about summary refs log blame commit diff
path: root/absl/container/inlined_vector_test.cc
blob: 3a1ea8ac1de9043611740bb67fda2bd678663ff8 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657















                                                                           
                    















                                                          
                                   









































































































































































































































































































































































                                                                                












                                                            
 






























































                                                          















































































































































































                                                                          




                                      
                



                             




































                                                                                







































































                                                                               











































































































































                                                                              

                                      












                                                                                


                                                                         



                                                                                

                                                                         




















































































































































































































































































































































































































































































































































































































































































































































                                                                                













                                          


























































                                                                  










                                                                              




                                                                                
                                                                
                                                          

                                             
                
                                 


                                                                         


                                                                        
                      
                                 

                               
                                                 
                        
                                 


                                               
                                                                    
                
                                 

                                                       
                                                 
                        
                                 
 


                                                                              
                      
                                 




                          
























                                                                  
 
                         
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/container/inlined_vector.h"

#include <algorithm>
#include <forward_list>
#include <list>
#include <memory>
#include <scoped_allocator>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/exception_testing.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"

namespace {

using absl::test_internal::CopyableMovableInstance;
using absl::test_internal::CopyableOnlyInstance;
using absl::test_internal::InstanceTracker;
using testing::AllOf;
using testing::Each;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::Gt;
using testing::PrintToString;

using IntVec = absl::InlinedVector<int, 8>;

MATCHER_P(SizeIs, n, "") {
  return testing::ExplainMatchResult(n, arg.size(), result_listener);
}

MATCHER_P(CapacityIs, n, "") {
  return testing::ExplainMatchResult(n, arg.capacity(), result_listener);
}

MATCHER_P(ValueIs, e, "") {
  return testing::ExplainMatchResult(e, arg.value(), result_listener);
}

// TODO(bsamwel): Add support for movable-only types.

// Test fixture for typed tests on BaseCountedInstance derived classes, see
// test_instance_tracker.h.
template <typename T>
class InstanceTest : public ::testing::Test {};
TYPED_TEST_CASE_P(InstanceTest);

// A simple reference counted class to make sure that the proper elements are
// destroyed in the erase(begin, end) test.
class RefCounted {
 public:
  RefCounted(int value, int* count) : value_(value), count_(count) {
    Ref();
  }

  RefCounted(const RefCounted& v)
      : value_(v.value_), count_(v.count_) {
    Ref();
  }

  ~RefCounted() {
    Unref();
    count_ = nullptr;
  }

  friend void swap(RefCounted& a, RefCounted& b) {
    using std::swap;
    swap(a.value_, b.value_);
    swap(a.count_, b.count_);
  }

  RefCounted& operator=(RefCounted v) {
    using std::swap;
    swap(*this, v);
    return *this;
  }

  void Ref() const {
    ABSL_RAW_CHECK(count_ != nullptr, "");
    ++(*count_);
  }

  void Unref() const {
    --(*count_);
    ABSL_RAW_CHECK(*count_ >= 0, "");
  }

  int value_;
  int* count_;
};

using RefCountedVec = absl::InlinedVector<RefCounted, 8>;

// A class with a vtable pointer
class Dynamic {
 public:
  virtual ~Dynamic() {}
};

using DynamicVec = absl::InlinedVector<Dynamic, 8>;

// Append 0..len-1 to *v
template <typename Container>
static void Fill(Container* v, int len, int offset = 0) {
  for (int i = 0; i < len; i++) {
    v->push_back(i + offset);
  }
}

static IntVec Fill(int len, int offset = 0) {
  IntVec v;
  Fill(&v, len, offset);
  return v;
}

// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator : public std::allocator<T> {
 public:
  using Alloc = std::allocator<T>;
  using pointer = typename Alloc::pointer;
  using size_type = typename Alloc::size_type;

  CountingAllocator() : bytes_used_(nullptr) {}
  explicit CountingAllocator(int64_t* b) : bytes_used_(b) {}

  template <typename U>
  CountingAllocator(const CountingAllocator<U>& x)
      : Alloc(x), bytes_used_(x.bytes_used_) {}

  pointer allocate(size_type n,
                   std::allocator<void>::const_pointer hint = nullptr) {
    assert(bytes_used_ != nullptr);
    *bytes_used_ += n * sizeof(T);
    return Alloc::allocate(n, hint);
  }

  void deallocate(pointer p, size_type n) {
    Alloc::deallocate(p, n);
    assert(bytes_used_ != nullptr);
    *bytes_used_ -= n * sizeof(T);
  }

  template<typename U>
  class rebind {
   public:
    using other = CountingAllocator<U>;
  };

  friend bool operator==(const CountingAllocator& a,
                         const CountingAllocator& b) {
    return a.bytes_used_ == b.bytes_used_;
  }

  friend bool operator!=(const CountingAllocator& a,
                         const CountingAllocator& b) {
    return !(a == b);
  }

  int64_t* bytes_used_;
};

TEST(IntVec, SimpleOps) {
  for (int len = 0; len < 20; len++) {
    IntVec v;
    const IntVec& cv = v;  // const alias

