// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/pool_urbg.h"
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <cstring>
#include <iterator>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/optimization.h"
#include "absl/random/internal/randen.h"
#include "absl/random/internal/seed_material.h"
#include "absl/random/seed_gen_exception.h"
using absl::base_internal::SpinLock;
using absl::base_internal::SpinLockHolder;
namespace absl {
namespace random_internal {
namespace {
// RandenPoolEntry is a thread-safe pseudorandom bit generator, implementing a
// single generator within a RandenPool<T>. It is an internal implementation
// detail, and does not aim to conform to [rand.req.urng].
//
// NOTE: There are alignment issues when used on ARM, for instance.
// See the allocation code in PoolAlignedAlloc().
class RandenPoolEntry {
public:
static constexpr size_t kState = RandenTraits::kStateBytes / sizeof(uint32_t);
static constexpr size_t kCapacity =
RandenTraits::kCapacityBytes / sizeof(uint32_t);
void Init(absl::Span<const uint32_t> data) {
SpinLockHolder l(&mu_); // Always uncontested.
std::copy(data.begin(), data.end(), std::begin(state_));
next_ = kState;
}
// Copy bytes into out.
void Fill(uint8_t* out, size_t bytes) LOCKS_EXCLUDED(mu_);
// Returns random bits from the buffer in units of T.
template <typename T>
inline T Generate() LOCKS_EXCLUDED(mu_);
inline void MaybeRefill() EXCLUSIVE_LOCKS_REQUIRED(mu_) {
if (next_ >= kState) {
next_ = kCapacity;
impl_.Generate(state_);
}
}
private:
// Randen URBG state.
uint32_t state_[kState] GUARDED_BY(mu_); // First to satisfy alignment.
SpinLock mu_;
const Randen impl_;
size_t next_ GUARDED_BY(mu_);
};
template <>
inline uint8_t RandenPoolEntry::Generate<uint8_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return static_cast<uint8_t>(state_[next_++]);
}
template <>
inline uint16_t RandenPoolEntry::Generate<uint16_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return static_cast<uint16_t>(state_[next_++]);
}
template <>
inline uint32_t RandenPoolEntry::Generate<uint32_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return state_[next_++];
}
template <>
inline uint64_t RandenPoolEntry::Generate<uint64_t>() {
SpinLockHolder l(&mu_);
if (next_ >= kState - 1) {
next_ = kCapacity;
impl_.Generate(state_);
}
auto p = state_ + next_;
next_ += 2;
uint64_t result;
std::memcpy(&result, p, sizeof(result));
return result;
}
void RandenPoolEntry::Fill(uint8_t* out, size_t bytes) {
SpinLockHolder l(&mu_);
while (bytes > 0) {
MaybeRefill();
size_t remaining = (kState - next_) * sizeof(state_[0]);
size_t to_copy = std::min(bytes, remaining);
std::memcpy(out, &state_[next_], to_copy);
out += to_copy;
bytes -= to_copy;
next_ += (to_copy + sizeof(state_[0]) - 1) / sizeof(state_[0]);
}
}
// Number of pooled urbg entries.
static constexpr int kPoolSize = 8;
// Shared pool entries.
static absl::once_flag pool_once;
ABSL_CACHELINE_ALIGNED static RandenPoolEntry* shared_pools[kPoolSize];
// Returns an id in the range [0 ... kPoolSize), which indexes into the
// pool of random engines.
//
// Each thread to access the pool is assigned a sequential ID (without reuse)
// from the pool-id space; the id is cached in a thread_local variable.
// This id is assigned based on the arrival-order of the thread to the
// GetPoolID call; this has no binary, CL, or runtime stability because
// on subsequent runs the order within the same program may be significantly
// different. However, as other thread IDs are not assigned sequentially,
// this is not expected to matter.
int GetPoolID() {
static_assert(kPoolSize >= 1,
"At least one urbg instance is required for PoolURBG");
ABSL_CONST_INIT static std::atomic<int64_t> sequence{0};
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local int my_pool_id = -1;
if (ABSL_PREDICT_FALSE(my_pool_id < 0)) {
my_pool_id = (sequence++ % kPoolSize);
}
return my_pool_id;
#else
static pthread_key_t tid_key = [] {
pthread_key_t tmp_key;
int err = pthread_key_create(&tmp_key, nullptr);
if (err) {
ABSL_RAW_LOG(FATAL, "pthread_key_create failed with %d", err);
}
return tmp_key;
}();
// Store the value in the pthread_{get/set}specific. However an uninitialized
// value is 0, so add +1 to distinguish from the null value.
intptr_t my_pool_id =
reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
if (ABSL_PREDICT_FALSE(my_pool_id == 0)) {
// No allocated ID, allocate the next value, cache it, and return.
my_pool_id = (sequence++ % kPoolSize) + 1;
int err = pthread_setspecific(tid_key, reinterpret_cast<void*>(my_pool_id));
if (err) {
ABSL_RAW_LOG(FATAL, "pthread_setspecific failed with %d", err);
}
}
return my_pool_id - 1;
#endif
}
// Allocate a RandenPoolEntry with at least 32-byte alignment, which is required
// by ARM platform code.
RandenPoolEntry* PoolAlignedAlloc() {
constexpr size_t kAlignment =
ABSL_CACHELINE_SIZE > 32 ? ABSL_CACHELINE_SIZE : 32;
// Not all the platforms that we build for have std::aligned_alloc, however
// since we never free these objects, we can over allocate and munge the
// pointers to the correct alignment.
void* memory = std::malloc(sizeof(RandenPoolEntry) + kAlignment);
auto x = reinterpret_cast<intptr_t>(memory);
auto y = x % kAlignment;
void* aligned =
(y == 0) ? memory : reinterpret_cast<void*>(x + kAlignment - y);
return new (aligned) RandenPoolEntry();
}
// Allocate and initialize kPoolSize objects of type RandenPoolEntry.
//
// The initialization strategy is to initialize one object directly from
// OS entropy, then to use that object to seed all of the individual
// pool instances.
void InitPoolURBG() {
static constexpr size_t kSeedSize =
RandenTraits::kStateBytes / sizeof(uint32_t);
// Read the seed data from OS entropy once.
uint32_t seed_material[kPoolSize * kSeedSize];
if (!random_internal::ReadSeedMaterialFromOSEntropy(
absl::MakeSpan(seed_material))) {
random_internal::ThrowSeedGenException();
}
for (int i = 0; i < kPoolSize; i++) {
shared_pools[i] = PoolAlignedAlloc();
shared_pools[i]->Init(
absl::MakeSpan(&seed_material[i * kSeedSize], kSeedSize));
}
}
// Returns the pool entry for the current thread.
RandenPoolEntry* GetPoolForCurrentThread() {
absl::call_once(pool_once, InitPoolURBG);
return shared_pools[GetPoolID()];
}
} // namespace
template <typename T>
typename RandenPool<T>::result_type RandenPool<T>::Generate() {
auto* pool = GetPoolForCurrentThread();
return pool->Generate<T>();
}
template <typename T>
void RandenPool<T>::Fill(absl::Span<result_type> data) {
auto* pool = GetPoolForCurrentThread();
pool->Fill(reinterpret_cast<uint8_t*>(data.data()),
data.size() * sizeof(result_type));
}
template class RandenPool<uint8_t>;
template class RandenPool<uint16_t>;
template class RandenPool<uint32_t>;
template class RandenPool<uint64_t>;
} // namespace random_internal
} // namespace absl