about summary refs log blame commit diff
path: root/absl/debugging/internal/demangle.cc
blob: 3809e4960e2c9ae90808c5fbf21668da6b30fb46 (plain) (tree)
1
2
3
4
5
6
7
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660





                                                                   
                                                   























































































                                                                               

                                                                 





















                                              









                                                                                
































































































































































































































                                                                                
                                                         























































































































































































































































































































































































































                                                                              

                                                         
























































































                                                                                
                      














































































































































































































































































































































































                                                                                                          
                                                               
                                     




                                                             




                                                         






                                                                             
                                       

































































































































































































































































































































































































































                                                                                








                                                                            































































































































































































































                                                                                
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// For reference check out:
// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
//
// Note that we only have partial C++11 support yet.

#include "absl/debugging/internal/demangle.h"

#include <cstdint>
#include <cstdio>
#include <limits>

namespace absl {
namespace debugging_internal {

typedef struct {
  const char *abbrev;
  const char *real_name;
  // Number of arguments in <expression> context, or 0 if disallowed.
  int arity;
} AbbrevPair;

// List of operators from Itanium C++ ABI.
static const AbbrevPair kOperatorList[] = {
    // New has special syntax (not currently supported).
    {"nw", "new", 0},
    {"na", "new[]", 0},

    // Works except that the 'gs' prefix is not supported.
    {"dl", "delete", 1},
    {"da", "delete[]", 1},

    {"ps", "+", 1},  // "positive"
    {"ng", "-", 1},  // "negative"
    {"ad", "&", 1},  // "address-of"
    {"de", "*", 1},  // "dereference"
    {"co", "~", 1},

    {"pl", "+", 2},
    {"mi", "-", 2},
    {"ml", "*", 2},
    {"dv", "/", 2},
    {"rm", "%", 2},
    {"an", "&", 2},
    {"or", "|", 2},
    {"eo", "^", 2},
    {"aS", "=", 2},
    {"pL", "+=", 2},
    {"mI", "-=", 2},
    {"mL", "*=", 2},
    {"dV", "/=", 2},
    {"rM", "%=", 2},
    {"aN", "&=", 2},
    {"oR", "|=", 2},
    {"eO", "^=", 2},
    {"ls", "<<", 2},
    {"rs", ">>", 2},
    {"lS", "<<=", 2},
    {"rS", ">>=", 2},
    {"eq", "==", 2},
    {"ne", "!=", 2},
    {"lt", "<", 2},
    {"gt", ">", 2},
    {"le", "<=", 2},
    {"ge", ">=", 2},
    {"nt", "!", 1},
    {"aa", "&&", 2},
    {"oo", "||", 2},
    {"pp", "++", 1},
    {"mm", "--", 1},
    {"cm", ",", 2},
    {"pm", "->*", 2},
    {"pt", "->", 0},  // Special syntax
    {"cl", "()", 0},  // Special syntax
    {"ix", "[]", 2},
    {"qu", "?", 3},
    {"st", "sizeof", 0},  // Special syntax
    {"sz", "sizeof", 1},  // Not a real operator name, but used in expressions.
    {nullptr, nullptr, 0},
};

// List of builtin types from Itanium C++ ABI.
//
// Invariant: only one- or two-character type abbreviations here.
static const AbbrevPair kBuiltinTypeList[] = {
    {"v", "void", 0},
    {"w", "wchar_t", 0},
    {"b", "bool", 0},
    {"c", "char", 0},
    {"a", "signed char", 0},
    {"h", "unsigned char", 0},
    {"s", "short", 0},
    {"t", "unsigned short", 0},
    {"i", "int", 0},
    {"j", "unsigned int", 0},
    {"l", "long", 0},
    {"m", "unsigned long", 0},
    {"x", "long long", 0},
    {"y", "unsigned long long", 0},
    {"n", "__int128", 0},
    {"o", "unsigned __int128", 0},
    {"f", "float", 0},
    {"d", "double", 0},
    {"e", "long double", 0},
    {"g", "__float128", 0},
    {"z", "ellipsis", 0},

    {"De", "decimal128", 0},      // IEEE 754r decimal floating point (128 bits)
    {"Dd", "decimal64", 0},       // IEEE 754r decimal floating point (64 bits)
    {"Dc", "decltype(auto)", 0},
    {"Da", "auto", 0},
    {"Dn", "std::nullptr_t", 0},  // i.e., decltype(nullptr)
    {"Df", "decimal32", 0},       // IEEE 754r decimal floating point (32 bits)
    {"Di", "char32_t", 0},
    {"Ds", "char16_t", 0},
    {"Dh", "float16", 0},         // IEEE 754r half-precision float (16 bits)
    {nullptr, nullptr, 0},
};

// List of substitutions Itanium C++ ABI.
static const AbbrevPair kSubstitutionList[] = {
    {"St", "", 0},
    {"Sa", "allocator", 0},
    {"Sb", "basic_string", 0},
    // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
    {"Ss", "string", 0},
    // std::basic_istream<char, std::char_traits<char> >
    {"Si", "istream", 0},
    // std::basic_ostream<char, std::char_traits<char> >
    {"So", "ostream", 0},
    // std::basic_iostream<char, std::char_traits<char> >
    {"Sd", "iostream", 0},
    {nullptr, nullptr, 0},
};

// State needed for demangling.  This struct is copied in almost every stack
// frame, so every byte counts.
typedef struct {
  int mangled_idx;                   // Cursor of mangled name.
  int out_cur_idx;                   // Cursor of output std::string.
  int prev_name_idx;                 // For constructors/destructors.
  signed int prev_name_length : 16;  // For constructors/destructors.
  signed int nest_level : 15;        // For nested names.
  unsigned int append : 1;           // Append flag.
  // Note: for some reason MSVC can't pack "bool append : 1" into the same int
  // with the above two fields, so we use an int instead.  Amusingly it can pack
  // "signed bool" as expected, but relying on that to continue to be a legal
  // type seems ill-advised (as it's illegal in at least clang).
} ParseState;

static_assert(sizeof(ParseState) == 4 * sizeof(int),
              "unexpected size of ParseState");

