about summary refs log blame commit diff
path: root/absl/hash/internal/city.cc
blob: 8f72dd1b7d0c9f538d91d627dff0662e4e0c9b2c (plain) (tree)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590


































































































































                                                                            
 





















                                                              





                                                          

                           
            

                        
            

                           
                 

                           
            
                               
                
                           
            





























































































































































































































































































































































































































                                                                                      
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file provides CityHash64() and related functions.
//
// It's probably possible to create even faster hash functions by
// writing a program that systematically explores some of the space of
// possible hash functions, by using SIMD instructions, or by
// compromising on hash quality.

#include "absl/hash/internal/city.h"

#include <string.h>  // for memcpy and memset
#include <algorithm>

#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/optimization.h"

namespace absl {
namespace hash_internal {

#ifdef ABSL_IS_BIG_ENDIAN
#define uint32_in_expected_order(x) (absl::gbswap_32(x))
#define uint64_in_expected_order(x) (absl::gbswap_64(x))
#else
#define uint32_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)
#endif

static uint64_t Fetch64(const char *p) {
  return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
}

static uint32_t Fetch32(const char *p) {
  return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
}

// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;

// Magic numbers for 32-bit hashing.  Copied from Murmur3.
static const uint32_t c1 = 0xcc9e2d51;
static const uint32_t c2 = 0x1b873593;

// A 32-bit to 32-bit integer hash copied from Murmur3.
static uint32_t fmix(uint32_t h) {
  h ^= h >> 16;
  h *= 0x85ebca6b;
  h ^= h >> 13;
  h *= 0xc2b2ae35;
  h ^= h >> 16;
  return h;
}

static uint32_t Rotate32(uint32_t val, int shift) {
  // Avoid shifting by 32: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
}

#undef PERMUTE3
#define PERMUTE3(a, b, c) \
  do {                    \
    std::swap(a, b);      \
    std::swap(a, c);      \
  } while (0)

static uint32_t Mur(uint32_t a, uint32_t h) {
  // Helper from Murmur3 for combining two 32-bit values.
  a *= c1;
  a = Rotate32(a, 17);
  a *= c2;
  h ^= a;
  h = Rotate32(h, 19);
  return h * 5 + 0xe6546b64;
}

static uint32_t Hash32Len13to24(const char *s, size_t len) {
  uint32_t a = Fetch32(s - 4 + (len >> 1));
  uint32_t b = Fetch32(s + 4);
  uint32_t c = Fetch32(s + len - 8);
  uint32_t d = Fetch32(s + (len >> 1));
  uint32_t e = Fetch32(s);
  uint32_t f = Fetch32(s + len - 4);
  uint32_t h = len;

  return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
}

static uint32_t Hash32Len0to4(const char *s, size_t len) {
  uint32_t b = 0;
  uint32_t c = 9;
  for (size_t i = 0; i < len; i++) {
    signed char v = s[i];
    b = b * c1 + v;
    c ^= b;
  }
  return fmix(Mur(b, Mur(len, c)));
}

static uint32_t Hash32Len5to12(const char *s, size_t len) {
  uint32_t a = len, b = len * 5, c = 9, d = b;
  a += Fetch32(s);
  b += Fetch32(s + len - 4);
  c += Fetch32(s + ((len >> 1) & 4));
  return fmix(Mur(c, Mur(b, Mur(a, d))));
}

uint32_t CityHash32(const char *s, size_t len) {
  if (len <= 24) {
    return len <= 12
               ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
               : Hash32Len13to24(s, len);
  }

  // len > 24
  uint32_t h = len, g = c1 * len, f = g;

  uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
  uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
  uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
  uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
  uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
  h ^= a0;
  h = Rotate32(h, 19);
  h = h * 5 + 0xe6546b64;
  h ^= a2;
  h = Rotate32(h, 19);
  h = h * 5 + 0xe6546b64;
  g ^= a1;
  g = Rotate32(g, 19);
  g = g * 5 + 0xe6546b64;
  g ^= a3;
  g = Rotate32(g, 19);
  g = g * 5 + 0xe6546b64;
  f += a4;
  f = Rotate32(f, 19);
  f = f * 5 + 0xe6546b64;
  size_t iters = (len - 1) / 20;
  do {
    uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
    uint32_t b1 = Fetch32(s + 4);
    uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
    uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
    uint32_t b4 = Fetch32(s + 16);
    h ^= b0;
    h = Rotate32(h, 18);
    h = h * 5 + 0xe6546b64;
    f += b1;
    f = Rotate32(f, 19);
    f = f * c1;
    g += b2;
    g = Rotate32(g, 18);
    g = g * 5 + 0xe6546b64;
    h ^= b3 + b1;
    h = Rotate32(h, 19);
    h = h * 5 + 0xe6546b64;
    g ^= b4;
    g = absl::gbswap_32(g) * 5;
    h += b4 * 5;
    h = absl::gbswap_32(h);
    f += b0;
    PERMUTE3(f, h, g);
    s += 20;
  } while (--iters != 0);
  g = Rotate32(g, 11) * c1;
  g = Rotate32(g, 17) * c1;
  f = Rotate32(f, 11) * c1;
  f = Rotate32(f, 17) * c1;
  h = Rotate32(h + g, 19);
  h = h * 5 + 0xe6546b64;
  h = Rotate32(h, 17) * c1;
  h = Rotate32(h + f, 19);
  h = h * 5 + 0xe6546b64;
  h = Rotate32(h, 17) * c1;
  return h;
}

// Bitwise right rotate.  Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static uint64_t Rotate(uint64_t val, int shift) {
  // Avoid shifting by 64: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}

static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }

static uint64_t HashLen16(uint64_t u, uint64_t v) {
  return Hash128to64(uint128(u, v));
}

static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
  // Murmur-inspired hashing.
  uint64_t a = (u ^ v) * mul;
  a ^= (a >> 47);
  uint64_t b = (v ^ a) * mul;
  b ^= (b >> 47);
  b *= mul;
  return b;
}

static uint64_t HashLen0to16(const char *s, size_t len) {
  if (len >= 8) {
    uint64_t mul = k2 + len * 2;
    uint64_t a = Fetch64(s) + k2;
    uint64_t b = Fetch64(s + len - 8);
    uint64_t c = Rotate(b, 37) * mul + a;
    uint64_t d = (Rotate(a, 25) + b) * mul;
    return HashLen16(c, d, mul);
  }
  if (len >= 4) {
    uint64_t mul = k2 + len * 2;
    uint64_t a = Fetch32(s);
    return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
  }
  if (len > 0) {
    uint8_t a = s[0];
    uint8_t b = s[len >> 1];
    uint8_t c = s[len - 1];
    uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
    uint32_t z = len + (static_cast<uint32_t>(c) << 2);
    return ShiftMix(y * k2 ^ z * k0) * k2;
  }
  return k2;
}

// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64_t HashLen17to32(const char *s, size_t len) {
  uint64_t mul = k2 + len * 2;
  uint64_t a = Fetch64(s) * k1;
  uint64_t b = Fetch64(s + 8);
  uint64_t c = Fetch64(s + len - 8) * mul;
  uint64_t d = Fetch64(s + len - 16) * k2;
  return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
                   a + Rotate(b + k2, 18) + c, mul);
}

// Return a 16-byte hash for 48 bytes.  Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x,
                                                        uint64_t y, uint64_t z,
                                                        uint64_t a, uint64_t b) {
  a += w;
  b = Rotate(b + a + z, 21);
  uint64_t c = a;
  a += x;
  a += y;
  b += Rotate(a, 44);
  return std::make_pair(a + z, b + c);
}

// Return a 16-byte hash for s[0] ... s[31], a, and b.  Quick and dirty.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a,
                                                        uint64_t b) {
  return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
                                Fetch64(s + 24), a, b);
}

// Return an 8-byte hash for 33 to 64 bytes.
static uint64_t HashLen33to64(const char *s, size_t len) {
  uint64_t mul = k2 + len * 2;
  uint64_t a = Fetch64(s) * k2;
  uint64_t b = Fetch64(s + 8);
  uint64_t c = Fetch64(s + len - 24);
  uint64_t d = Fetch64(s + len - 32);
  uint64_t e = Fetch64(s + 16) * k2;
  uint64_t f = Fetch64(s + 24) * 9;
  uint64_t g = Fetch64(s + len - 8);
  uint64_t h = Fetch64(s + len - 16) * mul;
  uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
  uint64_t v = ((a + g) ^ d) + f + 1;
  uint64_t w = absl::gbswap_64((u + v) * mul) + h;
  uint64_t x = Rotate(e + f, 42) + c;
  uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul;
  uint64_t z = e + f + c;
  a = absl::gbswap_64((x + z) * mul + y) + b;
  b = ShiftMix((z + a) * mul + d + h) * mul;
  return b + x;
}

uint64_t CityHash64(const char *s, size_t len) {
  if (len <= 32) {
    if (len <= 16) {
      return HashLen0to16(s, len);
    } else {
      return HashLen17to32(s, len);
    }
  } else if (len <= 64) {
    return HashLen33to64(s, len);
  }