    Fill(&v, len);
    EXPECT_EQ(len, v.size());
    EXPECT_LE(len, v.capacity());

    for (int i = 0; i < len; i++) {
      EXPECT_EQ(i, v[i]);
      EXPECT_EQ(i, v.at(i));
    }
    EXPECT_EQ(v.begin(), v.data());
    EXPECT_EQ(cv.begin(), cv.data());

    int counter = 0;
    for (IntVec::iterator iter = v.begin(); iter != v.end(); ++iter) {
      EXPECT_EQ(counter, *iter);
      counter++;
    }
    EXPECT_EQ(counter, len);

    counter = 0;
    for (IntVec::const_iterator iter = v.begin(); iter != v.end(); ++iter) {
      EXPECT_EQ(counter, *iter);
      counter++;
    }
    EXPECT_EQ(counter, len);

    counter = 0;
    for (IntVec::const_iterator iter = v.cbegin(); iter != v.cend(); ++iter) {
      EXPECT_EQ(counter, *iter);
      counter++;
    }
    EXPECT_EQ(counter, len);

    if (len > 0) {
      EXPECT_EQ(0, v.front());
      EXPECT_EQ(len - 1, v.back());
      v.pop_back();
      EXPECT_EQ(len - 1, v.size());
      for (int i = 0; i < v.size(); ++i) {
        EXPECT_EQ(i, v[i]);
        EXPECT_EQ(i, v.at(i));
      }
    }
  }
}

TEST(IntVec, AtThrows) {
  IntVec v = {1, 2, 3};
  EXPECT_EQ(v.at(2), 3);
  ABSL_BASE_INTERNAL_EXPECT_FAIL(v.at(3), std::out_of_range,
                                 "failed bounds check");
}

TEST(IntVec, ReverseIterator) {
  for (int len = 0; len < 20; len++) {
    IntVec v;
    Fill(&v, len);

    int counter = len;
    for (IntVec::reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) {
      counter--;
      EXPECT_EQ(counter, *iter);
    }
    EXPECT_EQ(counter, 0);

    counter = len;
    for (IntVec::const_reverse_iterator iter = v.rbegin(); iter != v.rend();
         ++iter) {
      counter--;
      EXPECT_EQ(counter, *iter);
    }
    EXPECT_EQ(counter, 0);

    counter = len;
    for (IntVec::const_reverse_iterator iter = v.crbegin(); iter != v.crend();
         ++iter) {
      counter--;
      EXPECT_EQ(counter, *iter);
    }
    EXPECT_EQ(counter, 0);
  }
}

TEST(IntVec, Erase) {
  for (int len = 1; len < 20; len++) {
    for (int i = 0; i < len; ++i) {
      IntVec v;
      Fill(&v, len);
      v.erase(v.begin() + i);
      EXPECT_EQ(len - 1, v.size());
      for (int j = 0; j < i; ++j) {
        EXPECT_EQ(j, v[j]);
      }
      for (int j = i; j < len - 1; ++j) {
        EXPECT_EQ(j + 1, v[j]);
      }
    }
  }
}

// At the end of this test loop, the elements between [erase_begin, erase_end)
// should have reference counts == 0, and all others elements should have
// reference counts == 1.
TEST(RefCountedVec, EraseBeginEnd) {
  for (int len = 1; len < 20; ++len) {
    for (int erase_begin = 0; erase_begin < len; ++erase_begin) {
      for (int erase_end = erase_begin; erase_end <= len; ++erase_end) {
        std::vector<int> counts(len, 0);
        RefCountedVec v;
        for (int i = 0; i < len; ++i) {
          v.push_back(RefCounted(i, &counts[i]));
        }

        int erase_len = erase_end - erase_begin;

        v.erase(v.begin() + erase_begin, v.begin() + erase_end);

        EXPECT_EQ(len - erase_len, v.size());

        // Check the elements before the first element erased.
        for (int i = 0; i < erase_begin; ++i) {
          EXPECT_EQ(i, v[i].value_);
        }

        // Check the elements after the first element erased.
        for (int i = erase_begin; i < v.size(); ++i) {
          EXPECT_EQ(i + erase_len, v[i].value_);
        }

        // Check that the elements at the beginning are preserved.
        for (int i = 0; i < erase_begin; ++i) {
          EXPECT_EQ(1, counts[i]);
        }

        // Check that the erased elements are destroyed
        for (int i = erase_begin; i < erase_end; ++i) {
          EXPECT_EQ(0, counts[i]);
        }

        // Check that the elements at the end are preserved.
        for (int i = erase_end; i< len; ++i) {
          EXPECT_EQ(1, counts[i]);
        }
      }
    }
  }
}

struct NoDefaultCtor {
  explicit NoDefaultCtor(int) {}
};
struct NoCopy {
  NoCopy() {}
  NoCopy(const NoCopy&) = delete;
};
struct NoAssign {
  NoAssign() {}
  NoAssign& operator=(const NoAssign&) = delete;
};
struct MoveOnly {
  MoveOnly() {}
  MoveOnly(MoveOnly&&) = default;
  MoveOnly& operator=(MoveOnly&&) = default;
};
TEST(InlinedVectorTest, NoDefaultCtor) {
  absl::InlinedVector<NoDefaultCtor, 1> v(10, NoDefaultCtor(2));
  (void)v;
}
TEST(InlinedVectorTest, NoCopy) {
  absl::InlinedVector<NoCopy, 1> v(10);
  (void)v;
}
TEST(InlinedVectorTest, NoAssign) {
  absl::InlinedVector<NoAssign, 1> v(10);
  (void)v;
}
TEST(InlinedVectorTest, MoveOnly) {
  absl::InlinedVector<MoveOnly, 2> v;
  v.push_back(MoveOnly{});
  v.push_back(MoveOnly{});
  v.push_back(MoveOnly{});
  v.erase(v.begin());
  v.push_back(MoveOnly{});
  v.erase(v.begin(), v.begin() + 1);
  v.insert(v.begin(), MoveOnly{});
  v.emplace(v.begin());
  v.emplace(v.begin(), MoveOnly{});
}
TEST(InlinedVectorTest, Noexcept) {
  EXPECT_TRUE(std::is_nothrow_move_constructible<IntVec>::value);
  EXPECT_TRUE((std::is_nothrow_move_constructible<
               absl::InlinedVector<MoveOnly, 2>>::value));

  struct MoveCanThrow {
    MoveCanThrow(MoveCanThrow&&) {}
  };
  EXPECT_EQ(absl::default_allocator_is_nothrow::value,
            (std::is_nothrow_move_constructible<
                absl::InlinedVector<MoveCanThrow, 2>>::value));
}