// One-off state for demangling that's not subject to backtracking -- either
// constant data, data that's intentionally immune to backtracking (steps), or
// data that would never be changed by backtracking anyway (recursion_depth).
//
// Only one copy of this exists for each call to Demangle, so the size of this
// struct is nearly inconsequential.
typedef struct {
  const char *mangled_begin;  // Beginning of input std::string.
  char *out;                  // Beginning of output std::string.
  int out_end_idx;            // One past last allowed output character.
  int recursion_depth;        // For stack exhaustion prevention.
  int steps;               // Cap how much work we'll do, regardless of depth.
  ParseState parse_state;  // Backtrackable state copied for most frames.
} State;

namespace {
// Prevent deep recursion / stack exhaustion.
// Also prevent unbounded handling of complex inputs.
class ComplexityGuard {
 public:
  explicit ComplexityGuard(State *state) : state_(state) {
    ++state->recursion_depth;
    ++state->steps;
  }
  ~ComplexityGuard() { --state_->recursion_depth; }

  // 256 levels of recursion seems like a reasonable upper limit on depth.
  // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
  // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
  static constexpr int kRecursionDepthLimit = 256;

  // We're trying to pick a charitable upper-limit on how many parse steps are
  // necessary to handle something that a human could actually make use of.
  // This is mostly in place as a bound on how much work we'll do if we are
  // asked to demangle an mangled name from an untrusted source, so it should be
  // much larger than the largest expected symbol, but much smaller than the
  // amount of work we can do in, e.g., a second.
  //
  // Some real-world symbols from an arbitrary binary started failing between
  // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
  // the limit.
  //
  // Spending one second on 2^17 parse steps would require each step to take
  // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
  // under a second.
  static constexpr int kParseStepsLimit = 1 << 17;

  bool IsTooComplex() const {
    return state_->recursion_depth > kRecursionDepthLimit ||
           state_->steps > kParseStepsLimit;
  }

 private:
  State *state_;
};
}  // namespace

// We don't use strlen() in libc since it's not guaranteed to be async
// signal safe.
static size_t StrLen(const char *str) {
  size_t len = 0;
  while (*str != '\0') {
    ++str;
    ++len;
  }
  return len;
}

// Returns true if "str" has at least "n" characters remaining.
static bool AtLeastNumCharsRemaining(const char *str, int n) {
  for (int i = 0; i < n; ++i) {
    if (str[i] == '\0') {
      return false;
    }
  }
  return true;
}

// Returns true if "str" has "prefix" as a prefix.
static bool StrPrefix(const char *str, const char *prefix) {
  size_t i = 0;
  while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
    ++i;
  }
  return prefix[i] == '\0';  // Consumed everything in "prefix".
}

static void InitState(State *state, const char *mangled, char *out,
                      int out_size) {
  state->mangled_begin = mangled;
  state->out = out;
  state->out_end_idx = out_size;
  state->recursion_depth = 0;
  state->steps = 0;

  state->parse_state.mangled_idx = 0;
  state->parse_state.out_cur_idx = 0;
  state->parse_state.prev_name_idx = 0;
  state->parse_state.prev_name_length = -1;
  state->parse_state.nest_level = -1;
  state->parse_state.append = true;
}

static inline const char *RemainingInput(State *state) {
  return &state->mangled_begin[state->parse_state.mangled_idx];
}

// Returns true and advances "mangled_idx" if we find "one_char_token"
// at "mangled_idx" position.  It is assumed that "one_char_token" does
// not contain '\0'.
static bool ParseOneCharToken(State *state, const char one_char_token) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (RemainingInput(state)[0] == one_char_token) {
    ++state->parse_state.mangled_idx;
    return true;
  }
  return false;
}

// Returns true and advances "mangled_cur" if we find "two_char_token"
// at "mangled_cur" position.  It is assumed that "two_char_token" does
// not contain '\0'.
static bool ParseTwoCharToken(State *state, const char *two_char_token) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (RemainingInput(state)[0] == two_char_token[0] &&
      RemainingInput(state)[1] == two_char_token[1]) {
    state->parse_state.mangled_idx += 2;
    return true;
  }
  return false;
}

// Returns true and advances "mangled_cur" if we find any character in
// "char_class" at "mangled_cur" position.
static bool ParseCharClass(State *state, const char *char_class) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (RemainingInput(state)[0] == '\0') {
    return false;
  }
  const char *p = char_class;
  for (; *p != '\0'; ++p) {
    if (RemainingInput(state)[0] == *p) {
      ++state->parse_state.mangled_idx;
      return true;
    }
  }
  return false;
}

static bool ParseDigit(State *state, int *digit) {
  char c = RemainingInput(state)[0];
  if (ParseCharClass(state, "0123456789")) {
    if (digit != nullptr) {
      *digit = c - '0';
    }
    return true;
  }
  return false;
}

// This function is used for handling an optional non-terminal.
static bool Optional(bool /*status*/) { return true; }

// This function is used for handling <non-terminal>+ syntax.
typedef bool (*ParseFunc)(State *);
static bool OneOrMore(ParseFunc parse_func, State *state) {
  if (parse_func(state)) {
    while (parse_func(state)) {
    }
    return true;
  }
  return false;
}

// This function is used for handling <non-terminal>* syntax. The function
// always returns true and must be followed by a termination token or a
// terminating sequence not handled by parse_func (e.g.
// ParseOneCharToken(state, 'E')).
static bool ZeroOrMore(ParseFunc parse_func, State *state) {
  while (parse_func(state)) {
  }
  return true;
}

// Append "str" at "out_cur_idx".  If there is an overflow, out_cur_idx is
// set to out_end_idx+1.  The output string is ensured to
// always terminate with '\0' as long as there is no overflow.
static void Append(State *state, const char *const str, const int length) {
  for (int i = 0; i < length; ++i) {
    if (state->parse_state.out_cur_idx + 1 <
        state->out_end_idx) {  // +1 for '\0'
      state->out[state->parse_state.out_cur_idx++] = str[i];
    } else {
      // signal overflow
      state->parse_state.out_cur_idx = state->out_end_idx + 1;
      break;
    }
  }
  if (state->parse_state.out_cur_idx < state->out_end_idx) {
    state->out[state->parse_state.out_cur_idx] =
        '\0';  // Terminate it with '\0'
  }
}

