if (node->tag == EXTERNAL) {
    return absl::string_view(node->external()->base, node->length);
  }

  // Walk down the left branches until we hit a non-CONCAT node.
  while (node->tag == CONCAT) {
    node = node->concat()->left;
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  assert(length != 0);

  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  if (node->tag >= FLAT) {
    return absl::string_view(node->data + offset, length);
  }

  assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");

  return absl::string_view(node->external()->base + offset, length);
}

inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();

  // compared_size is inside first chunk.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
    int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
    if (comparison_result != 0) return comparison_result;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
}

inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
                                 size_t size_to_compare) const {
  auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
    if (!chunk->empty()) return true;
    ++*it;
    if (it->bytes_remaining_ == 0) return false;
    *chunk = **it;
    return true;
  };

  Cord::ChunkIterator lhs_it = chunk_begin();
  Cord::ChunkIterator rhs_it = rhs.chunk_begin();

  // compared_size is inside both first chunks.
  absl::string_view lhs_chunk =
      (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
  absl::string_view rhs_chunk =
      (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
  assert(compared_size <= lhs_chunk.size());
  assert(compared_size <= rhs_chunk.size());
  lhs_chunk.remove_prefix(compared_size);
  rhs_chunk.remove_prefix(compared_size);
  size_to_compare -= compared_size;  // skip already compared size.

  while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
    int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
    if (memcmp_res != 0) return memcmp_res;
    if (size_to_compare == 0) return 0;
  }

  return static_cast<int>(rhs_chunk.empty()) -
         static_cast<int>(lhs_chunk.empty());
}

inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
  return c.contents_.FindFlatStartPiece();
}
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
  return sv;
}

// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
// that 'size_to_compare' is greater that size of smallest of first chunks.
template <typename ResultType, typename RHS>
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
                          size_t size_to_compare) {
  absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
  absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);

  size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
  assert(size_to_compare >= compared_size);
  int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
  if (compared_size == size_to_compare || memcmp_res != 0) {
    return ComputeCompareResult<ResultType>(memcmp_res);
  }

  return ComputeCompareResult<ResultType>(
      lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
}

bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
  return GenericCompare<bool>(*this, rhs, size_to_compare);
}

template <typename RHS>
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
  size_t lhs_size = lhs.size();
  size_t rhs_size = rhs.size();
  if (lhs_size == rhs_size) {
    return GenericCompare<int>(lhs, rhs, lhs_size);
  }
  if (lhs_size < rhs_size) {
    auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
    return data_comp_res == 0 ? -1 : data_comp_res;
  }

  auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
  return data_comp_res == 0 ? +1 : data_comp_res;
}

int Cord::Compare(absl::string_view rhs) const {
  return SharedCompareImpl(*this, rhs);
}

int Cord::CompareImpl(const Cord& rhs) const {
  return SharedCompareImpl(*this, rhs);
}

bool Cord::EndsWith(absl::string_view rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

bool Cord::EndsWith(const Cord& rhs) const {
  size_t my_size = size();
  size_t rhs_size = rhs.size();

  if (my_size < rhs_size) return false;

  Cord tmp(*this);
  tmp.RemovePrefix(my_size - rhs_size);
  return tmp.EqualsImpl(rhs, rhs_size);
}

// --------------------------------------------------------------------
// Misc.

Cord::operator std::string() const {
  std::string s;
  absl::CopyCordToString(*this, &s);
  return s;
}

void CopyCordToString(const Cord& src, std::string* dst) {
  if (!src.contents_.is_tree()) {
    src.contents_.CopyTo(dst);
  } else {
    absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
    src.CopyToArraySlowPath(&(*dst)[0]);
  }
}

void Cord::CopyToArraySlowPath(char* dst) const {
  assert(contents_.is_tree());
  absl::string_view fragment;
  if (GetFlatAux(contents_.tree(), &fragment)) {
    memcpy(dst, fragment.data(), fragment.size());
    return;
  }
  for (absl::string_view chunk : Chunks()) {
    memcpy(dst, chunk.data(), chunk.size());
    dst += chunk.size();
  }
}

Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
  ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 &&
                        "Attempted to iterate past `end()`");
  assert(bytes_remaining_ >= current_chunk_.size());
  bytes_remaining_ -= current_chunk_.size();

  if (stack_of_right_children_.empty()) {
    assert(!current_chunk_.empty());  // Called on invalid iterator.
    // We have reached the end of the Cord.
    return *this;
  }

  // Process the next node on the stack.
  CordRep* node = stack_of_right_children_.back();
  stack_of_right_children_.pop_back();

  // Walk down the left branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    stack_of_right_children_.push_back(node->concat()->right);
    node = node->concat()->left;
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length != 0);
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset, length);
  current_leaf_ = node;
  return *this;
}

Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
  ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
                        "Attempted to iterate past `end()`");
  Cord subcord;

  if (n <= InlineRep::kMaxInline) {
    // Range to read fits in inline data. Flatten it.
    char* data = subcord.contents_.set_data(n);
    while (n > current_chunk_.size()) {
      memcpy(data, current_chunk_.data(), current_chunk_.size());
      data += current_chunk_.size();
      n -= current_chunk_.size();
      ++*this;
    }
    memcpy(data, current_chunk_.data(), n);
    if (n < current_chunk_.size()) {
      RemoveChunkPrefix(n);
    } else if (n > 0) {
      ++*this;
    }
    return subcord;
  }
  if (n < current_chunk_.size()) {
    // Range to read is a proper subrange of the current chunk.
    assert(current_leaf_ != nullptr);
    CordRep* subnode = Ref(current_leaf_);
    const char* data =
        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
    subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
    subcord.contents_.set_tree(VerifyTree(subnode));
    RemoveChunkPrefix(n);
    return subcord;
  }

  // Range to read begins with a proper subrange of the current chunk.
  assert(!current_chunk_.empty());
  assert(current_leaf_ != nullptr);
  CordRep* subnode = Ref(current_leaf_);
  if (current_chunk_.size() < subnode->length) {
    const char* data =
        subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
    subnode = NewSubstring(subnode, current_chunk_.data() - data,
                           current_chunk_.size());
  }
  n -= current_chunk_.size();
  bytes_remaining_ -= current_chunk_.size();

  // Process the next node(s) on the stack, reading whole subtrees depending on
  // their length and how many bytes we are advancing.
  CordRep* node = nullptr;
  while (!stack_of_right_children_.empty()) {
    node = stack_of_right_children_.back();
    stack_of_right_children_.pop_back();
    if (node->length > n) break;
    // TODO(qrczak): This might unnecessarily recreate existing concat nodes.
    // Avoiding that would need pretty complicated logic (instead of
    // current_leaf_, keep current_subtree_ which points to the highest node
    // such that the current leaf can be found on the path of left children
    // starting from current_subtree_; delay creating subnode while node is
    // below current_subtree_; find the proper node along the path of left
    // children starting from current_subtree_ if this loop exits while staying
    // below current_subtree_; etc.; alternatively, push parents instead of
    // right children on the stack).
    subnode = Concat(subnode, Ref(node));
    n -= node->length;
    bytes_remaining_ -= node->length;
    node = nullptr;
  }

  if (node == nullptr) {
    // We have reached the end of the Cord.
    assert(bytes_remaining_ == 0);
    subcord.contents_.set_tree(VerifyTree(subnode));
    return subcord;
  }

  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    if (node->concat()->left->length > n) {
      // Push right, descend left.
      stack_of_right_children_.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Read left, descend right.
      subnode = Concat(subnode, Ref(node->concat()->left));
      n -= node->concat()->left->length;
      bytes_remaining_ -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  // Range to read ends with a proper (possibly empty) subrange of the current
  // chunk.
  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length > n);
  if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n));
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset + n, length - n);
  current_leaf_ = node;
  bytes_remaining_ -= n;
  subcord.contents_.set_tree(VerifyTree(subnode));
  return subcord;
}

void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
  assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
  assert(n >= current_chunk_.size());  // This should only be called when
                                       // iterating to a new node.

  n -= current_chunk_.size();
  bytes_remaining_ -= current_chunk_.size();

  // Process the next node(s) on the stack, skipping whole subtrees depending on
  // their length and how many bytes we are advancing.
  CordRep* node = nullptr;
  while (!stack_of_right_children_.empty()) {
    node = stack_of_right_children_.back();
    stack_of_right_children_.pop_back();
    if (node->length > n) break;
    n -= node->length;
    bytes_remaining_ -= node->length;
    node = nullptr;
  }

  if (node == nullptr) {
    // We have reached the end of the Cord.
    assert(bytes_remaining_ == 0);
    return;
  }

  // Walk down the appropriate branches until we hit a non-CONCAT node. Save the
  // right children to the stack for subsequent traversal.
  while (node->tag == CONCAT) {
    if (node->concat()->left->length > n) {
      // Push right, descend left.
      stack_of_right_children_.push_back(node->concat()->right);
      node = node->concat()->left;
    } else {
      // Skip left, descend right.
      n -= node->concat()->left->length;
      bytes_remaining_ -= node->concat()->left->length;
      node = node->concat()->right;
    }
  }