TEST(InlinedVectorTest, EmplaceBack) {
  absl::InlinedVector<std::pair<std::string, int>, 1> v;

  auto& inlined_element = v.emplace_back("answer", 42);
  EXPECT_EQ(&inlined_element, &v[0]);
  EXPECT_EQ(inlined_element.first, "answer");
  EXPECT_EQ(inlined_element.second, 42);

  auto& allocated_element = v.emplace_back("taxicab", 1729);
  EXPECT_EQ(&allocated_element, &v[1]);
  EXPECT_EQ(allocated_element.first, "taxicab");
  EXPECT_EQ(allocated_element.second, 1729);
}

TEST(InlinedVectorTest, ShrinkToFitGrowingVector) {
  absl::InlinedVector<std::pair<std::string, int>, 1> v;

  v.shrink_to_fit();
  EXPECT_EQ(v.capacity(), 1);

  v.emplace_back("answer", 42);
  v.shrink_to_fit();
  EXPECT_EQ(v.capacity(), 1);

  v.emplace_back("taxicab", 1729);
  EXPECT_GE(v.capacity(), 2);
  v.shrink_to_fit();
  EXPECT_EQ(v.capacity(), 2);

  v.reserve(100);
  EXPECT_GE(v.capacity(), 100);
  v.shrink_to_fit();
  EXPECT_EQ(v.capacity(), 2);
}

TEST(InlinedVectorTest, ShrinkToFitEdgeCases) {
  {
    absl::InlinedVector<std::pair<std::string, int>, 1> v;
    v.emplace_back("answer", 42);
    v.emplace_back("taxicab", 1729);
    EXPECT_GE(v.capacity(), 2);
    v.pop_back();
    v.shrink_to_fit();
    EXPECT_EQ(v.capacity(), 1);
    EXPECT_EQ(v[0].first, "answer");
    EXPECT_EQ(v[0].second, 42);
  }

  {
    absl::InlinedVector<std::string, 2> v(100);
    v.resize(0);
    v.shrink_to_fit();
    EXPECT_EQ(v.capacity(), 2);  // inlined capacity
  }

  {
    absl::InlinedVector<std::string, 2> v(100);
    v.resize(1);
    v.shrink_to_fit();
    EXPECT_EQ(v.capacity(), 2);  // inlined capacity
  }

  {
    absl::InlinedVector<std::string, 2> v(100);
    v.resize(2);
    v.shrink_to_fit();
    EXPECT_EQ(v.capacity(), 2);
  }

  {
    absl::InlinedVector<std::string, 2> v(100);
    v.resize(3);
    v.shrink_to_fit();
    EXPECT_EQ(v.capacity(), 3);
  }
}

TEST(IntVec, Insert) {
  for (int len = 0; len < 20; len++) {
    for (int pos = 0; pos <= len; pos++) {
      {
        // Single element
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        std_v.insert(std_v.begin() + pos, 9999);
        IntVec::iterator it = v.insert(v.cbegin() + pos, 9999);
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
      {
        // n elements
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        IntVec::size_type n = 5;
        std_v.insert(std_v.begin() + pos, n, 9999);
        IntVec::iterator it = v.insert(v.cbegin() + pos, n, 9999);
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
      {
        // Iterator range (random access iterator)
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        const std::vector<int> input = {9999, 8888, 7777};
        std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());
        IntVec::iterator it =
            v.insert(v.cbegin() + pos, input.cbegin(), input.cend());
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
      {
        // Iterator range (forward iterator)
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        const std::forward_list<int> input = {9999, 8888, 7777};
        std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());
        IntVec::iterator it =
            v.insert(v.cbegin() + pos, input.cbegin(), input.cend());
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
      {
        // Iterator range (input iterator)
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        std_v.insert(std_v.begin() + pos, {9999, 8888, 7777});
        std::istringstream input("9999 8888 7777");
        IntVec::iterator it =
            v.insert(v.cbegin() + pos, std::istream_iterator<int>(input),
                     std::istream_iterator<int>());
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
      {
        // Initializer list
        std::vector<int> std_v;
        Fill(&std_v, len);
        IntVec v;
        Fill(&v, len);

        std_v.insert(std_v.begin() + pos, {9999, 8888});
        IntVec::iterator it = v.insert(v.cbegin() + pos, {9999, 8888});
        EXPECT_THAT(v, ElementsAreArray(std_v));
        EXPECT_EQ(it, v.cbegin() + pos);
      }
    }
  }
}

TEST(RefCountedVec, InsertConstructorDestructor) {
  // Make sure the proper construction/destruction happen during insert
  // operations.
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    for (int pos = 0; pos <= len; pos++) {
      SCOPED_TRACE(pos);
      std::vector<int> counts(len, 0);
      int inserted_count = 0;
      RefCountedVec v;
      for (int i = 0; i < len; ++i) {
        SCOPED_TRACE(i);
        v.push_back(RefCounted(i, &counts[i]));
      }

      EXPECT_THAT(counts, Each(Eq(1)));