// We don't use equivalents in libc to avoid locale issues.
static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }

static bool IsAlpha(char c) {
  return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}

static bool IsDigit(char c) { return c >= '0' && c <= '9'; }

// Returns true if "str" is a function clone suffix.  These suffixes are used
// by GCC 4.5.x and later versions (and our locally-modified version of GCC
// 4.4.x) to indicate functions which have been cloned during optimization.
// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
static bool IsFunctionCloneSuffix(const char *str) {
  size_t i = 0;
  while (str[i] != '\0') {
    // Consume a single .<alpha>+.<digit>+ sequence.
    if (str[i] != '.' || !IsAlpha(str[i + 1])) {
      return false;
    }
    i += 2;
    while (IsAlpha(str[i])) {
      ++i;
    }
    if (str[i] != '.' || !IsDigit(str[i + 1])) {
      return false;
    }
    i += 2;
    while (IsDigit(str[i])) {
      ++i;
    }
  }
  return true;  // Consumed everything in "str".
}

static bool EndsWith(State *state, const char chr) {
  return state->parse_state.out_cur_idx > 0 &&
         chr == state->out[state->parse_state.out_cur_idx - 1];
}

// Append "str" with some tweaks, iff "append" state is true.
static void MaybeAppendWithLength(State *state, const char *const str,
                                  const int length) {
  if (state->parse_state.append && length > 0) {
    // Append a space if the output buffer ends with '<' and "str"
    // starts with '<' to avoid <<<.
    if (str[0] == '<' && EndsWith(state, '<')) {
      Append(state, " ", 1);
    }
    // Remember the last identifier name for ctors/dtors.
    if (IsAlpha(str[0]) || str[0] == '_') {
      state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
      state->parse_state.prev_name_length = length;
    }
    Append(state, str, length);
  }
}

// Appends a positive decimal number to the output if appending is enabled.
static bool MaybeAppendDecimal(State *state, unsigned int val) {
  // Max {32-64}-bit unsigned int is 20 digits.
  constexpr size_t kMaxLength = 20;
  char buf[kMaxLength];

  // We can't use itoa or sprintf as neither is specified to be
  // async-signal-safe.
  if (state->parse_state.append) {
    // We can't have a one-before-the-beginning pointer, so instead start with
    // one-past-the-end and manipulate one character before the pointer.
    char *p = &buf[kMaxLength];
    do {  // val=0 is the only input that should write a leading zero digit.
      *--p = (val % 10) + '0';
      val /= 10;
    } while (p > buf && val != 0);

    // 'p' landed on the last character we set.  How convenient.
    Append(state, p, kMaxLength - (p - buf));
  }

  return true;
}

// A convenient wrapper around MaybeAppendWithLength().
// Returns true so that it can be placed in "if" conditions.
static bool MaybeAppend(State *state, const char *const str) {
  if (state->parse_state.append) {
    int length = StrLen(str);
    MaybeAppendWithLength(state, str, length);
  }
  return true;
}

// This function is used for handling nested names.
static bool EnterNestedName(State *state) {
  state->parse_state.nest_level = 0;
  return true;
}

// This function is used for handling nested names.
static bool LeaveNestedName(State *state, int16_t prev_value) {
  state->parse_state.nest_level = prev_value;
  return true;
}

// Disable the append mode not to print function parameters, etc.
static bool DisableAppend(State *state) {
  state->parse_state.append = false;
  return true;
}

// Restore the append mode to the previous state.
static bool RestoreAppend(State *state, bool prev_value) {
  state->parse_state.append = prev_value;
  return true;
}

// Increase the nest level for nested names.
static void MaybeIncreaseNestLevel(State *state) {
  if (state->parse_state.nest_level > -1) {
    ++state->parse_state.nest_level;
  }
}

// Appends :: for nested names if necessary.
static void MaybeAppendSeparator(State *state) {
  if (state->parse_state.nest_level >= 1) {
    MaybeAppend(state, "::");
  }
}

// Cancel the last separator if necessary.
static void MaybeCancelLastSeparator(State *state) {
  if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
      state->parse_state.out_cur_idx >= 2) {
    state->parse_state.out_cur_idx -= 2;
    state->out[state->parse_state.out_cur_idx] = '\0';
  }
}

// Returns true if the identifier of the given length pointed to by
// "mangled_cur" is anonymous namespace.
static bool IdentifierIsAnonymousNamespace(State *state, int length) {
  // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
  static const char anon_prefix[] = "_GLOBAL__N_";
  return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&
          StrPrefix(RemainingInput(state), anon_prefix));
}

// Forward declarations of our parsing functions.
static bool ParseMangledName(State *state);
static bool ParseEncoding(State *state);
static bool ParseName(State *state);
static bool ParseUnscopedName(State *state);
static bool ParseNestedName(State *state);
static bool ParsePrefix(State *state);
static bool ParseUnqualifiedName(State *state);
static bool ParseSourceName(State *state);
static bool ParseLocalSourceName(State *state);
static bool ParseUnnamedTypeName(State *state);
static bool ParseNumber(State *state, int *number_out);
static bool ParseFloatNumber(State *state);
static bool ParseSeqId(State *state);
static bool ParseIdentifier(State *state, int length);
static bool ParseOperatorName(State *state, int *arity);
static bool ParseSpecialName(State *state);
static bool ParseCallOffset(State *state);
static bool ParseNVOffset(State *state);
static bool ParseVOffset(State *state);
static bool ParseCtorDtorName(State *state);
static bool ParseDecltype(State *state);
static bool ParseType(State *state);
static bool ParseCVQualifiers(State *state);
static bool ParseBuiltinType(State *state);
static bool ParseFunctionType(State *state);
static bool ParseBareFunctionType(State *state);
static bool ParseClassEnumType(State *state);
static bool ParseArrayType(State *state);
static bool ParsePointerToMemberType(State *state);
static bool ParseTemplateParam(State *state);
static bool ParseTemplateTemplateParam(State *state);
static bool ParseTemplateArgs(State *state);
static bool ParseTemplateArg(State *state);
static bool ParseBaseUnresolvedName(State *state);
static bool ParseUnresolvedName(State *state);
static bool ParseExpression(State *state);
static bool ParseExprPrimary(State *state);
static bool ParseExprCastValue(State *state);
static bool ParseLocalName(State *state);
static bool ParseLocalNameSuffix(State *state);
static bool ParseDiscriminator(State *state);
static bool ParseSubstitution(State *state, bool accept_std);

