#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
// Generate stack tracer for aarch64
#if defined(__linux__)
#include <sys/mman.h>
#include <ucontext.h>
#include <unistd.h>
#endif
#include <atomic>
#include <cassert>
#include <cstdint>
#include <iostream>
#include "absl/base/attributes.h"
#include "absl/debugging/internal/address_is_readable.h"
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
#include "absl/debugging/stacktrace.h"
static const uintptr_t kUnknownFrameSize = 0;
#if defined(__linux__)
// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
static const unsigned char* GetKernelRtSigreturnAddress() {
constexpr uintptr_t kImpossibleAddress = 1;
ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};
uintptr_t address = memoized.load(std::memory_order_relaxed);
if (address != kImpossibleAddress) {
return reinterpret_cast<const unsigned char*>(address);
}
address = reinterpret_cast<uintptr_t>(nullptr);
#ifdef ABSL_HAVE_VDSO_SUPPORT
absl::debugging_internal::VDSOSupport vdso;
if (vdso.IsPresent()) {
absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC,
&symbol_info) ||
symbol_info.address == nullptr) {
// Unexpected: VDSO is present, yet the expected symbol is missing
// or null.
assert(false && "VDSO is present, but doesn't have expected symbol");
} else {
if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
kImpossibleAddress) {
address = reinterpret_cast<uintptr_t>(symbol_info.address);
} else {
assert(false && "VDSO returned invalid address");
}
}
}
#endif
memoized.store(address, std::memory_order_relaxed);
return reinterpret_cast<const unsigned char*>(address);
}
#endif // __linux__
// Compute the size of a stack frame in [low..high). We assume that
// low < high. Return size of kUnknownFrameSize.
template<typename T>
static inline uintptr_t ComputeStackFrameSize(const T* low,
const T* high) {
const char* low_char_ptr = reinterpret_cast<const char *>(low);
const char* high_char_ptr = reinterpret_cast<const char *>(high);
return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize;
}
// Given a pointer to a stack frame, locate and return the calling
// stackframe, or return null if no stackframe can be found. Perform sanity
// checks (the strictness of which is controlled by the boolean parameter
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
bool check_frame_size = true;
#if defined(__linux__)
if (WITH_CONTEXT && uc != nullptr) {
// Check to see if next frame's return address is __kernel_rt_sigreturn.
if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
// old_frame_pointer[0] is not suitable for unwinding, look at
// ucontext to discover frame pointer before signal.
void **const pre_signal_frame_pointer =
reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
// Check that alleged frame pointer is actually readable. This is to
// prevent "double fault" in case we hit the first fault due to e.g.
// stack corruption.
if (!absl::debugging_internal::AddressIsReadable(
pre_signal_frame_pointer))
return nullptr;
// Alleged frame pointer is readable, use it for further unwinding.
new_frame_pointer = pre_signal_frame_pointer;
// Skip frame size check if we return from a signal. We may be using a
// an alternate stack for signals.
check_frame_size = false;
}
}
#endif
// aarch64 ABI requires stack pointer to be 16-byte-aligned.
if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0)
return nullptr;
// Check frame size. In strict mode, we assume frames to be under
// 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
if (check_frame_size) {
const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
const uintptr_t frame_size =
ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
if (frame_size == kUnknownFrameSize || frame_size > max_size)
return nullptr;
}
return new_frame_pointer;
}
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
const void *ucp, int *min_dropped_frames) {
#ifdef __GNUC__
void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
#else
# error reading stack point not yet supported on this platform.
#endif
skip_count++; // Skip the frame for this function.
int n = 0;
// The frame pointer points to low address of a frame. The first 64-bit
// word of a frame points to the next frame up the call chain, which normally
// is just after the high address of the current frame. The second word of
// a frame contains return adress of to the caller. To find a pc value
// associated with the current frame, we need to go down a level in the call
// chain. So we remember return the address of the last frame seen. This
// does not work for the first stack frame, which belongs to UnwindImp() but
// we skip the frame for UnwindImp() anyway.
void* prev_return_address = nullptr;
while (frame_pointer && n < max_depth) {
// The absl::GetStackFrames routine is called when we are in some
// informational context (the failure signal handler for example).
// Use the non-strict unwinding rules to produce a stack trace
// that is as complete as possible (even if it contains a few bogus
// entries in some rare cases).
void **next_frame_pointer =
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
if (skip_count > 0) {
skip_count--;
} else {
result[n] = prev_return_address;
if (IS_STACK_FRAMES) {
sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer);
}
n++;
}
prev_return_address = frame_pointer[1];
frame_pointer = next_frame_pointer;
}
if (min_dropped_frames != nullptr) {
// Implementation detail: we clamp the max of frames we are willing to
// count, so as not to spend too much time in the loop below.
const int kMaxUnwind = 200;
int j = 0;
for (; frame_pointer != nullptr && j < kMaxUnwind; j++) {
frame_pointer =
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
}
*min_dropped_frames = j;
}
return n;
}
namespace absl {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_