      RefCounted insert_element(9999, &inserted_count);
      EXPECT_EQ(1, inserted_count);
      v.insert(v.begin() + pos, insert_element);
      EXPECT_EQ(2, inserted_count);
      // Check that the elements at the end are preserved.
      EXPECT_THAT(counts, Each(Eq(1)));
      EXPECT_EQ(2, inserted_count);
    }
  }
}

TEST(IntVec, Resize) {
  for (int len = 0; len < 20; len++) {
    IntVec v;
    Fill(&v, len);

    // Try resizing up and down by k elements
    static const int kResizeElem = 1000000;
    for (int k = 0; k < 10; k++) {
      // Enlarging resize
      v.resize(len+k, kResizeElem);
      EXPECT_EQ(len+k, v.size());
      EXPECT_LE(len+k, v.capacity());
      for (int i = 0; i < len+k; i++) {
        if (i < len) {
          EXPECT_EQ(i, v[i]);
        } else {
          EXPECT_EQ(kResizeElem, v[i]);
        }
      }

      // Shrinking resize
      v.resize(len, kResizeElem);
      EXPECT_EQ(len, v.size());
      EXPECT_LE(len, v.capacity());
      for (int i = 0; i < len; i++) {
        EXPECT_EQ(i, v[i]);
      }
    }
  }
}

TEST(IntVec, InitWithLength) {
  for (int len = 0; len < 20; len++) {
    IntVec v(len, 7);
    EXPECT_EQ(len, v.size());
    EXPECT_LE(len, v.capacity());
    for (int i = 0; i < len; i++) {
      EXPECT_EQ(7, v[i]);
    }
  }
}

TEST(IntVec, CopyConstructorAndAssignment) {
  for (int len = 0; len < 20; len++) {
    IntVec v;
    Fill(&v, len);
    EXPECT_EQ(len, v.size());
    EXPECT_LE(len, v.capacity());

    IntVec v2(v);
    EXPECT_TRUE(v == v2) << PrintToString(v) << PrintToString(v2);

    for (int start_len = 0; start_len < 20; start_len++) {
      IntVec v3;
      Fill(&v3, start_len, 99);  // Add dummy elements that should go away
      v3 = v;
      EXPECT_TRUE(v == v3) << PrintToString(v) << PrintToString(v3);
    }
  }
}

TEST(IntVec, AliasingCopyAssignment) {
  for (int len = 0; len < 20; ++len) {
    IntVec original;
    Fill(&original, len);
    IntVec dup = original;
    dup = *&dup;
    EXPECT_EQ(dup, original);
  }
}

TEST(IntVec, MoveConstructorAndAssignment) {
  for (int len = 0; len < 20; len++) {
    IntVec v_in;
    const int inlined_capacity = v_in.capacity();
    Fill(&v_in, len);
    EXPECT_EQ(len, v_in.size());
    EXPECT_LE(len, v_in.capacity());

    {
      IntVec v_temp(v_in);
      auto* old_data = v_temp.data();
      IntVec v_out(std::move(v_temp));
      EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);
      if (v_in.size() > inlined_capacity) {
        // Allocation is moved as a whole, data stays in place.
        EXPECT_TRUE(v_out.data() == old_data);
      } else {
        EXPECT_FALSE(v_out.data() == old_data);
      }
    }
    for (int start_len = 0; start_len < 20; start_len++) {
      IntVec v_out;
      Fill(&v_out, start_len, 99);  // Add dummy elements that should go away
      IntVec v_temp(v_in);
      auto* old_data = v_temp.data();
      v_out = std::move(v_temp);
      EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);
      if (v_in.size() > inlined_capacity) {
        // Allocation is moved as a whole, data stays in place.
        EXPECT_TRUE(v_out.data() == old_data);
      } else {
        EXPECT_FALSE(v_out.data() == old_data);
      }
    }
  }
}

class NotTriviallyDestructible {
 public:
  NotTriviallyDestructible() : p_(new int(1)) {}
  explicit NotTriviallyDestructible(int i) : p_(new int(i)) {}

  NotTriviallyDestructible(const NotTriviallyDestructible& other)
      : p_(new int(*other.p_)) {}

  NotTriviallyDestructible& operator=(const NotTriviallyDestructible& other) {
    p_ = absl::make_unique<int>(*other.p_);
    return *this;
  }

  bool operator==(const NotTriviallyDestructible& other) const {
    return *p_ == *other.p_;
  }

 private:
  std::unique_ptr<int> p_;
};

TEST(AliasingTest, Emplace) {
  for (int i = 2; i < 20; ++i) {
    absl::InlinedVector<NotTriviallyDestructible, 10> vec;
    for (int j = 0; j < i; ++j) {
      vec.push_back(NotTriviallyDestructible(j));
    }
    vec.emplace(vec.begin(), vec[0]);
    EXPECT_EQ(vec[0], vec[1]);
    vec.emplace(vec.begin() + i / 2, vec[i / 2]);
    EXPECT_EQ(vec[i / 2], vec[i / 2 + 1]);
    vec.emplace(vec.end() - 1, vec.back());
    EXPECT_EQ(vec[vec.size() - 2], vec.back());
  }
}

TEST(AliasingTest, InsertWithCount) {
  for (int i = 1; i < 20; ++i) {
    absl::InlinedVector<NotTriviallyDestructible, 10> vec;
    for (int j = 0; j < i; ++j) {
      vec.push_back(NotTriviallyDestructible(j));
    }
    for (int n = 0; n < 5; ++n) {
      // We use back where we can because it's guaranteed to become invalidated
      vec.insert(vec.begin(), n, vec.back());
      auto b = vec.begin();
      EXPECT_TRUE(
          std::all_of(b, b + n, [&vec](const NotTriviallyDestructible& x) {
            return x == vec.back();
          }));

      auto m_idx = vec.size() / 2;
      vec.insert(vec.begin() + m_idx, n, vec.back());
      auto m = vec.begin() + m_idx;
      EXPECT_TRUE(
          std::all_of(m, m + n, [&vec](const NotTriviallyDestructible& x) {
            return x == vec.back();
          }));