// Implementation note: the following code is a straightforward
// translation of the Itanium C++ ABI defined in BNF with a couple of
// exceptions.
//
// - Support GNU extensions not defined in the Itanium C++ ABI
// - <prefix> and <template-prefix> are combined to avoid infinite loop
// - Reorder patterns to shorten the code
// - Reorder patterns to give greedier functions precedence
//   We'll mark "Less greedy than" for these cases in the code
//
// Each parsing function changes the parse state and returns true on
// success, or returns false and doesn't change the parse state (note:
// the parse-steps counter increases regardless of success or failure).
// To ensure that the parse state isn't changed in the latter case, we
// save the original state before we call multiple parsing functions
// consecutively with &&, and restore it if unsuccessful.  See
// ParseEncoding() as an example of this convention.  We follow the
// convention throughout the code.
//
// Originally we tried to do demangling without following the full ABI
// syntax but it turned out we needed to follow the full syntax to
// parse complicated cases like nested template arguments.  Note that
// implementing a full-fledged demangler isn't trivial (libiberty's
// cp-demangle.c has +4300 lines).
//
// Note that (foo) in <(foo) ...> is a modifier to be ignored.
//
// Reference:
// - Itanium C++ ABI
//   <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>

// <mangled-name> ::= _Z <encoding>
static bool ParseMangledName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
}

// <encoding> ::= <(function) name> <bare-function-type>
//            ::= <(data) name>
//            ::= <special-name>
static bool ParseEncoding(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  // Implementing the first two productions together as <name>
  // [<bare-function-type>] avoids exponential blowup of backtracking.
  //
  // Since Optional(...) can't fail, there's no need to copy the state for
  // backtracking.
  if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
    return true;
  }

  if (ParseSpecialName(state)) {
    return true;
  }
  return false;
}

// <name> ::= <nested-name>
//        ::= <unscoped-template-name> <template-args>
//        ::= <unscoped-name>
//        ::= <local-name>
static bool ParseName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseNestedName(state) || ParseLocalName(state)) {
    return true;
  }

  // We reorganize the productions to avoid re-parsing unscoped names.
  // - Inline <unscoped-template-name> productions:
  //   <name> ::= <substitution> <template-args>
  //          ::= <unscoped-name> <template-args>
  //          ::= <unscoped-name>
  // - Merge the two productions that start with unscoped-name:
  //   <name> ::= <unscoped-name> [<template-args>]

  ParseState copy = state->parse_state;
  // "std<...>" isn't a valid name.
  if (ParseSubstitution(state, /*accept_std=*/false) &&
      ParseTemplateArgs(state)) {
    return true;
  }
  state->parse_state = copy;

  // Note there's no need to restore state after this since only the first
  // subparser can fail.
  return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
}

// <unscoped-name> ::= <unqualified-name>
//                 ::= St <unqualified-name>
static bool ParseUnscopedName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseUnqualifiedName(state)) {
    return true;
  }

  ParseState copy = state->parse_state;
  if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
      ParseUnqualifiedName(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <ref-qualifer> ::= R // lvalue method reference qualifier
//                ::= O // rvalue method reference qualifier
static inline bool ParseRefQualifier(State *state) {
  return ParseCharClass(state, "OR");
}

// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
//                   <unqualified-name> E
//               ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
//                   <template-args> E
static bool ParseNestedName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
      Optional(ParseCVQualifiers(state)) &&
      Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
      LeaveNestedName(state, copy.nest_level) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// This part is tricky.  If we literally translate them to code, we'll
// end up infinite loop.  Hence we merge them to avoid the case.
//
// <prefix> ::= <prefix> <unqualified-name>
//          ::= <template-prefix> <template-args>
//          ::= <template-param>
//          ::= <substitution>
//          ::= # empty
// <template-prefix> ::= <prefix> <(template) unqualified-name>
//                   ::= <template-param>
//                   ::= <substitution>
static bool ParsePrefix(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  bool has_something = false;
  while (true) {
    MaybeAppendSeparator(state);
    if (ParseTemplateParam(state) ||
        ParseSubstitution(state, /*accept_std=*/true) ||
        ParseUnscopedName(state) ||
        (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
      has_something = true;
      MaybeIncreaseNestLevel(state);
      continue;
    }
    MaybeCancelLastSeparator(state);
    if (has_something && ParseTemplateArgs(state)) {
      return ParsePrefix(state);
    } else {
      break;
    }
  }
  return true;
}

// <unqualified-name> ::= <operator-name>
//                    ::= <ctor-dtor-name>
//                    ::= <source-name>
//                    ::= <local-source-name> // GCC extension; see below.
//                    ::= <unnamed-type-name>
static bool ParseUnqualifiedName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
          ParseSourceName(state) || ParseLocalSourceName(state) ||
          ParseUnnamedTypeName(state));
}

// <source-name> ::= <positive length number> <identifier>
static bool ParseSourceName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  int length = -1;
  if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <local-source-name> ::= L <source-name> [<discriminator>]
//
// References:
//   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
//   https://gcc.gnu.org/viewcvs?view=rev&revision=124467
static bool ParseLocalSourceName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
      Optional(ParseDiscriminator(state))) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
//                     ::= <closure-type-name>
// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
// <lambda-sig>        ::= <(parameter) type>+
static bool ParseUnnamedTypeName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
  // Optionally parse the encoded value into 'which' and add 2 to get the index.
  int which = -1;

  // Unnamed type local to function or class.
  if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
      which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
      ParseOneCharToken(state, '_')) {
    MaybeAppend(state, "{unnamed type#");
    MaybeAppendDecimal(state, 2 + which);
    MaybeAppend(state, "}");
    return true;
  }
  state->parse_state = copy;

