about summary refs log blame commit diff
path: root/absl/strings/charconv_test.cc
blob: d07537eb590c8428f65d09fda96343c2929f6d41 (plain) (tree)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661




















                                                                           
                                               
                                 
                                    










                                           

                                    

                                     
                                                                           























































































































































































































                                                                                
                                                                               



















































































































































































































































































































































































































                                                                                        
                                                                  





















                                                                               

                                                         










                                                                            

                                                         























































                                                                                
                                                             










                                                                               
                                                             



                                                                    
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/charconv.h"

#include <cstdlib>
#include <string>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"

#ifdef _MSC_FULL_VER
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
#else
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
#endif

namespace {

using absl::strings_internal::Pow10;

#if ABSL_COMPILER_DOES_EXACT_ROUNDING

// Tests that the given string is accepted by absl::from_chars, and that it
// converts exactly equal to the given number.
void TestDoubleParse(absl::string_view str, double expected_number) {
  SCOPED_TRACE(str);
  double actual_number = 0.0;
  absl::from_chars_result result =
      absl::from_chars(str.data(), str.data() + str.length(), actual_number);
  EXPECT_EQ(result.ec, std::errc());
  EXPECT_EQ(result.ptr, str.data() + str.length());
  EXPECT_EQ(actual_number, expected_number);
}

void TestFloatParse(absl::string_view str, float expected_number) {
  SCOPED_TRACE(str);
  float actual_number = 0.0;
  absl::from_chars_result result =
      absl::from_chars(str.data(), str.data() + str.length(), actual_number);
  EXPECT_EQ(result.ec, std::errc());
  EXPECT_EQ(result.ptr, str.data() + str.length());
  EXPECT_EQ(actual_number, expected_number);
}

// Tests that the given double or single precision floating point literal is
// parsed correctly by absl::from_chars.
//
// These convenience macros assume that the C++ compiler being used also does
// fully correct decimal-to-binary conversions.
#define FROM_CHARS_TEST_DOUBLE(number)     \
  {                                        \
    TestDoubleParse(#number, number);      \
    TestDoubleParse("-" #number, -number); \
  }

#define FROM_CHARS_TEST_FLOAT(number)        \
  {                                          \
    TestFloatParse(#number, number##f);      \
    TestFloatParse("-" #number, -number##f); \
  }

TEST(FromChars, NearRoundingCases) {
  // Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
  // by Vern Paxson.

  // Forms that should round towards zero.  (These are the hardest cases for
  // each decimal mantissa size.)
  FROM_CHARS_TEST_DOUBLE(5.e125);
  FROM_CHARS_TEST_DOUBLE(69.e267);
  FROM_CHARS_TEST_DOUBLE(999.e-026);
  FROM_CHARS_TEST_DOUBLE(7861.e-034);
  FROM_CHARS_TEST_DOUBLE(75569.e-254);
  FROM_CHARS_TEST_DOUBLE(928609.e-261);
  FROM_CHARS_TEST_DOUBLE(9210917.e080);
  FROM_CHARS_TEST_DOUBLE(84863171.e114);
  FROM_CHARS_TEST_DOUBLE(653777767.e273);
  FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
  FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
  FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
  FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
  FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
  FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
  FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
  FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
  FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
  FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
  FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
  FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
  FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
  FROM_CHARS_TEST_FLOAT(5.e-20);
  FROM_CHARS_TEST_FLOAT(67.e14);
  FROM_CHARS_TEST_FLOAT(985.e15);
  FROM_CHARS_TEST_FLOAT(7693.e-42);
  FROM_CHARS_TEST_FLOAT(55895.e-16);
  FROM_CHARS_TEST_FLOAT(996622.e-44);
  FROM_CHARS_TEST_FLOAT(7038531.e-32);
  FROM_CHARS_TEST_FLOAT(60419369.e-46);
  FROM_CHARS_TEST_FLOAT(702990899.e-20);
  FROM_CHARS_TEST_FLOAT(6930161142.e-48);
  FROM_CHARS_TEST_FLOAT(25933168707.e-13);
  FROM_CHARS_TEST_FLOAT(596428896559.e20);