      // We want distinct values so the equality test is meaningful,
      // vec[vec.size() - 1] is also almost always invalidated.
      auto old_e = vec.size() - 1;
      auto val = vec[old_e];
      vec.insert(vec.end(), n, vec[old_e]);
      auto e = vec.begin() + old_e;
      EXPECT_TRUE(std::all_of(
          e, e + n,
          [&val](const NotTriviallyDestructible& x) { return x == val; }));
    }
  }
}

TEST(OverheadTest, Storage) {
  // Check for size overhead.
  // In particular, ensure that std::allocator doesn't cost anything to store.
  // The union should be absorbing some of the allocation bookkeeping overhead
  // in the larger vectors, leaving only the size_ field as overhead.
  EXPECT_EQ(2 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 1>) - 1 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 2>) - 2 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 3>) - 3 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 4>) - 4 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 5>) - 5 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 6>) - 6 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 7>) - 7 * sizeof(int*));
  EXPECT_EQ(1 * sizeof(int*),
            sizeof(absl::InlinedVector<int*, 8>) - 8 * sizeof(int*));
}

TEST(IntVec, Clear) {
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    IntVec v;
    Fill(&v, len);
    v.clear();
    EXPECT_EQ(0, v.size());
    EXPECT_EQ(v.begin(), v.end());
  }
}

TEST(IntVec, Reserve) {
  for (int len = 0; len < 20; len++) {
    IntVec v;
    Fill(&v, len);

    for (int newlen = 0; newlen < 100; newlen++) {
      const int* start_rep = v.data();
      v.reserve(newlen);
      const int* final_rep = v.data();
      if (newlen <= len) {
        EXPECT_EQ(start_rep, final_rep);
      }
      EXPECT_LE(newlen, v.capacity());

      // Filling up to newlen should not change rep
      while (v.size() < newlen) {
        v.push_back(0);
      }
      EXPECT_EQ(final_rep, v.data());
    }
  }
}

TEST(StringVec, SelfRefPushBack) {
  std::vector<std::string> std_v;
  absl::InlinedVector<std::string, 4> v;
  const std::string s = "A quite long std::string to ensure heap.";
  std_v.push_back(s);
  v.push_back(s);
  for (int i = 0; i < 20; ++i) {
    EXPECT_THAT(v, ElementsAreArray(std_v));

    v.push_back(v.back());
    std_v.push_back(std_v.back());
  }
  EXPECT_THAT(v, ElementsAreArray(std_v));
}

TEST(StringVec, SelfRefPushBackWithMove) {
  std::vector<std::string> std_v;
  absl::InlinedVector<std::string, 4> v;
  const std::string s = "A quite long std::string to ensure heap.";
  std_v.push_back(s);
  v.push_back(s);
  for (int i = 0; i < 20; ++i) {
    EXPECT_EQ(v.back(), std_v.back());

    v.push_back(std::move(v.back()));
    std_v.push_back(std::move(std_v.back()));
  }
  EXPECT_EQ(v.back(), std_v.back());
}

TEST(StringVec, SelfMove) {
  const std::string s = "A quite long std::string to ensure heap.";
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    absl::InlinedVector<std::string, 8> v;
    for (int i = 0; i < len; ++i) {
      SCOPED_TRACE(i);
      v.push_back(s);
    }
    // Indirection necessary to avoid compiler warning.
    v = std::move(*(&v));
    // Ensure that the inlined vector is still in a valid state by copying it.
    // We don't expect specific contents since a self-move results in an
    // unspecified valid state.
    std::vector<std::string> copy(v.begin(), v.end());
  }
}

TEST(IntVec, Swap) {
  for (int l1 = 0; l1 < 20; l1++) {
    SCOPED_TRACE(l1);
    for (int l2 = 0; l2 < 20; l2++) {
      SCOPED_TRACE(l2);
      IntVec a = Fill(l1, 0);
      IntVec b = Fill(l2, 100);
      {
        using std::swap;
        swap(a, b);
      }
      EXPECT_EQ(l1, b.size());
      EXPECT_EQ(l2, a.size());
      for (int i = 0; i < l1; i++) {
        SCOPED_TRACE(i);
        EXPECT_EQ(i, b[i]);
      }
      for (int i = 0; i < l2; i++) {
        SCOPED_TRACE(i);
        EXPECT_EQ(100 + i, a[i]);
      }
    }
  }
}

TYPED_TEST_P(InstanceTest, Swap) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  for (int l1 = 0; l1 < 20; l1++) {
    SCOPED_TRACE(l1);
    for (int l2 = 0; l2 < 20; l2++) {
      SCOPED_TRACE(l2);
      InstanceTracker tracker;
      InstanceVec a, b;
      const size_t inlined_capacity = a.capacity();
      auto min_len = std::min(l1, l2);
      auto max_len = std::max(l1, l2);
      for (int i = 0; i < l1; i++) a.push_back(Instance(i));
      for (int i = 0; i < l2; i++) b.push_back(Instance(100+i));
      EXPECT_EQ(tracker.instances(), l1 + l2);
      tracker.ResetCopiesMovesSwaps();
      {
        using std::swap;
        swap(a, b);
      }
      EXPECT_EQ(tracker.instances(), l1 + l2);
      if (a.size() > inlined_capacity && b.size() > inlined_capacity) {
        EXPECT_EQ(tracker.swaps(), 0);  // Allocations are swapped.
        EXPECT_EQ(tracker.moves(), 0);
      } else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) {
        EXPECT_EQ(tracker.swaps(), min_len);
        EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
                  max_len - min_len);
      } else {
        // One is allocated and the other isn't. The allocation is transferred
        // without copying elements, and the inlined instances are copied/moved.
        EXPECT_EQ(tracker.swaps(), 0);
        EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
                  min_len);
      }