  // Closure type.
  which = -1;
  if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
      OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
      ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
      which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
      ParseOneCharToken(state, '_')) {
    MaybeAppend(state, "{lambda()#");
    MaybeAppendDecimal(state, 2 + which);
    MaybeAppend(state, "}");
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <number> ::= [n] <non-negative decimal integer>
// If "number_out" is non-null, then *number_out is set to the value of the
// parsed number on success.
static bool ParseNumber(State *state, int *number_out) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  bool negative = false;
  if (ParseOneCharToken(state, 'n')) {
    negative = true;
  }
  const char *p = RemainingInput(state);
  uint64_t number = 0;
  for (; *p != '\0'; ++p) {
    if (IsDigit(*p)) {
      number = number * 10 + (*p - '0');
    } else {
      break;
    }
  }
  // Apply the sign with uint64_t arithmetic so overflows aren't UB.  Gives
  // "incorrect" results for out-of-range inputs, but negative values only
  // appear for literals, which aren't printed.
  if (negative) {
    number = ~number + 1;
  }
  if (p != RemainingInput(state)) {  // Conversion succeeded.
    state->parse_state.mangled_idx += p - RemainingInput(state);
    if (number_out != nullptr) {
      // Note: possibly truncate "number".
      *number_out = number;
    }
    return true;
  }
  return false;
}

// Floating-point literals are encoded using a fixed-length lowercase
// hexadecimal string.
static bool ParseFloatNumber(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  const char *p = RemainingInput(state);
  for (; *p != '\0'; ++p) {
    if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
      break;
    }
  }
  if (p != RemainingInput(state)) {  // Conversion succeeded.
    state->parse_state.mangled_idx += p - RemainingInput(state);
    return true;
  }
  return false;
}

// The <seq-id> is a sequence number in base 36,
// using digits and upper case letters
static bool ParseSeqId(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  const char *p = RemainingInput(state);
  for (; *p != '\0'; ++p) {
    if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
      break;
    }
  }
  if (p != RemainingInput(state)) {  // Conversion succeeded.
    state->parse_state.mangled_idx += p - RemainingInput(state);
    return true;
  }
  return false;
}

// <identifier> ::= <unqualified source code identifier> (of given length)
static bool ParseIdentifier(State *state, int length) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {
    return false;
  }
  if (IdentifierIsAnonymousNamespace(state, length)) {
    MaybeAppend(state, "(anonymous namespace)");
  } else {
    MaybeAppendWithLength(state, RemainingInput(state), length);
  }
  state->parse_state.mangled_idx += length;
  return true;
}

// <operator-name> ::= nw, and other two letters cases
//                 ::= cv <type>  # (cast)
//                 ::= v  <digit> <source-name> # vendor extended operator
static bool ParseOperatorName(State *state, int *arity) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
    return false;
  }
  // First check with "cv" (cast) case.
  ParseState copy = state->parse_state;
  if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
      EnterNestedName(state) && ParseType(state) &&
      LeaveNestedName(state, copy.nest_level)) {
    if (arity != nullptr) {
      *arity = 1;
    }
    return true;
  }
  state->parse_state = copy;

  // Then vendor extended operators.
  if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
      ParseSourceName(state)) {
    return true;
  }
  state->parse_state = copy;

  // Other operator names should start with a lower alphabet followed
  // by a lower/upper alphabet.
  if (!(IsLower(RemainingInput(state)[0]) &&
        IsAlpha(RemainingInput(state)[1]))) {
    return false;
  }
  // We may want to perform a binary search if we really need speed.
  const AbbrevPair *p;
  for (p = kOperatorList; p->abbrev != nullptr; ++p) {
    if (RemainingInput(state)[0] == p->abbrev[0] &&
        RemainingInput(state)[1] == p->abbrev[1]) {
      if (arity != nullptr) {
        *arity = p->arity;
      }
      MaybeAppend(state, "operator");
      if (IsLower(*p->real_name)) {  // new, delete, etc.
        MaybeAppend(state, " ");
      }
      MaybeAppend(state, p->real_name);
      state->parse_state.mangled_idx += 2;
      return true;
    }
  }
  return false;
}

// <special-name> ::= TV <type>
//                ::= TT <type>
//                ::= TI <type>
//                ::= TS <type>
//                ::= Tc <call-offset> <call-offset> <(base) encoding>
//                ::= GV <(object) name>
//                ::= T <call-offset> <(base) encoding>
// G++ extensions:
//                ::= TC <type> <(offset) number> _ <(base) type>
//                ::= TF <type>
//                ::= TJ <type>
//                ::= GR <name>
//                ::= GA <encoding>
//                ::= Th <call-offset> <(base) encoding>
//                ::= Tv <call-offset> <(base) encoding>
//
// Note: we don't care much about them since they don't appear in
// stack traces.  The are special data.
static bool ParseSpecialName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") &&
      ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
      ParseCallOffset(state) && ParseEncoding(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
      ParseEncoding(state)) {
    return true;
  }
  state->parse_state = copy;

  // G++ extensions
  if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
      ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
      DisableAppend(state) && ParseType(state)) {
    RestoreAppend(state, copy.append);
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
      ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
      ParseCallOffset(state) && ParseEncoding(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <call-offset> ::= h <nv-offset> _
//               ::= v <v-offset> _
static bool ParseCallOffset(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
      ParseOneCharToken(state, '_')) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
      ParseOneCharToken(state, '_')) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <nv-offset> ::= <(offset) number>
static bool ParseNVOffset(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  return ParseNumber(state, nullptr);
}

// <v-offset>  ::= <(offset) number> _ <(virtual offset) number>
static bool ParseVOffset(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
      ParseNumber(state, nullptr)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <ctor-dtor-name> ::= C1 | C2 | C3
//                  ::= D0 | D1 | D2
// # GCC extensions: "unified" constructor/destructor.  See
// # https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
//                  ::= C4 | D4
static bool ParseCtorDtorName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "1234")) {
    const char *const prev_name = state->out + state->parse_state.prev_name_idx;
    MaybeAppendWithLength(state, prev_name,
                          state->parse_state.prev_name_length);
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
    const char *const prev_name = state->out + state->parse_state.prev_name_idx;
    MaybeAppend(state, "~");
    MaybeAppendWithLength(state, prev_name,
                          state->parse_state.prev_name_length);
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <decltype> ::= Dt <expression> E  # decltype of an id-expression or class
//                                   # member access (C++0x)
//            ::= DT <expression> E  # decltype of an expression (C++0x)
static bool ParseDecltype(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;