  // For strings over 64 bytes we hash the end first, and then as we
  // loop we keep 56 bytes of state: v, w, x, y, and z.
  uint64_t x = Fetch64(s + len - 40);
  uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
  uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
  std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
  std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
  x = x * k1 + Fetch64(s);

  // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
  len = (len - 1) & ~static_cast<size_t>(63);
  do {
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    len -= 64;
  } while (len != 0);
  return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
                   HashLen16(v.second, w.second) + x);
}

uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
  return CityHash64WithSeeds(s, len, k2, seed);
}

uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
                           uint64_t seed1) {
  return HashLen16(CityHash64(s, len) - seed0, seed1);
}

// A subroutine for CityHash128().  Returns a decent 128-bit hash for strings
// of any length representable in signed long.  Based on City and Murmur.
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
  uint64_t a = Uint128Low64(seed);
  uint64_t b = Uint128High64(seed);
  uint64_t c = 0;
  uint64_t d = 0;
  int64_t l = len - 16;
  if (l <= 0) {  // len <= 16
    a = ShiftMix(a * k1) * k1;
    c = b * k1 + HashLen0to16(s, len);
    d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c));
  } else {  // len > 16
    c = HashLen16(Fetch64(s + len - 8) + k1, a);
    d = HashLen16(b + len, c + Fetch64(s + len - 16));
    a += d;
    do {
      a ^= ShiftMix(Fetch64(s) * k1) * k1;
      a *= k1;
      b ^= a;
      c ^= ShiftMix(Fetch64(s + 8) * k1) * k1;
      c *= k1;
      d ^= c;
      s += 16;
      l -= 16;
    } while (l > 0);
  }
  a = HashLen16(a, c);
  b = HashLen16(d, b);
  return uint128(a ^ b, HashLen16(b, a));
}

uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
  if (len < 128) {
    return CityMurmur(s, len, seed);
  }

  // We expect len >= 128 to be the common case.  Keep 56 bytes of state:
  // v, w, x, y, and z.
  std::pair<uint64_t, uint64_t> v, w;
  uint64_t x = Uint128Low64(seed);
  uint64_t y = Uint128High64(seed);
  uint64_t z = len * k1;
  v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s);
  v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8);
  w.first = Rotate(y + z, 35) * k1 + x;
  w.second = Rotate(x + Fetch64(s + 88), 53) * k1;

  // This is the same inner loop as CityHash64(), manually unrolled.
  do {
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    len -= 128;
  } while (ABSL_PREDICT_TRUE(len >= 128));
  x += Rotate(v.first + z, 49) * k0;
  y = y * k0 + Rotate(w.second, 37);
  z = z * k0 + Rotate(w.first, 27);
  w.first *= 9;
  v.first *= k0;
  // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
  for (size_t tail_done = 0; tail_done < len;) {
    tail_done += 32;
    y = Rotate(x + y, 42) * k0 + v.second;
    w.first += Fetch64(s + len - tail_done + 16);
    x = x * k0 + w.first;
    z += w.second + Fetch64(s + len - tail_done);
    w.second += v.first;
    v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second);
    v.first *= k0;
  }
  // At this point our 56 bytes of state should contain more than
  // enough information for a strong 128-bit hash.  We use two
  // different 56-byte-to-8-byte hashes to get a 16-byte final result.
  x = HashLen16(x, v.first);
  y = HashLen16(y + z, w.first);
  return uint128(HashLen16(x + v.second, w.second) + y,
                 HashLen16(x + w.second, y + v.second));
}

uint128 CityHash128(const char *s, size_t len) {
  return len >= 16
             ? CityHash128WithSeed(s + 16, len - 16,
                                   uint128(Fetch64(s), Fetch64(s + 8) + k0))
             : CityHash128WithSeed(s, len, uint128(k0, k1));
}
}  // namespace hash_internal
}  // namespace absl