      EXPECT_EQ(l1, b.size());
      EXPECT_EQ(l2, a.size());
      for (int i = 0; i < l1; i++) {
        EXPECT_EQ(i, b[i].value());
      }
      for (int i = 0; i < l2; i++) {
        EXPECT_EQ(100 + i, a[i].value());
      }
    }
  }
}

TEST(IntVec, EqualAndNotEqual) {
  IntVec a, b;
  EXPECT_TRUE(a == b);
  EXPECT_FALSE(a != b);

  a.push_back(3);
  EXPECT_FALSE(a == b);
  EXPECT_TRUE(a != b);

  b.push_back(3);
  EXPECT_TRUE(a == b);
  EXPECT_FALSE(a != b);

  b.push_back(7);
  EXPECT_FALSE(a == b);
  EXPECT_TRUE(a != b);

  a.push_back(6);
  EXPECT_FALSE(a == b);
  EXPECT_TRUE(a != b);

  a.clear();
  b.clear();
  for (int i = 0; i < 100; i++) {
    a.push_back(i);
    b.push_back(i);
    EXPECT_TRUE(a == b);
    EXPECT_FALSE(a != b);

    b[i] = b[i] + 1;
    EXPECT_FALSE(a == b);
    EXPECT_TRUE(a != b);

    b[i] = b[i] - 1;    // Back to before
    EXPECT_TRUE(a == b);
    EXPECT_FALSE(a != b);
  }
}

TEST(IntVec, RelationalOps) {
  IntVec a, b;
  EXPECT_FALSE(a < b);
  EXPECT_FALSE(b < a);
  EXPECT_FALSE(a > b);
  EXPECT_FALSE(b > a);
  EXPECT_TRUE(a <= b);
  EXPECT_TRUE(b <= a);
  EXPECT_TRUE(a >= b);
  EXPECT_TRUE(b >= a);
  b.push_back(3);
  EXPECT_TRUE(a < b);
  EXPECT_FALSE(b < a);
  EXPECT_FALSE(a > b);
  EXPECT_TRUE(b > a);
  EXPECT_TRUE(a <= b);
  EXPECT_FALSE(b <= a);
  EXPECT_FALSE(a >= b);
  EXPECT_TRUE(b >= a);
}

TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  InstanceTracker tracker;
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    tracker.ResetCopiesMovesSwaps();

    InstanceVec v;
    const size_t inlined_capacity = v.capacity();
    for (int i = 0; i < len; i++) {
      v.push_back(Instance(i));
    }
    EXPECT_EQ(tracker.instances(), len);
    EXPECT_GE(tracker.copies() + tracker.moves(),
              len);  // More due to reallocation.
    tracker.ResetCopiesMovesSwaps();

    // Enlarging resize() must construct some objects
    tracker.ResetCopiesMovesSwaps();
    v.resize(len + 10, Instance(100));
    EXPECT_EQ(tracker.instances(), len + 10);
    if (len <= inlined_capacity && len + 10 > inlined_capacity) {
      EXPECT_EQ(tracker.copies() + tracker.moves(), 10 + len);
    } else {
      // Only specify a minimum number of copies + moves. We don't want to
      // depend on the reallocation policy here.
      EXPECT_GE(tracker.copies() + tracker.moves(),
                10);  // More due to reallocation.
    }

    // Shrinking resize() must destroy some objects
    tracker.ResetCopiesMovesSwaps();
    v.resize(len, Instance(100));
    EXPECT_EQ(tracker.instances(), len);
    EXPECT_EQ(tracker.copies(), 0);
    EXPECT_EQ(tracker.moves(), 0);

    // reserve() must not increase the number of initialized objects
    SCOPED_TRACE("reserve");
    v.reserve(len+1000);
    EXPECT_EQ(tracker.instances(), len);
    EXPECT_EQ(tracker.copies() + tracker.moves(), len);

    // pop_back() and erase() must destroy one object
    if (len > 0) {
      tracker.ResetCopiesMovesSwaps();
      v.pop_back();
      EXPECT_EQ(tracker.instances(), len - 1);
      EXPECT_EQ(tracker.copies(), 0);
      EXPECT_EQ(tracker.moves(), 0);

      if (!v.empty()) {
        tracker.ResetCopiesMovesSwaps();
        v.erase(v.begin());
        EXPECT_EQ(tracker.instances(), len - 2);
        EXPECT_EQ(tracker.copies() + tracker.moves(), len - 2);
      }
    }

    tracker.ResetCopiesMovesSwaps();
    int instances_before_empty_erase = tracker.instances();
    v.erase(v.begin(), v.begin());
    EXPECT_EQ(tracker.instances(), instances_before_empty_erase);
    EXPECT_EQ(tracker.copies() + tracker.moves(), 0);
  }
}

TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnCopyConstruction) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  InstanceTracker tracker;
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    tracker.ResetCopiesMovesSwaps();