  // Get the child node if we encounter a SUBSTRING.
  size_t offset = 0;
  size_t length = node->length;
  if (node->tag == SUBSTRING) {
    offset = node->substring()->start;
    node = node->substring()->child;
  }

  assert(node->tag == EXTERNAL || node->tag >= FLAT);
  assert(length > n);
  const char* data =
      node->tag == EXTERNAL ? node->external()->base : node->data;
  current_chunk_ = absl::string_view(data + offset + n, length - n);
  current_leaf_ = node;
  bytes_remaining_ -= n;
}

char Cord::operator[](size_t i) const {
  ABSL_HARDENING_ASSERT(i < size());
  size_t offset = i;
  const CordRep* rep = contents_.tree();
  if (rep == nullptr) {
    return contents_.data()[i];
  }
  while (true) {
    assert(rep != nullptr);
    assert(offset < rep->length);
    if (rep->tag >= FLAT) {
      // Get the "i"th character directly from the flat array.
      return rep->data[offset];
    } else if (rep->tag == EXTERNAL) {
      // Get the "i"th character from the external array.
      return rep->external()->base[offset];
    } else if (rep->tag == CONCAT) {
      // Recursively branch to the side of the concatenation that the "i"th
      // character is on.
      size_t left_length = rep->concat()->left->length;
      if (offset < left_length) {
        rep = rep->concat()->left;
      } else {
        offset -= left_length;
        rep = rep->concat()->right;
      }
    } else {
      // This must be a substring a node, so bypass it to get to the child.
      assert(rep->tag == SUBSTRING);
      offset += rep->substring()->start;
      rep = rep->substring()->child;
    }
  }
}

absl::string_view Cord::FlattenSlowPath() {
  size_t total_size = size();
  CordRep* new_rep;
  char* new_buffer;

  // Try to put the contents into a new flat rep. If they won't fit in the
  // biggest possible flat node, use an external rep instead.
  if (total_size <= kMaxFlatLength) {
    new_rep = NewFlat(total_size);
    new_rep->length = total_size;
    new_buffer = new_rep->data;
    CopyToArraySlowPath(new_buffer);
  } else {
    new_buffer = std::allocator<char>().allocate(total_size);
    CopyToArraySlowPath(new_buffer);
    new_rep = absl::cord_internal::NewExternalRep(
        absl::string_view(new_buffer, total_size), [](absl::string_view s) {
          std::allocator<char>().deallocate(const_cast<char*>(s.data()),
                                            s.size());
        });
  }
  Unref(contents_.tree());
  contents_.set_tree(new_rep);
  return absl::string_view(new_buffer, total_size);
}

/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
  assert(rep != nullptr);
  if (rep->tag >= FLAT) {
    *fragment = absl::string_view(rep->data, rep->length);
    return true;
  } else if (rep->tag == EXTERNAL) {
    *fragment = absl::string_view(rep->external()->base, rep->length);
    return true;
  } else if (rep->tag == SUBSTRING) {
    CordRep* child = rep->substring()->child;
    if (child->tag >= FLAT) {
      *fragment =
          absl::string_view(child->data + rep->substring()->start, rep->length);
      return true;
    } else if (child->tag == EXTERNAL) {
      *fragment = absl::string_view(
          child->external()->base + rep->substring()->start, rep->length);
      return true;
    }
  }
  return false;
}

/* static */ void Cord::ForEachChunkAux(
    absl::cord_internal::CordRep* rep,
    absl::FunctionRef<void(absl::string_view)> callback) {
  assert(rep != nullptr);
  int stack_pos = 0;
  constexpr int stack_max = 128;
  // Stack of right branches for tree traversal
  absl::cord_internal::CordRep* stack[stack_max];
  absl::cord_internal::CordRep* current_node = rep;
  while (true) {
    if (current_node->tag == CONCAT) {
      if (stack_pos == stack_max) {
        // There's no more room on our stack array to add another right branch,
        // and the idea is to avoid allocations, so call this function
        // recursively to navigate this subtree further.  (This is not something
        // we expect to happen in practice).
        ForEachChunkAux(current_node, callback);

        // Pop the next right branch and iterate.
        current_node = stack[--stack_pos];
        continue;
      } else {
        // Save the right branch for later traversal and continue down the left
        // branch.
        stack[stack_pos++] = current_node->concat()->right;
        current_node = current_node->concat()->left;
        continue;
      }
    }
    // This is a leaf node, so invoke our callback.
    absl::string_view chunk;
    bool success = GetFlatAux(current_node, &chunk);
    assert(success);
    if (success) {
      callback(chunk);
    }
    if (stack_pos == 0) {
      // end of traversal
      return;
    }
    current_node = stack[--stack_pos];
  }
}