  // Similarly, forms that should round away from zero.
  FROM_CHARS_TEST_DOUBLE(9.e-265);
  FROM_CHARS_TEST_DOUBLE(85.e-037);
  FROM_CHARS_TEST_DOUBLE(623.e100);
  FROM_CHARS_TEST_DOUBLE(3571.e263);
  FROM_CHARS_TEST_DOUBLE(81661.e153);
  FROM_CHARS_TEST_DOUBLE(920657.e-023);
  FROM_CHARS_TEST_DOUBLE(4603285.e-024);
  FROM_CHARS_TEST_DOUBLE(87575437.e-309);
  FROM_CHARS_TEST_DOUBLE(245540327.e122);
  FROM_CHARS_TEST_DOUBLE(6138508175.e120);
  FROM_CHARS_TEST_DOUBLE(83356057653.e193);
  FROM_CHARS_TEST_DOUBLE(619534293513.e124);
  FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
  FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
  FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
  FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
  FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
  FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
  FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
  FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
  FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
  FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
  FROM_CHARS_TEST_FLOAT(3.e-23);
  FROM_CHARS_TEST_FLOAT(57.e18);
  FROM_CHARS_TEST_FLOAT(789.e-35);
  FROM_CHARS_TEST_FLOAT(2539.e-18);
  FROM_CHARS_TEST_FLOAT(76173.e28);
  FROM_CHARS_TEST_FLOAT(887745.e-11);
  FROM_CHARS_TEST_FLOAT(5382571.e-37);
  FROM_CHARS_TEST_FLOAT(82381273.e-35);
  FROM_CHARS_TEST_FLOAT(750486563.e-38);
  FROM_CHARS_TEST_FLOAT(3752432815.e-39);
  FROM_CHARS_TEST_FLOAT(75224575729.e-45);
  FROM_CHARS_TEST_FLOAT(459926601011.e15);
}

#undef FROM_CHARS_TEST_DOUBLE
#undef FROM_CHARS_TEST_FLOAT
#endif

float ToFloat(absl::string_view s) {
  float f;
  absl::from_chars(s.data(), s.data() + s.size(), f);
  return f;
}

double ToDouble(absl::string_view s) {
  double d;
  absl::from_chars(s.data(), s.data() + s.size(), d);
  return d;
}

// A duplication of the test cases in "NearRoundingCases" above, but with
// expected values expressed with integers, using ldexp/ldexpf.  These test
// cases will work even on compilers that do not accurately round floating point
// literals.
TEST(FromChars, NearRoundingCasesExplicit) {
  EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
  EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
  EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
  EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
  EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
  EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
  EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
  EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
  EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
  EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
  EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
  EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
  EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
  EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
  EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
  EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
  EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
  EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
  EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
  EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
            ldexp(4524032052079546, -722));
  EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
            ldexp(5070963299887562, -760));
  EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
            ldexp(6452687840519111, 757));
  EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
  EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
  EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
  EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
  EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
  EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
  EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
  EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
  EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
  EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
  EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
  EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));


  EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
  EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
  EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
  EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
  EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
  EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
  EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
  EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
  EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
  EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
  EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
  EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
  EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
  EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
  EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
  EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
  EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
  EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
  EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
  EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
            ldexp(5635662608542340, -825));
  EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
            ldexp(5644774693823803, -157));
  EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
            ldexp(4616868614322430, 233));

  EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
  EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
  EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
  EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
  EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
  EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
  EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
  EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
  EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
  EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
  EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
  EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
}

// Common test logic for converting a string which lies exactly halfway between
// two target floats.
//
// mantissa and exponent represent the precise value between two floating point
// numbers, `expected_low` and `expected_high`.  The floating point
// representation to parse in `StrCat(mantissa, "e", exponent)`.
//
// This function checks that an input just slightly less than the exact value
// is rounded down to `expected_low`, and an input just slightly greater than
// the exact value is rounded up to `expected_high`.
//
// The exact value should round to `expected_half`, which must be either
// `expected_low` or `expected_high`.
template <typename FloatType>
void TestHalfwayValue(const std::string& mantissa, int exponent,
                      FloatType expected_low, FloatType expected_high,
                      FloatType expected_half) {
  std::string low_rep = mantissa;
  low_rep[low_rep.size() - 1] -= 1;
  absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);

  FloatType actual_low = 0;
  absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
  EXPECT_EQ(expected_low, actual_low);

  std::string high_rep = absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
  FloatType actual_high = 0;
  absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
                   actual_high);
  EXPECT_EQ(expected_high, actual_high);

  std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
  FloatType actual_half = 0;
  absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
                   actual_half);
  EXPECT_EQ(expected_half, actual_half);
}

TEST(FromChars, DoubleRounding) {
  const double zero = 0.0;
  const double first_subnormal = nextafter(zero, 1.0);
  const double second_subnormal = nextafter(first_subnormal, 1.0);

  const double first_normal = DBL_MIN;
  const double last_subnormal = nextafter(first_normal, 0.0);
  const double second_normal = nextafter(first_normal, 1.0);

  const double last_normal = DBL_MAX;
  const double penultimate_normal = nextafter(last_normal, 0.0);

  // Various test cases for numbers between two representable floats.  Each
  // call to TestHalfwayValue tests a number just below and just above the
  // halfway point, as well as the number exactly between them.