  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
      ParseExpression(state) && ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <type> ::= <CV-qualifiers> <type>
//        ::= P <type>   # pointer-to
//        ::= R <type>   # reference-to
//        ::= O <type>   # rvalue reference-to (C++0x)
//        ::= C <type>   # complex pair (C 2000)
//        ::= G <type>   # imaginary (C 2000)
//        ::= U <source-name> <type>  # vendor extended type qualifier
//        ::= <builtin-type>
//        ::= <function-type>
//        ::= <class-enum-type>  # note: just an alias for <name>
//        ::= <array-type>
//        ::= <pointer-to-member-type>
//        ::= <template-template-param> <template-args>
//        ::= <template-param>
//        ::= <decltype>
//        ::= <substitution>
//        ::= Dp <type>          # pack expansion of (C++0x)
//
static bool ParseType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;

  // We should check CV-qualifers, and PRGC things first.
  //
  // CV-qualifiers overlap with some operator names, but an operator name is not
  // valid as a type.  To avoid an ambiguity that can lead to exponential time
  // complexity, refuse to backtrack the CV-qualifiers.
  //
  // _Z4aoeuIrMvvE
  //  => _Z 4aoeuI        rM  v     v   E
  //         aoeu<operator%=, void, void>
  //  => _Z 4aoeuI r Mv v              E
  //         aoeu<void void::* restrict>
  //
  // By consuming the CV-qualifiers first, the former parse is disabled.
  if (ParseCVQualifiers(state)) {
    const bool result = ParseType(state);
    if (!result) state->parse_state = copy;
    return result;
  }
  state->parse_state = copy;

  // Similarly, these tag characters can overlap with other <name>s resulting in
  // two different parse prefixes that land on <template-args> in the same
  // place, such as "C3r1xI...".  So, disable the "ctor-name = C3" parse by
  // refusing to backtrack the tag characters.
  if (ParseCharClass(state, "OPRCG")) {
    const bool result = ParseType(state);
    if (!result) state->parse_state = copy;
    return result;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
      ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseBuiltinType(state) || ParseFunctionType(state) ||
      ParseClassEnumType(state) || ParseArrayType(state) ||
      ParsePointerToMemberType(state) || ParseDecltype(state) ||
      // "std" on its own isn't a type.
      ParseSubstitution(state, /*accept_std=*/false)) {
    return true;
  }

  if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
    return true;
  }
  state->parse_state = copy;

  // Less greedy than <template-template-param> <template-args>.
  if (ParseTemplateParam(state)) {
    return true;
  }

  return false;
}

// <CV-qualifiers> ::= [r] [V] [K]
// We don't allow empty <CV-qualifiers> to avoid infinite loop in
// ParseType().
static bool ParseCVQualifiers(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  int num_cv_qualifiers = 0;
  num_cv_qualifiers += ParseOneCharToken(state, 'r');
  num_cv_qualifiers += ParseOneCharToken(state, 'V');
  num_cv_qualifiers += ParseOneCharToken(state, 'K');
  return num_cv_qualifiers > 0;
}

// <builtin-type> ::= v, etc.  # single-character builtin types
//                ::= u <source-name>
//                ::= Dd, etc.  # two-character builtin types
//
// Not supported:
//                ::= DF <number> _ # _FloatN (N bits)
//
static bool ParseBuiltinType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  const AbbrevPair *p;
  for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
    // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
    if (p->abbrev[1] == '\0') {
      if (ParseOneCharToken(state, p->abbrev[0])) {
        MaybeAppend(state, p->real_name);
        return true;
      }
    } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
      MaybeAppend(state, p->real_name);
      return true;
    }
  }

  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <function-type> ::= F [Y] <bare-function-type> E
static bool ParseFunctionType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'F') &&
      Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <bare-function-type> ::= <(signature) type>+
static bool ParseBareFunctionType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  DisableAppend(state);
  if (OneOrMore(ParseType, state)) {
    RestoreAppend(state, copy.append);
    MaybeAppend(state, "()");
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <class-enum-type> ::= <name>
static bool ParseClassEnumType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  return ParseName(state);
}

// <array-type> ::= A <(positive dimension) number> _ <(element) type>
//              ::= A [<(dimension) expression>] _ <(element) type>
static bool ParseArrayType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
      ParseOneCharToken(state, '_') && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
      ParseOneCharToken(state, '_') && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <pointer-to-member-type> ::= M <(class) type> <(member) type>
static bool ParsePointerToMemberType(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <template-param> ::= T_
//                  ::= T <parameter-2 non-negative number> _
static bool ParseTemplateParam(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseTwoCharToken(state, "T_")) {
    MaybeAppend(state, "?");  // We don't support template substitutions.
    return true;
  }

  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
      ParseOneCharToken(state, '_')) {
    MaybeAppend(state, "?");  // We don't support template substitutions.
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <template-template-param> ::= <template-param>
//                           ::= <substitution>
static bool ParseTemplateTemplateParam(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  return (ParseTemplateParam(state) ||
          // "std" on its own isn't a template.
          ParseSubstitution(state, /*accept_std=*/false));
}

