// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/distribution_test_util.h"
#include "gtest/gtest.h"
namespace {
TEST(TestUtil, InverseErf) {
const struct {
const double z;
const double value;
} kErfInvTable[] = {
{0.0000001, 8.86227e-8},
{0.00001, 8.86227e-6},
{0.5, 0.4769362762044},
{0.6, 0.5951160814499},
{0.99999, 3.1234132743},
{0.9999999, 3.7665625816},
{0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004
{0.999999999, 4.3200053849134452},
};
for (const auto& data : kErfInvTable) {
auto value = absl::random_internal::erfinv(data.z);
// Log using the Wolfram-alpha function name & parameters.
EXPECT_NEAR(value, data.value, 1e-8)
<< " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
<< value;
}
}
const struct {
const double p;
const double q;
const double x;
const double alpha;
} kBetaTable[] = {
{0.5, 0.5, 0.01, 0.06376856085851985},
{0.5, 0.5, 0.1, 0.2048327646991335},
{0.5, 0.5, 1, 1},
{1, 0.5, 0, 0},
{1, 0.5, 0.01, 0.005012562893380045},
{1, 0.5, 0.1, 0.0513167019494862},
{1, 0.5, 0.5, 0.2928932188134525},
{1, 1, 0.5, 0.5},
{2, 2, 0.1, 0.028},
{2, 2, 0.2, 0.104},
{2, 2, 0.3, 0.216},
{2, 2, 0.4, 0.352},
{2, 2, 0.5, 0.5},
{2, 2, 0.6, 0.648},
{2, 2, 0.7, 0.784},
{2, 2, 0.8, 0.896},
{2, 2, 0.9, 0.972},
{5.5, 5, 0.5, 0.4361908850559777},
{10, 0.5, 0.9, 0.1516409096346979},
{10, 5, 0.5, 0.08978271484375},
{10, 5, 1, 1},
{10, 10, 0.5, 0.5},
{20, 5, 0.8, 0.4598773297575791},
{20, 10, 0.6, 0.2146816102371739},
{20, 10, 0.8, 0.9507364826957875},
{20, 20, 0.5, 0.5},
{20, 20, 0.6, 0.8979413687105918},
{30, 10, 0.7, 0.2241297491808366},
{30, 10, 0.8, 0.7586405487192086},
{40, 20, 0.7, 0.7001783247477069},
{1, 0.5, 0.1, 0.0513167019494862},
{1, 0.5, 0.2, 0.1055728090000841},
{1, 0.5, 0.3, 0.1633399734659245},
{1, 0.5, 0.4, 0.2254033307585166},
{1, 2, 0.2, 0.36},
{1, 3, 0.2, 0.488},
{1, 4, 0.2, 0.5904},
{1, 5, 0.2, 0.67232},
{2, 2, 0.3, 0.216},
{3, 2, 0.3, 0.0837},
{4, 2, 0.3, 0.03078},
{5, 2, 0.3, 0.010935},
// These values test small & large points along the range of the Beta
// function.
//
// When selecting test points, remember that if BetaIncomplete(x, p, q)
// returns the same value to within the limits of precision over a large
// domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
// essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
// BetaRegularized[x, 0.00001, 0.00001],
// For x in {~0.001 ... ~0.999}, => ~0.5
{1e-5, 1e-5, 1e-5, 0.4999424388184638311},
{1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
// BetaRegularized[x, 0.00001, 10000].
// For x in {~epsilon ... 1.0}, => ~1
{1e-5, 1e5, 1e-6, 0.9999817708130066936},
{1e-5, 1e5, (1.0 - 1e-7), 1.0},
// BetaRegularized[x, 10000, 0.00001].
// For x in {0 .. 1-epsilon}, => ~0
{1e5, 1e-5, 1e-6, 0},
{1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
};
TEST(BetaTest, BetaIncomplete) {
for (const auto& data : kBetaTable) {
auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
// Log using the Wolfram-alpha function name & parameters.
EXPECT_NEAR(value, data.alpha, 1e-12)
<< " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
<< "] (expected=" << data.alpha << ") -> " << value;
}
}
TEST(BetaTest, BetaIncompleteInv) {
for (const auto& data : kBetaTable) {
auto value =
absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
// Log using the Wolfram-alpha function name & parameters.
EXPECT_NEAR(value, data.x, 1e-6)
<< " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
<< data.q << "] (expected=" << data.x << ") -> " << value;
}
}
TEST(MaxErrorTolerance, MaxErrorTolerance) {
std::vector<std::pair<double, double>> cases = {
{0.0000001, 8.86227e-8 * 1.41421356237},
{0.00001, 8.86227e-6 * 1.41421356237},
{0.5, 0.4769362762044 * 1.41421356237},
{0.6, 0.5951160814499 * 1.41421356237},
{0.99999, 3.1234132743 * 1.41421356237},
{0.9999999, 3.7665625816 * 1.41421356237},
{0.999999944, 3.8403850690566985 * 1.41421356237},
{0.999999999, 4.3200053849134452 * 1.41421356237}};
for (auto entry : cases) {
EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
entry.second, 1e-8);
}
}
TEST(ZScore, WithSameMean) {
absl::random_internal::DistributionMoments m;
m.n = 100;
m.mean = 5;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
m.n = 1;
m.mean = 0;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
m.n = 10000;
m.mean = -5;
m.variance = 100;
EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
}
TEST(ZScore, DifferentMean) {
absl::random_internal::DistributionMoments m;
m.n = 100;
m.mean = 5;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
m.n = 1;
m.mean = 0;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
m.n = 10000;
m.mean = -5;
m.variance = 100;
EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
}
} // namespace