static void DumpNode(CordRep* rep, bool include_data, std::ostream* os) {
  const int kIndentStep = 1;
  int indent = 0;
  absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
  absl::InlinedVector<int, kInlinedVectorSize> indents;
  for (;;) {
    *os << std::setw(3) << rep->refcount.Get();
    *os << " " << std::setw(7) << rep->length;
    *os << " [";
    if (include_data) *os << static_cast<void*>(rep);
    *os << "]";
    *os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
    *os << " " << std::setw(indent) << "";
    if (rep->tag == CONCAT) {
      *os << "CONCAT depth=" << Depth(rep) << "\n";
      indent += kIndentStep;
      indents.push_back(indent);
      stack.push_back(rep->concat()->right);
      rep = rep->concat()->left;
    } else if (rep->tag == SUBSTRING) {
      *os << "SUBSTRING @ " << rep->substring()->start << "\n";
      indent += kIndentStep;
      rep = rep->substring()->child;
    } else {  // Leaf
      if (rep->tag == EXTERNAL) {
        *os << "EXTERNAL [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->external()->base, rep->length));
        *os << "]\n";
      } else {
        *os << "FLAT cap=" << TagToLength(rep->tag) << " [";
        if (include_data)
          *os << absl::CEscape(std::string(rep->data, rep->length));
        *os << "]\n";
      }
      if (stack.empty()) break;
      rep = stack.back();
      stack.pop_back();
      indent = indents.back();
      indents.pop_back();
    }
  }
  ABSL_INTERNAL_CHECK(indents.empty(), "");
}

static std::string ReportError(CordRep* root, CordRep* node) {
  std::ostringstream buf;
  buf << "Error at node " << node << " in:";
  DumpNode(root, true, &buf);
  return buf.str();
}

static bool VerifyNode(CordRep* root, CordRep* start_node,
                       bool full_validation) {
  absl::InlinedVector<CordRep*, 2> worklist;
  worklist.push_back(start_node);
  do {
    CordRep* node = worklist.back();
    worklist.pop_back();

    ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
    if (node != root) {
      ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
    }

    if (node->tag == CONCAT) {
      ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
                          ReportError(root, node));
      ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
                          ReportError(root, node));
      ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
                                               node->concat()->right->length),
                          ReportError(root, node));
      if (full_validation) {
        worklist.push_back(node->concat()->right);
        worklist.push_back(node->concat()->left);
      }
    } else if (node->tag >= FLAT) {
      ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag),
                          ReportError(root, node));
    } else if (node->tag == EXTERNAL) {
      ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
                          ReportError(root, node));
    } else if (node->tag == SUBSTRING) {
      ABSL_INTERNAL_CHECK(
          node->substring()->start < node->substring()->child->length,
          ReportError(root, node));
      ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
                              node->substring()->child->length,
                          ReportError(root, node));
    }
  } while (!worklist.empty());
  return true;
}

// Traverses the tree and computes the total memory allocated.
/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
  size_t total_mem_usage = 0;

  // Allow a quick exit for the common case that the root is a leaf.
  if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
    return total_mem_usage;
  }

  // Iterate over the tree. cur_node is never a leaf node and leaf nodes will
  // never be appended to tree_stack. This reduces overhead from manipulating
  // tree_stack.
  absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
  const CordRep* cur_node = rep;
  while (true) {
    const CordRep* next_node = nullptr;

    if (cur_node->tag == CONCAT) {
      total_mem_usage += sizeof(CordRepConcat);
      const CordRep* left = cur_node->concat()->left;
      if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
        next_node = left;
      }

      const CordRep* right = cur_node->concat()->right;
      if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
        if (next_node) {
          tree_stack.push_back(next_node);
        }
        next_node = right;
      }
    } else {
      // Since cur_node is not a leaf or a concat node it must be a substring.
      assert(cur_node->tag == SUBSTRING);
      total_mem_usage += sizeof(CordRepSubstring);
      next_node = cur_node->substring()->child;
      if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
        next_node = nullptr;
      }
    }

    if (!next_node) {
      if (tree_stack.empty()) {
        return total_mem_usage;
      }
      next_node = tree_stack.back();
      tree_stack.pop_back();
    }
    cur_node = next_node;
  }
}

std::ostream& operator<<(std::ostream& out, const Cord& cord) {
  for (absl::string_view chunk : cord.Chunks()) {
    out.write(chunk.data(), chunk.size());
  }
  return out;
}

namespace strings_internal {
size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
  return TagToLength(tag);
}
uint8_t CordTestAccess::LengthToTag(size_t s) {
  ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
  return AllocatedSizeToTag(s + kFlatOverhead);
}
size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
size_t CordTestAccess::SizeofCordRepExternal() {
  return sizeof(CordRepExternal);
}
size_t CordTestAccess::SizeofCordRepSubstring() {
  return sizeof(CordRepSubstring);
}
}  // namespace strings_internal
ABSL_NAMESPACE_END
}  // namespace absl