// <template-args> ::= I <template-arg>+ E
static bool ParseTemplateArgs(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  DisableAppend(state);
  if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
      ParseOneCharToken(state, 'E')) {
    RestoreAppend(state, copy.append);
    MaybeAppend(state, "<>");
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <template-arg>  ::= <type>
//                 ::= <expr-primary>
//                 ::= J <template-arg>* E        # argument pack
//                 ::= X <expression> E
static bool ParseTemplateArg(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  // There can be significant overlap between the following leading to
  // exponential backtracking:
  //
  //   <expr-primary> ::= L <type> <expr-cast-value> E
  //                 e.g. L 2xxIvE 1                 E
  //   <type>         ==> <local-source-name> <template-args>
  //                 e.g. L 2xx               IvE
  //
  // This means parsing an entire <type> twice, and <type> can contain
  // <template-arg>, so this can generate exponential backtracking.  There is
  // only overlap when the remaining input starts with "L <source-name>", so
  // parse all cases that can start this way jointly to share the common prefix.
  //
  // We have:
  //
  //   <template-arg> ::= <type>
  //                  ::= <expr-primary>
  //
  // First, drop all the productions of <type> that must start with something
  // other than 'L'.  All that's left is <class-enum-type>; inline it.
  //
  //   <type> ::= <nested-name> # starts with 'N'
  //          ::= <unscoped-name>
  //          ::= <unscoped-template-name> <template-args>
  //          ::= <local-name> # starts with 'Z'
  //
  // Drop and inline again:
  //
  //   <type> ::= <unscoped-name>
  //          ::= <unscoped-name> <template-args>
  //          ::= <substitution> <template-args> # starts with 'S'
  //
  // Merge the first two, inline <unscoped-name>, drop last:
  //
  //   <type> ::= <unqualified-name> [<template-args>]
  //          ::= St <unqualified-name> [<template-args>] # starts with 'S'
  //
  // Drop and inline:
  //
  //   <type> ::= <operator-name> [<template-args>] # starts with lowercase
  //          ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
  //          ::= <source-name> [<template-args>] # starts with digit
  //          ::= <local-source-name> [<template-args>]
  //          ::= <unnamed-type-name> [<template-args>] # starts with 'U'
  //
  // One more time:
  //
  //   <type> ::= L <source-name> [<template-args>]
  //
  // Likewise with <expr-primary>:
  //
  //   <expr-primary> ::= L <type> <expr-cast-value> E
  //                  ::= LZ <encoding> E # cannot overlap; drop
  //                  ::= L <mangled_name> E # cannot overlap; drop
  //
  // By similar reasoning as shown above, the only <type>s starting with
  // <source-name> are "<source-name> [<template-args>]".  Inline this.
  //
  //   <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
  //
  // Now inline both of these into <template-arg>:
  //
  //   <template-arg> ::= L <source-name> [<template-args>]
  //                  ::= L <source-name> [<template-args>] <expr-cast-value> E
  //
  // Merge them and we're done:
  //   <template-arg>
  //     ::= L <source-name> [<template-args>] [<expr-cast-value> E]
  if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
    copy = state->parse_state;
    if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
      return true;
    }
    state->parse_state = copy;
    return true;
  }

  // Now that the overlapping cases can't reach this code, we can safely call
  // both of these.
  if (ParseType(state) || ParseExprPrimary(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <unresolved-type> ::= <template-param> [<template-args>]
//                   ::= <decltype>
//                   ::= <substitution>
static inline bool ParseUnresolvedType(State *state) {
  // No ComplexityGuard because we don't copy the state in this stack frame.
  return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
         ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
}

// <simple-id> ::= <source-name> [<template-args>]
static inline bool ParseSimpleId(State *state) {
  // No ComplexityGuard because we don't copy the state in this stack frame.

  // Note: <simple-id> cannot be followed by a parameter pack; see comment in
  // ParseUnresolvedType.
  return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
}

// <base-unresolved-name> ::= <source-name> [<template-args>]
//                        ::= on <operator-name> [<template-args>]
//                        ::= dn <destructor-name>
static bool ParseBaseUnresolvedName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;

  if (ParseSimpleId(state)) {
    return true;
  }

  ParseState copy = state->parse_state;
  if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
      Optional(ParseTemplateArgs(state))) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "dn") &&
      (ParseUnresolvedType(state) || ParseSimpleId(state))) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <unresolved-name> ::= [gs] <base-unresolved-name>
//                   ::= sr <unresolved-type> <base-unresolved-name>
//                   ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
//                         <base-unresolved-name>
//                   ::= [gs] sr <unresolved-qualifier-level>+ E
//                         <base-unresolved-name>
static bool ParseUnresolvedName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;

  ParseState copy = state->parse_state;
  if (Optional(ParseTwoCharToken(state, "gs")) &&
      ParseBaseUnresolvedName(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
      ParseBaseUnresolvedName(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
      ParseUnresolvedType(state) &&
      OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
      ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
    return true;
  }
  state->parse_state = copy;

  if (Optional(ParseTwoCharToken(state, "gs")) &&
      ParseTwoCharToken(state, "sr") &&
      OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
      ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <expression> ::= <1-ary operator-name> <expression>
//              ::= <2-ary operator-name> <expression> <expression>
//              ::= <3-ary operator-name> <expression> <expression> <expression>
//              ::= cl <expression>+ E
//              ::= cv <type> <expression>      # type (expression)
//              ::= cv <type> _ <expression>* E # type (expr-list)
//              ::= st <type>
//              ::= <template-param>
//              ::= <function-param>
//              ::= <expr-primary>
//              ::= dt <expression> <unresolved-name> # expr.name
//              ::= pt <expression> <unresolved-name> # expr->name
//              ::= sp <expression>         # argument pack expansion
//              ::= sr <type> <unqualified-name> <template-args>
//              ::= sr <type> <unqualified-name>
// <function-param> ::= fp <(top-level) CV-qualifiers> _
//                  ::= fp <(top-level) CV-qualifiers> <number> _
//                  ::= fL <number> p <(top-level) CV-qualifiers> _
//                  ::= fL <number> p <(top-level) CV-qualifiers> <number> _
static bool ParseExpression(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
    return true;
  }

  // Object/function call expression.
  ParseState copy = state->parse_state;
  if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  // Function-param expression (level 0).
  if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
      Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
    return true;
  }
  state->parse_state = copy;

  // Function-param expression (level 1+).
  if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
      ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
      Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
    return true;
  }
  state->parse_state = copy;

  // Parse the conversion expressions jointly to avoid re-parsing the <type> in
  // their common prefix.  Parsed as:
  // <expression> ::= cv <type> <conversion-args>
  // <conversion-args> ::= _ <expression>* E
  //                   ::= <expression>
  //
  // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
  // also needs to accept "cv <type>" in other contexts.
  if (ParseTwoCharToken(state, "cv")) {
    if (ParseType(state)) {
      ParseState copy2 = state->parse_state;
      if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
          ParseOneCharToken(state, 'E')) {
        return true;
      }
      state->parse_state = copy2;
      if (ParseExpression(state)) {
        return true;
      }
    }
  } else {
    // Parse unary, binary, and ternary operator expressions jointly, taking
    // care not to re-parse subexpressions repeatedly. Parse like:
    //   <expression> ::= <operator-name> <expression>
    //                    [<one-to-two-expressions>]
    //   <one-to-two-expressions> ::= <expression> [<expression>]
    int arity = -1;
    if (ParseOperatorName(state, &arity) &&
        arity > 0 &&  // 0 arity => disabled.
        (arity < 3 || ParseExpression(state)) &&
        (arity < 2 || ParseExpression(state)) &&
        (arity < 1 || ParseExpression(state))) {
      return true;
    }
  }
  state->parse_state = copy;