    InstanceVec v;
    for (int i = 0; i < len; i++) {
      v.push_back(Instance(i));
    }
    EXPECT_EQ(tracker.instances(), len);
    EXPECT_GE(tracker.copies() + tracker.moves(),
              len);  // More due to reallocation.
    tracker.ResetCopiesMovesSwaps();
    {  // Copy constructor should create 'len' more instances.
      InstanceVec v_copy(v);
      EXPECT_EQ(tracker.instances(), len + len);
      EXPECT_EQ(tracker.copies(), len);
      EXPECT_EQ(tracker.moves(), 0);
    }
    EXPECT_EQ(tracker.instances(), len);
  }
}

TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveConstruction) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  InstanceTracker tracker;
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    tracker.ResetCopiesMovesSwaps();

    InstanceVec v;
    const size_t inlined_capacity = v.capacity();
    for (int i = 0; i < len; i++) {
      v.push_back(Instance(i));
    }
    EXPECT_EQ(tracker.instances(), len);
    EXPECT_GE(tracker.copies() + tracker.moves(),
              len);  // More due to reallocation.
    tracker.ResetCopiesMovesSwaps();
    {
      InstanceVec v_copy(std::move(v));
      if (len > inlined_capacity) {
        // Allocation is moved as a whole.
        EXPECT_EQ(tracker.instances(), len);
        EXPECT_EQ(tracker.live_instances(), len);
        // Tests an implementation detail, don't rely on this in your code.
        EXPECT_EQ(v.size(), 0);  // NOLINT misc-use-after-move
        EXPECT_EQ(tracker.copies(), 0);
        EXPECT_EQ(tracker.moves(), 0);
      } else {
        EXPECT_EQ(tracker.instances(), len + len);
        if (Instance::supports_move()) {
          EXPECT_EQ(tracker.live_instances(), len);
          EXPECT_EQ(tracker.copies(), 0);
          EXPECT_EQ(tracker.moves(), len);
        } else {
          EXPECT_EQ(tracker.live_instances(), len + len);
          EXPECT_EQ(tracker.copies(), len);
          EXPECT_EQ(tracker.moves(), 0);
        }
      }
      EXPECT_EQ(tracker.swaps(), 0);
    }
  }
}

TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnAssignment) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  InstanceTracker tracker;
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    for (int longorshort = 0; longorshort <= 1; ++longorshort) {
      SCOPED_TRACE(longorshort);
      tracker.ResetCopiesMovesSwaps();

      InstanceVec longer, shorter;
      for (int i = 0; i < len; i++) {
        longer.push_back(Instance(i));
        shorter.push_back(Instance(i));
      }
      longer.push_back(Instance(len));
      EXPECT_EQ(tracker.instances(), len + len + 1);
      EXPECT_GE(tracker.copies() + tracker.moves(),
                len + len + 1);  // More due to reallocation.

      tracker.ResetCopiesMovesSwaps();
      if (longorshort) {
        shorter = longer;
        EXPECT_EQ(tracker.instances(), (len + 1) + (len + 1));
        EXPECT_GE(tracker.copies() + tracker.moves(),
                  len + 1);  // More due to reallocation.
      } else {
        longer = shorter;
        EXPECT_EQ(tracker.instances(), len + len);
        EXPECT_EQ(tracker.copies() + tracker.moves(), len);
      }
    }
  }
}

TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveAssignment) {
  using Instance = TypeParam;
  using InstanceVec = absl::InlinedVector<Instance, 8>;
  InstanceTracker tracker;
  for (int len = 0; len < 20; len++) {
    SCOPED_TRACE(len);
    for (int longorshort = 0; longorshort <= 1; ++longorshort) {
      SCOPED_TRACE(longorshort);
      tracker.ResetCopiesMovesSwaps();

      InstanceVec longer, shorter;
      const int inlined_capacity = longer.capacity();
      for (int i = 0; i < len; i++) {
        longer.push_back(Instance(i));
        shorter.push_back(Instance(i));
      }
      longer.push_back(Instance(len));
      EXPECT_EQ(tracker.instances(), len + len + 1);
      EXPECT_GE(tracker.copies() + tracker.moves(),
                len + len + 1);  // More due to reallocation.

      tracker.ResetCopiesMovesSwaps();
      int src_len;
      if (longorshort) {
        src_len = len + 1;
        shorter = std::move(longer);
      } else {
        src_len = len;
        longer = std::move(shorter);
      }
      if (src_len > inlined_capacity) {
        // Allocation moved as a whole.
        EXPECT_EQ(tracker.instances(), src_len);
        EXPECT_EQ(tracker.live_instances(), src_len);
        EXPECT_EQ(tracker.copies(), 0);
        EXPECT_EQ(tracker.moves(), 0);
      } else {
        // Elements are all copied.
        EXPECT_EQ(tracker.instances(), src_len + src_len);
        if (Instance::supports_move()) {
          EXPECT_EQ(tracker.copies(), 0);
          EXPECT_EQ(tracker.moves(), src_len);
          EXPECT_EQ(tracker.live_instances(), src_len);
        } else {
          EXPECT_EQ(tracker.copies(), src_len);
          EXPECT_EQ(tracker.moves(), 0);
          EXPECT_EQ(tracker.live_instances(), src_len + src_len);
        }
      }
      EXPECT_EQ(tracker.swaps(), 0);
    }
  }
}

TEST(CountElemAssign, SimpleTypeWithInlineBacking) {
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<int> original_contents(original_size, 12345);

    absl::InlinedVector<int, 2> v(original_contents.begin(),
                                  original_contents.end());
    v.assign(2, 123);
    EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(123, 123)));
    if (original_size <= 2) {
      // If the original had inline backing, it should stay inline.
      EXPECT_EQ(2, v.capacity());
    }
  }
}