#ifdef __SSE4_2__
#include <nmmintrin.h>
#include "absl/hash/internal/city_crc.h"

namespace absl {
namespace hash_internal {

// Requires len >= 240.
static void CityHashCrc256Long(const char *s, size_t len, uint32_t seed,
                               uint64_t *result) {
  uint64_t a = Fetch64(s + 56) + k0;
  uint64_t b = Fetch64(s + 96) + k0;
  uint64_t c = result[0] = HashLen16(b, len);
  uint64_t d = result[1] = Fetch64(s + 120) * k0 + len;
  uint64_t e = Fetch64(s + 184) + seed;
  uint64_t f = 0;
  uint64_t g = 0;
  uint64_t h = c + d;
  uint64_t x = seed;
  uint64_t y = 0;
  uint64_t z = 0;

  // 240 bytes of input per iter.
  size_t iters = len / 240;
  len -= iters * 240;
  do {
#undef CHUNK
#define CHUNK(r)               \
  PERMUTE3(x, z, y);           \
  b += Fetch64(s);             \
  c += Fetch64(s + 8);         \
  d += Fetch64(s + 16);        \
  e += Fetch64(s + 24);        \
  f += Fetch64(s + 32);        \
  a += b;                      \
  h += f;                      \
  b += c;                      \
  f += d;                      \
  g += e;                      \
  e += z;                      \
  g += x;                      \
  z = _mm_crc32_u64(z, b + g); \
  y = _mm_crc32_u64(y, e + h); \
  x = _mm_crc32_u64(x, f + a); \
  e = Rotate(e, r);            \
  c += e;                      \
  s += 40

    CHUNK(0);
    PERMUTE3(a, h, c);
    CHUNK(33);
    PERMUTE3(a, h, f);
    CHUNK(0);
    PERMUTE3(b, h, f);
    CHUNK(42);
    PERMUTE3(b, h, d);
    CHUNK(0);
    PERMUTE3(b, h, e);
    CHUNK(33);
    PERMUTE3(a, h, e);
  } while (--iters > 0);

  while (len >= 40) {
    CHUNK(29);
    e ^= Rotate(a, 20);
    h += Rotate(b, 30);
    g ^= Rotate(c, 40);
    f += Rotate(d, 34);
    PERMUTE3(c, h, g);
    len -= 40;
  }
  if (len > 0) {
    s = s + len - 40;
    CHUNK(33);
    e ^= Rotate(a, 43);
    h += Rotate(b, 42);
    g ^= Rotate(c, 41);
    f += Rotate(d, 40);
  }
  result[0] ^= h;
  result[1] ^= g;
  g += h;
  a = HashLen16(a, g + z);
  x += y << 32;
  b += x;
  c = HashLen16(c, z) + h;
  d = HashLen16(d, e + result[0]);
  g += e;
  h += HashLen16(x, f);
  e = HashLen16(a, d) + g;
  z = HashLen16(b, c) + a;
  y = HashLen16(g, h) + c;
  result[0] = e + z + y + x;
  a = ShiftMix((a + y) * k0) * k0 + b;
  result[1] += a + result[0];
  a = ShiftMix(a * k0) * k0 + c;
  result[2] = a + result[1];
  a = ShiftMix((a + e) * k0) * k0;
  result[3] = a + result[2];
}

// Requires len < 240.
static void CityHashCrc256Short(const char *s, size_t len, uint64_t *result) {
  char buf[240];
  memcpy(buf, s, len);
  memset(buf + len, 0, 240 - len);
  CityHashCrc256Long(buf, 240, ~static_cast<uint32_t>(len), result);
}

void CityHashCrc256(const char *s, size_t len, uint64_t *result) {
  if (ABSL_PREDICT_TRUE(len >= 240)) {
    CityHashCrc256Long(s, len, 0, result);
  } else {
    CityHashCrc256Short(s, len, result);
  }
}

uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) {
  if (len <= 900) {
    return CityHash128WithSeed(s, len, seed);
  } else {
    uint64_t result[4];
    CityHashCrc256(s, len, result);
    uint64_t u = Uint128High64(seed) + result[0];
    uint64_t v = Uint128Low64(seed) + result[1];
    return uint128(HashLen16(u, v + result[2]),
                   HashLen16(Rotate(v, 32), u * k0 + result[3]));
  }
}

uint128 CityHashCrc128(const char *s, size_t len) {
  if (len <= 900) {
    return CityHash128(s, len);
  } else {
    uint64_t result[4];
    CityHashCrc256(s, len, result);
    return uint128(result[2], result[3]);
  }
}

}  // namespace hash_internal
}  // namespace absl

#endif