// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
namespace absl {
namespace random_internal {
// Returns true if the input value is zero or a power of two. Useful for
// determining if the range of output values in a URBG
template <typename UIntType>
constexpr bool IsPowerOfTwoOrZero(UIntType n) {
return (n == 0) || ((n & (n - 1)) == 0);
}
// Computes the length of the range of values producible by the URBG, or returns
// zero if that would encompass the entire range of representable values in
// URBG::result_type.
template <typename URBG>
constexpr typename URBG::result_type RangeSize() {
using result_type = typename URBG::result_type;
return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
(URBG::min)() == std::numeric_limits<result_type>::lowest())
? result_type{0}
: (URBG::max)() - (URBG::min)() + result_type{1};
}
template <typename UIntType>
constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
}
// Given a URBG generating values in the closed interval [Lo, Hi], returns the
// largest power of two less than or equal to `Hi - Lo + 1`.
template <typename URBG>
constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
}
// Computes the floor of the log. (i.e., std::floor(std::log2(N));
template <typename UIntType>
constexpr UIntType IntegerLog2(UIntType n) {
return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
}
// Returns the number of bits of randomness returned through
// `PowerOfTwoVariate(urbg)`.
template <typename URBG>
constexpr size_t NumBits() {
return RangeSize<URBG>() == 0
? std::numeric_limits<typename URBG::result_type>::digits
: IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
}
// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
// If `n == 0`, all bits are set.
template <typename UIntType>
constexpr UIntType MaskFromShift(UIntType n) {
return ((n % std::numeric_limits<UIntType>::digits) == 0)
? ~UIntType{0}
: (UIntType{1} << n) - UIntType{1};
}
// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
// `UIntType`: the result (output) type
//
// The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
// instantiated from an existing generator through a copy or a move. It does
// not, however, facilitate the production of pseudorandom bits from an un-owned
// generator that will outlive the std::independent_bits_engine instance.
template <typename UIntType = uint64_t>
class FastUniformBits {
public:
using result_type = UIntType;
static constexpr result_type(min)() { return 0; }
static constexpr result_type(max)() {
return (std::numeric_limits<result_type>::max)();
}
template <typename URBG>
result_type operator()(URBG& g); // NOLINT(runtime/references)
private:
static_assert(std::is_unsigned<UIntType>::value,
"Class-template FastUniformBits<> must be parameterized using "
"an unsigned type.");
// PowerOfTwoVariate() generates a single random variate, always returning a
// value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
// the URBG already generates values in a power-of-two range, the generator
// itself is used. Otherwise, we use rejection sampling on the largest
// possible power-of-two-sized subrange.
struct PowerOfTwoTag {};
struct RejectionSamplingTag {};
template <typename URBG>
static typename URBG::result_type PowerOfTwoVariate(
URBG& g) { // NOLINT(runtime/references)
using tag =
typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
PowerOfTwoTag, RejectionSamplingTag>::type;
return PowerOfTwoVariate(g, tag{});
}
template <typename URBG>
static typename URBG::result_type PowerOfTwoVariate(
URBG& g, // NOLINT(runtime/references)
PowerOfTwoTag) {
return g() - (URBG::min)();
}
template <typename URBG>
static typename URBG::result_type PowerOfTwoVariate(
URBG& g, // NOLINT(runtime/references)
RejectionSamplingTag) {
// Use rejection sampling to ensure uniformity across the range.
typename URBG::result_type u;
do {
u = g() - (URBG::min)();
} while (u >= PowerOfTwoSubRangeSize<URBG>());
return u;
}
// Generate() generates a random value, dispatched on whether
// the underlying URBG must loop over multiple calls or not.
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
std::true_type /* avoid_looping */);
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
std::false_type /* avoid_looping */);
};
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
// kRangeMask is the mask used when sampling variates from the URBG when the
// width of the URBG range is not a power of 2.
// Y = (2 ^ kRange) - 1
static_assert((URBG::max)() > (URBG::min)(),
"URBG::max and URBG::min may not be equal.");
using urbg_result_type = typename URBG::result_type;
constexpr urbg_result_type kRangeMask =
RangeSize<URBG>() == 0
? (std::numeric_limits<urbg_result_type>::max)()
: static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
std::true_type /* avoid_looping */) {
// The width of the result_type is less than than the width of the random bits
// provided by URBG. Thus, generate a single value and then simply mask off
// the required bits.
return PowerOfTwoVariate(g) & (max)();
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
std::false_type /* avoid_looping */) {
// See [rand.adapt.ibits] for more details on the constants calculated below.
//
// It is preferable to use roughly the same number of bits from each generator
// call, however this is only possible when the number of bits provided by the
// URBG is a divisor of the number of bits in `result_type`. In all other
// cases, the number of bits used cannot always be the same, but it can be
// guaranteed to be off by at most 1. Thus we run two loops, one with a
// smaller bit-width size (`kSmallWidth`) and one with a larger width size
// (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
// `kSmallIters` and `kLargeIters` times respectively such
// that
//
// `kTotalWidth == kSmallIters * kSmallWidth
// + kLargeIters * kLargeWidth`
//
// where `kTotalWidth` is the total number of bits in `result_type`.
//
constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
constexpr size_t kUrbgWidth = NumBits<URBG>();
constexpr size_t kTotalIters =
kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
constexpr size_t kLargeWidth = kSmallWidth + 1;
//
// Because `kLargeWidth == kSmallWidth + 1`, it follows that
//
// `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
//
// and therefore
//
// `kLargeIters == kTotalWidth % kSmallWidth`
//
// Intuitively, each iteration with the large width accounts for one unit
// of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
// mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
// there would be no need for any large iterations (i.e., one loop would
// suffice), and indeed, in this case, `kLargeIters` would be zero.
constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
constexpr size_t kSmallIters =
(kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;
static_assert(
kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
"Error in looping constant calculations.");
result_type s = 0;
constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
for (size_t n = 0; n < kSmallIters; ++n) {
s = (s << kSmallShift) +
(static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
}
constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
for (size_t n = 0; n < kLargeIters; ++n) {
s = (s << kLargeShift) +
(static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
}
static_assert(
kLargeShift == kSmallShift + 1 ||
(kLargeShift == 0 &&
kSmallShift == std::numeric_limits<result_type>::digits - 1),
"Error in looping constant calculations");
return s;
}
} // namespace random_internal
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_