  // Test between zero and first_subnormal.  Round-to-even tie rounds down.
  TestHalfwayValue(
      "2."
      "470328229206232720882843964341106861825299013071623822127928412503377536"
      "351043759326499181808179961898982823477228588654633283551779698981993873"
      "980053909390631503565951557022639229085839244910518443593180284993653615"
      "250031937045767824921936562366986365848075700158576926990370631192827955"
      "855133292783433840935197801553124659726357957462276646527282722005637400"
      "648549997709659947045402082816622623785739345073633900796776193057750674"
      "017632467360096895134053553745851666113422376667860416215968046191446729"
      "184030053005753084904876539171138659164623952491262365388187963623937328"
      "042389101867234849766823508986338858792562830275599565752445550725518931"
      "369083625477918694866799496832404970582102851318545139621383772282614543"
      "7693412532098591327667236328125",
      -324, zero, first_subnormal, zero);

  // first_subnormal and second_subnormal.  Round-to-even tie rounds up.
  TestHalfwayValue(
      "7."
      "410984687618698162648531893023320585475897039214871466383785237510132609"
      "053131277979497545424539885696948470431685765963899850655339096945981621"
      "940161728171894510697854671067917687257517734731555330779540854980960845"
      "750095811137303474765809687100959097544227100475730780971111893578483867"
      "565399878350301522805593404659373979179073872386829939581848166016912201"
      "945649993128979841136206248449867871357218035220901702390328579173252022"
      "052897402080290685402160661237554998340267130003581248647904138574340187"
      "552090159017259254714629617513415977493871857473787096164563890871811984"
      "127167305601704549300470526959016576377688490826798697257336652176556794"
      "107250876433756084600398490497214911746308553955635418864151316847843631"
      "3080237596295773983001708984375",
      -324, first_subnormal, second_subnormal, second_subnormal);

  // last_subnormal and first_normal.  Round-to-even tie rounds up.
  TestHalfwayValue(
      "2."
      "225073858507201136057409796709131975934819546351645648023426109724822222"
      "021076945516529523908135087914149158913039621106870086438694594645527657"
      "207407820621743379988141063267329253552286881372149012981122451451889849"
      "057222307285255133155755015914397476397983411801999323962548289017107081"
      "850690630666655994938275772572015763062690663332647565300009245888316433"
      "037779791869612049497390377829704905051080609940730262937128958950003583"
      "799967207254304360284078895771796150945516748243471030702609144621572289"
      "880258182545180325707018860872113128079512233426288368622321503775666622"
      "503982534335974568884423900265498198385487948292206894721689831099698365"
      "846814022854243330660339850886445804001034933970427567186443383770486037"
      "86162277173854562306587467901408672332763671875",
      -308, last_subnormal, first_normal, first_normal);

  // first_normal and second_normal.  Round-to-even tie rounds down.
  TestHalfwayValue(
      "2."
      "225073858507201630123055637955676152503612414573018013083228724049586647"
      "606759446192036794116886953213985520549032000903434781884412325572184367"
      "563347617020518175998922941393629966742598285899994830148971433555578567"
      "693279306015978183162142425067962460785295885199272493577688320732492479"
      "924816869232247165964934329258783950102250973957579510571600738343645738"
      "494324192997092179207389919761694314131497173265255020084997973676783743"
      "155205818804439163810572367791175177756227497413804253387084478193655533"
      "073867420834526162513029462022730109054820067654020201547112002028139700"
      "141575259123440177362244273712468151750189745559978653234255886219611516"
      "335924167958029604477064946470184777360934300451421683607013647479513962"
      "13837722826145437693412532098591327667236328125",
      -308, first_normal, second_normal, first_normal);

  // penultimate_normal and last_normal.  Round-to-even rounds down.
  TestHalfwayValue(
      "1."
      "797693134862315608353258760581052985162070023416521662616611746258695532"
      "672923265745300992879465492467506314903358770175220871059269879629062776"
      "047355692132901909191523941804762171253349609463563872612866401980290377"
      "995141836029815117562837277714038305214839639239356331336428021390916694"
      "57927874464075218944",
      308, penultimate_normal, last_normal, penultimate_normal);
}