  // sizeof type
  if (ParseTwoCharToken(state, "st") && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  // Object and pointer member access expressions.
  if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
      ParseExpression(state) && ParseType(state)) {
    return true;
  }
  state->parse_state = copy;

  // Pointer-to-member access expressions.  This parses the same as a binary
  // operator, but it's implemented separately because "ds" shouldn't be
  // accepted in other contexts that parse an operator name.
  if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
      ParseExpression(state)) {
    return true;
  }
  state->parse_state = copy;

  // Parameter pack expansion
  if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
    return true;
  }
  state->parse_state = copy;

  return ParseUnresolvedName(state);
}

// <expr-primary> ::= L <type> <(value) number> E
//                ::= L <type> <(value) float> E
//                ::= L <mangled-name> E
//                // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
//                ::= LZ <encoding> E
//
// Warning, subtle: the "bug" LZ production above is ambiguous with the first
// production where <type> starts with <local-name>, which can lead to
// exponential backtracking in two scenarios:
//
// - When whatever follows the E in the <local-name> in the first production is
//   not a name, we backtrack the whole <encoding> and re-parse the whole thing.
//
// - When whatever follows the <local-name> in the first production is not a
//   number and this <expr-primary> may be followed by a name, we backtrack the
//   <name> and re-parse it.
//
// Moreover this ambiguity isn't always resolved -- for example, the following
// has two different parses:
//
//   _ZaaILZ4aoeuE1x1EvE
//   => operator&&<aoeu, x, E, void>
//   => operator&&<(aoeu::x)(1), void>
//
// To resolve this, we just do what GCC's demangler does, and refuse to parse
// casts to <local-name> types.
static bool ParseExprPrimary(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;

  // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
  // or fail, no backtracking.
  if (ParseTwoCharToken(state, "LZ")) {
    if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
      return true;
    }

    state->parse_state = copy;
    return false;
  }

  // The merged cast production.
  if (ParseOneCharToken(state, 'L') && ParseType(state) &&
      ParseExprCastValue(state)) {
    return true;
  }
  state->parse_state = copy;

  if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
      ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <number> or <float>, followed by 'E', as described above ParseExprPrimary.
static bool ParseExprCastValue(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  // We have to be able to backtrack after accepting a number because we could
  // have e.g. "7fffE", which will accept "7" as a number but then fail to find
  // the 'E'.
  ParseState copy = state->parse_state;
  if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
    return true;
  }
  state->parse_state = copy;

  return false;
}

// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
//              ::= Z <(function) encoding> E s [<discriminator>]
//
// Parsing a common prefix of these two productions together avoids an
// exponential blowup of backtracking.  Parse like:
//   <local-name> := Z <encoding> E <local-name-suffix>
//   <local-name-suffix> ::= s [<discriminator>]
//                       ::= <name> [<discriminator>]

static bool ParseLocalNameSuffix(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;

  if (MaybeAppend(state, "::") && ParseName(state) &&
      Optional(ParseDiscriminator(state))) {
    return true;
  }

  // Since we're not going to overwrite the above "::" by re-parsing the
  // <encoding> (whose trailing '\0' byte was in the byte now holding the
  // first ':'), we have to rollback the "::" if the <name> parse failed.
  if (state->parse_state.append) {
    state->out[state->parse_state.out_cur_idx - 2] = '\0';
  }

  return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
}

static bool ParseLocalName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
      ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <discriminator> := _ <(non-negative) number>
static bool ParseDiscriminator(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
    return true;
  }
  state->parse_state = copy;
  return false;
}

// <substitution> ::= S_
//                ::= S <seq-id> _
//                ::= St, etc.
//
// "St" is special in that it's not valid as a standalone name, and it *is*
// allowed to precede a name without being wrapped in "N...E".  This means that
// if we accept it on its own, we can accept "St1a" and try to parse
// template-args, then fail and backtrack, accept "St" on its own, then "1a" as
// an unqualified name and re-parse the same template-args.  To block this
// exponential backtracking, we disable it with 'accept_std=false' in
// problematic contexts.
static bool ParseSubstitution(State *state, bool accept_std) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseTwoCharToken(state, "S_")) {
    MaybeAppend(state, "?");  // We don't support substitutions.
    return true;
  }

  ParseState copy = state->parse_state;
  if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
      ParseOneCharToken(state, '_')) {
    MaybeAppend(state, "?");  // We don't support substitutions.
    return true;
  }
  state->parse_state = copy;

  // Expand abbreviations like "St" => "std".
  if (ParseOneCharToken(state, 'S')) {
    const AbbrevPair *p;
    for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
      if (RemainingInput(state)[0] == p->abbrev[1] &&
          (accept_std || p->abbrev[1] != 't')) {
        MaybeAppend(state, "std");
        if (p->real_name[0] != '\0') {
          MaybeAppend(state, "::");
          MaybeAppend(state, p->real_name);
        }
        ++state->parse_state.mangled_idx;
        return true;
      }
    }
  }
  state->parse_state = copy;
  return false;
}

// Parse <mangled-name>, optionally followed by either a function-clone suffix
// or version suffix.  Returns true only if all of "mangled_cur" was consumed.
static bool ParseTopLevelMangledName(State *state) {
  ComplexityGuard guard(state);
  if (guard.IsTooComplex()) return false;
  if (ParseMangledName(state)) {
    if (RemainingInput(state)[0] != '\0') {
      // Drop trailing function clone suffix, if any.
      if (IsFunctionCloneSuffix(RemainingInput(state))) {
        return true;
      }
      // Append trailing version suffix if any.
      // ex. _Z3foo@@GLIBCXX_3.4
      if (RemainingInput(state)[0] == '@') {
        MaybeAppend(state, RemainingInput(state));
        return true;
      }
      return false;  // Unconsumed suffix.
    }
    return true;
  }
  return false;
}

static bool Overflowed(const State *state) {
  return state->parse_state.out_cur_idx >= state->out_end_idx;
}

// The demangler entry point.
bool Demangle(const char *mangled, char *out, int out_size) {
  State state;
  InitState(&state, mangled, out, out_size);
  return ParseTopLevelMangledName(&state) && !Overflowed(&state);
}

}  // namespace debugging_internal
}  // namespace absl