// Same test cases as DoubleRounding, now with new and improved Much Smaller
// Precision!
TEST(FromChars, FloatRounding) {
  const float zero = 0.0;
  const float first_subnormal = nextafterf(zero, 1.0);
  const float second_subnormal = nextafterf(first_subnormal, 1.0);

  const float first_normal = FLT_MIN;
  const float last_subnormal = nextafterf(first_normal, 0.0);
  const float second_normal = nextafterf(first_normal, 1.0);

  const float last_normal = FLT_MAX;
  const float penultimate_normal = nextafterf(last_normal, 0.0);

  // Test between zero and first_subnormal.  Round-to-even tie rounds down.
  TestHalfwayValue(
      "7."
      "006492321624085354618647916449580656401309709382578858785341419448955413"
      "42930300743319094181060791015625",
      -46, zero, first_subnormal, zero);

  // first_subnormal and second_subnormal.  Round-to-even tie rounds up.
  TestHalfwayValue(
      "2."
      "101947696487225606385594374934874196920392912814773657635602425834686624"
      "028790902229957282543182373046875",
      -45, first_subnormal, second_subnormal, second_subnormal);

  // last_subnormal and first_normal.  Round-to-even tie rounds up.
  TestHalfwayValue(
      "1."
      "175494280757364291727882991035766513322858992758990427682963118425003064"
      "9651730385585324256680905818939208984375",
      -38, last_subnormal, first_normal, first_normal);

  // first_normal and second_normal.  Round-to-even tie rounds down.
  TestHalfwayValue(
      "1."
      "175494420887210724209590083408724842314472120785184615334540294131831453"
      "9442813071445925743319094181060791015625",
      -38, first_normal, second_normal, first_normal);

  // penultimate_normal and last_normal.  Round-to-even rounds down.
  TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
                   penultimate_normal, last_normal, penultimate_normal);
}

TEST(FromChars, Underflow) {
  // Check that underflow is handled correctly, according to the specification
  // in DR 3081.
  double d;
  float f;
  absl::from_chars_result result;

  std::string negative_underflow = "-1e-1000";
  const char* begin = negative_underflow.data();
  const char* end = begin + negative_underflow.size();
  d = 100.0;
  result = absl::from_chars(begin, end, d);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_TRUE(std::signbit(d));  // negative
  EXPECT_GE(d, -std::numeric_limits<double>::min());
  f = 100.0;
  result = absl::from_chars(begin, end, f);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_TRUE(std::signbit(f));  // negative
  EXPECT_GE(f, -std::numeric_limits<float>::min());

  std::string positive_underflow = "1e-1000";
  begin = positive_underflow.data();
  end = begin + positive_underflow.size();
  d = -100.0;
  result = absl::from_chars(begin, end, d);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_FALSE(std::signbit(d));  // positive
  EXPECT_LE(d, std::numeric_limits<double>::min());
  f = -100.0;
  result = absl::from_chars(begin, end, f);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_FALSE(std::signbit(f));  // positive
  EXPECT_LE(f, std::numeric_limits<float>::min());
}

TEST(FromChars, Overflow) {
  // Check that overflow is handled correctly, according to the specification
  // in DR 3081.
  double d;
  float f;
  absl::from_chars_result result;

  std::string negative_overflow = "-1e1000";
  const char* begin = negative_overflow.data();
  const char* end = begin + negative_overflow.size();
  d = 100.0;
  result = absl::from_chars(begin, end, d);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_TRUE(std::signbit(d));  // negative
  EXPECT_EQ(d, -std::numeric_limits<double>::max());
  f = 100.0;
  result = absl::from_chars(begin, end, f);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_TRUE(std::signbit(f));  // negative
  EXPECT_EQ(f, -std::numeric_limits<float>::max());

  std::string positive_overflow = "1e1000";
  begin = positive_overflow.data();
  end = begin + positive_overflow.size();
  d = -100.0;
  result = absl::from_chars(begin, end, d);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_FALSE(std::signbit(d));  // positive
  EXPECT_EQ(d, std::numeric_limits<double>::max());
  f = -100.0;
  result = absl::from_chars(begin, end, f);
  EXPECT_EQ(result.ptr, end);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_FALSE(std::signbit(f));  // positive
  EXPECT_EQ(f, std::numeric_limits<float>::max());
}

TEST(FromChars, ReturnValuePtr) {
  // Check that `ptr` points one past the number scanned, even if that number
  // is not representable.
  double d;
  absl::from_chars_result result;

  std::string normal = "3.14@#$%@#$%";
  result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
  EXPECT_EQ(result.ec, std::errc());
  EXPECT_EQ(result.ptr - normal.data(), 4);

  std::string overflow = "1e1000@#$%@#$%";
  result = absl::from_chars(overflow.data(),
                            overflow.data() + overflow.size(), d);
  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
  EXPECT_EQ(result.ptr - overflow.data(), 6);

  std::string garbage = "#$%@#$%";
  result = absl::from_chars(garbage.data(),
                            garbage.data() + garbage.size(), d);
  EXPECT_EQ(result.ec, std::errc::invalid_argument);
  EXPECT_EQ(result.ptr - garbage.data(), 0);
}

// Check for a wide range of inputs that strtod() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtod() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtod) {
  for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
    for (int exponent = -300; exponent < 300; ++exponent) {
      std::string candidate = absl::StrCat(mantissa, "e", exponent);
      double strtod_value = strtod(candidate.c_str(), nullptr);
      double absl_value = 0;
      absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
                       absl_value);
      ASSERT_EQ(strtod_value, absl_value) << candidate;
    }
  }
}

// Check for a wide range of inputs that strtof() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtof() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtof) {
  for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
    for (int exponent = -43; exponent < 32; ++exponent) {
      std::string candidate = absl::StrCat(mantissa, "e", exponent);
      float strtod_value = strtof(candidate.c_str(), nullptr);
      float absl_value = 0;
      absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
                       absl_value);
      ASSERT_EQ(strtod_value, absl_value) << candidate;
    }
  }
}

// Tests if two floating point values have identical bit layouts.  (EXPECT_EQ
// is not suitable for NaN testing, since NaNs are never equal.)
template <typename Float>
bool Identical(Float a, Float b) {
  return 0 == memcmp(&a, &b, sizeof(Float));
}

// Check that NaNs are parsed correctly.  The spec requires that
// std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
// How such an n-char-sequence affects the generated NaN is unspecified, so we
// just test for symmetry with std::nan and strtod here.
//
// (In Linux, this parses the value as a number and stuffs that number into the
// free bits of a quiet NaN.)
TEST(FromChars, NaNDoubles) {
  for (std::string n_char_sequence :
       {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
        "8000000000000", "abc123", "legal_but_unexpected",
        "99999999999999999999999", "_"}) {
    std::string input = absl::StrCat("nan(", n_char_sequence, ")");
    SCOPED_TRACE(input);
    double from_chars_double;
    absl::from_chars(input.data(), input.data() + input.size(),
                     from_chars_double);
    double std_nan_double = std::nan(n_char_sequence.c_str());
    EXPECT_TRUE(Identical(from_chars_double, std_nan_double));

    // Also check that we match strtod()'s behavior.  This test assumes that the
    // platform has a compliant strtod().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
    double strtod_double = strtod(input.c_str(), nullptr);
    EXPECT_TRUE(Identical(from_chars_double, strtod_double));
#endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY

    // Check that we can parse a negative NaN
    std::string negative_input = "-" + input;
    double negative_from_chars_double;
    absl::from_chars(negative_input.data(),
                     negative_input.data() + negative_input.size(),
                     negative_from_chars_double);
    EXPECT_TRUE(std::signbit(negative_from_chars_double));
    EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
    from_chars_double = std::copysign(from_chars_double, -1.0);
    EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
  }
}

TEST(FromChars, NaNFloats) {
  for (std::string n_char_sequence :
       {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
        "8000000000000", "abc123", "legal_but_unexpected",
        "99999999999999999999999", "_"}) {
    std::string input = absl::StrCat("nan(", n_char_sequence, ")");
    SCOPED_TRACE(input);
    float from_chars_float;
    absl::from_chars(input.data(), input.data() + input.size(),
                     from_chars_float);
    float std_nan_float = std::nanf(n_char_sequence.c_str());
    EXPECT_TRUE(Identical(from_chars_float, std_nan_float));

    // Also check that we match strtof()'s behavior.  This test assumes that the
    // platform has a compliant strtof().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
    float strtof_float = strtof(input.c_str(), nullptr);
    EXPECT_TRUE(Identical(from_chars_float, strtof_float));
#endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY

    // Check that we can parse a negative NaN
    std::string negative_input = "-" + input;
    float negative_from_chars_float;
    absl::from_chars(negative_input.data(),
                     negative_input.data() + negative_input.size(),
                     negative_from_chars_float);
    EXPECT_TRUE(std::signbit(negative_from_chars_float));
    EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
    from_chars_float = std::copysign(from_chars_float, -1.0);
    EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
  }
}

// Returns an integer larger than step.  The values grow exponentially.
int NextStep(int step) {
  return step + (step >> 2) + 1;
}

// Test a conversion on a family of input strings, checking that the calculation
// is correct for in-bounds values, and that overflow and underflow are done
// correctly for out-of-bounds values.
//
// input_generator maps from an integer index to a string to test.
// expected_generator maps from an integer index to an expected Float value.
// from_chars conversion of input_generator(i) should result in
// expected_generator(i).
//
// lower_bound and upper_bound denote the smallest and largest values for which
// the conversion is expected to succeed.
template <typename Float>
void TestOverflowAndUnderflow(
    const std::function<std::string(int)>& input_generator,
    const std::function<Float(int)>& expected_generator, int lower_bound,
    int upper_bound) {
  // test legal values near lower_bound
  int index, step;
  for (index = lower_bound, step = 1; index < upper_bound;
       index += step, step = NextStep(step)) {
    std::string input = input_generator(index);
    SCOPED_TRACE(input);
    Float expected = expected_generator(index);
    Float actual;
    auto result =
        absl::from_chars(input.data(), input.data() + input.size(), actual);
    EXPECT_EQ(result.ec, std::errc());
    EXPECT_EQ(expected, actual)
        << absl::StrFormat("%a vs %a", expected, actual);
  }
  // test legal values near upper_bound
  for (index = upper_bound, step = 1; index > lower_bound;
       index -= step, step = NextStep(step)) {
    std::string input = input_generator(index);
    SCOPED_TRACE(input);
    Float expected = expected_generator(index);
    Float actual;
    auto result =
        absl::from_chars(input.data(), input.data() + input.size(), actual);
    EXPECT_EQ(result.ec, std::errc());
    EXPECT_EQ(expected, actual)
        << absl::StrFormat("%a vs %a", expected, actual);
  }
  // Test underflow values below lower_bound
  for (index = lower_bound - 1, step = 1; index > -1000000;
       index -= step, step = NextStep(step)) {
    std::string input = input_generator(index);
    SCOPED_TRACE(input);
    Float actual;
    auto result =
        absl::from_chars(input.data(), input.data() + input.size(), actual);
    EXPECT_EQ(result.ec, std::errc::result_out_of_range);
    EXPECT_LT(actual, 1.0);  // check for underflow
  }
  // Test overflow values above upper_bound
  for (index = upper_bound + 1, step = 1; index < 1000000;
       index += step, step = NextStep(step)) {
    std::string input = input_generator(index);
    SCOPED_TRACE(input);
    Float actual;
    auto result =
        absl::from_chars(input.data(), input.data() + input.size(), actual);
    EXPECT_EQ(result.ec, std::errc::result_out_of_range);
    EXPECT_GT(actual, 1.0);  // check for overflow
  }
}

// Check that overflow and underflow are caught correctly for hex doubles.
//
// The largest representable double is 0x1.fffffffffffffp+1023, and the
// smallest representable subnormal is 0x0.0000000000001p-1022, which equals
// 0x1p-1074.  Therefore 1023 and -1074 are the limits of acceptable exponents
// in this test.
TEST(FromChars, HexdecimalDoubleLimits) {
  auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
  auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
  TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
}

// Check that overflow and underflow are caught correctly for hex floats.
//
// The largest representable float is 0x1.fffffep+127, and the smallest
// representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
// Therefore 127 and -149 are the limits of acceptable exponents in this test.
TEST(FromChars, HexdecimalFloatLimits) {
  auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
  auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
  TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
}

// Check that overflow and underflow are caught correctly for decimal doubles.
//
// The largest representable double is about 1.8e308, and the smallest
// representable subnormal is about 5e-324.  '1e-324' therefore rounds away from
// the smallest representable positive value.  -323 and 308 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalDoubleLimits) {
  auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
  auto expected_gen = [](int index) { return Pow10(index); };
  TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
}

// Check that overflow and underflow are caught correctly for decimal floats.
//
// The largest representable float is about 3.4e38, and the smallest
// representable subnormal is about 1.45e-45.  '1e-45' therefore rounds towards
// the smallest representable positive value.  -45 and 38 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalFloatLimits) {
  auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
  auto expected_gen = [](int index) { return Pow10(index); };
  TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
}

}  // namespace