TEST(CountElemAssign, SimpleTypeWithAllocation) {
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<int> original_contents(original_size, 12345);

    absl::InlinedVector<int, 2> v(original_contents.begin(),
                                  original_contents.end());
    v.assign(3, 123);
    EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(123, 123, 123)));
    EXPECT_LE(v.size(), v.capacity());
  }
}

TYPED_TEST_P(InstanceTest, CountElemAssignInlineBacking) {
  using Instance = TypeParam;
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<Instance> original_contents(original_size, Instance(12345));

    absl::InlinedVector<Instance, 2> v(original_contents.begin(),
                                       original_contents.end());
    v.assign(2, Instance(123));
    EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(ValueIs(123), ValueIs(123))));
    if (original_size <= 2) {
      // If the original had inline backing, it should stay inline.
      EXPECT_EQ(2, v.capacity());
    }
  }
}

template <typename Instance>
void InstanceCountElemAssignWithAllocationTest() {
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<Instance> original_contents(original_size, Instance(12345));

    absl::InlinedVector<Instance, 2> v(original_contents.begin(),
                                       original_contents.end());
    v.assign(3, Instance(123));
    EXPECT_THAT(v,
                AllOf(SizeIs(3),
                      ElementsAre(ValueIs(123), ValueIs(123), ValueIs(123))));
    EXPECT_LE(v.size(), v.capacity());
  }
}
TEST(CountElemAssign, WithAllocationCopyableInstance) {
  InstanceCountElemAssignWithAllocationTest<CopyableOnlyInstance>();
}
TEST(CountElemAssign, WithAllocationCopyableMovableInstance) {
  InstanceCountElemAssignWithAllocationTest<CopyableMovableInstance>();
}

TEST(RangedConstructor, SimpleType) {
  std::vector<int> source_v = {4, 5, 6};
  // First try to fit in inline backing
  absl::InlinedVector<int, 4> v(source_v.begin(), source_v.end());
  EXPECT_EQ(3, v.size());
  EXPECT_EQ(4, v.capacity());  // Indication that we're still on inlined storage
  EXPECT_EQ(4, v[0]);
  EXPECT_EQ(5, v[1]);
  EXPECT_EQ(6, v[2]);

  // Now, force a re-allocate
  absl::InlinedVector<int, 2> realloc_v(source_v.begin(), source_v.end());
  EXPECT_EQ(3, realloc_v.size());
  EXPECT_LT(2, realloc_v.capacity());
  EXPECT_EQ(4, realloc_v[0]);
  EXPECT_EQ(5, realloc_v[1]);
  EXPECT_EQ(6, realloc_v[2]);
}

// Test for ranged constructors using Instance as the element type and
// SourceContainer as the source container type.
template <typename Instance, typename SourceContainer, int inlined_capacity>
void InstanceRangedConstructorTestForContainer() {
  InstanceTracker tracker;
  SourceContainer source_v = {Instance(0), Instance(1)};
  tracker.ResetCopiesMovesSwaps();
  absl::InlinedVector<Instance, inlined_capacity> v(source_v.begin(),
                                                    source_v.end());
  EXPECT_EQ(2, v.size());
  EXPECT_LT(1, v.capacity());
  EXPECT_EQ(0, v[0].value());
  EXPECT_EQ(1, v[1].value());
  EXPECT_EQ(tracker.copies(), 2);
  EXPECT_EQ(tracker.moves(), 0);
}

template <typename Instance, int inlined_capacity>
void InstanceRangedConstructorTestWithCapacity() {
  // Test with const and non-const, random access and non-random-access sources.
  // TODO(bsamwel): Test with an input iterator source.
  {
    SCOPED_TRACE("std::list");
    InstanceRangedConstructorTestForContainer<Instance, std::list<Instance>,
                                              inlined_capacity>();
    {
      SCOPED_TRACE("const std::list");
      InstanceRangedConstructorTestForContainer<
          Instance, const std::list<Instance>, inlined_capacity>();
    }
    {
      SCOPED_TRACE("std::vector");
      InstanceRangedConstructorTestForContainer<Instance, std::vector<Instance>,
                                                inlined_capacity>();
    }
    {
      SCOPED_TRACE("const std::vector");
      InstanceRangedConstructorTestForContainer<
          Instance, const std::vector<Instance>, inlined_capacity>();
    }
  }
}

TYPED_TEST_P(InstanceTest, RangedConstructor) {
  using Instance = TypeParam;
  SCOPED_TRACE("capacity=1");
  InstanceRangedConstructorTestWithCapacity<Instance, 1>();
  SCOPED_TRACE("capacity=2");
  InstanceRangedConstructorTestWithCapacity<Instance, 2>();
}

TEST(RangedConstructor, ElementsAreConstructed) {
  std::vector<std::string> source_v = {"cat", "dog"};

  // Force expansion and re-allocation of v.  Ensures that when the vector is
  // expanded that new elements are constructed.
  absl::InlinedVector<std::string, 1> v(source_v.begin(), source_v.end());
  EXPECT_EQ("cat", v[0]);
  EXPECT_EQ("dog", v[1]);
}

TEST(RangedAssign, SimpleType) {
  // Test for all combinations of original sizes (empty and non-empty inline,
  // and out of line) and target sizes.
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<int> original_contents(original_size, 12345);

    for (size_t target_size = 0; target_size <= 5; ++target_size) {
      SCOPED_TRACE(target_size);

      // New contents are [3, 4, ...]
      std::vector<int> new_contents;
      for (size_t i = 0; i < target_size; ++i) {
        new_contents.push_back(i + 3);
      }

      absl::InlinedVector<int, 3> v(original_contents.begin(),
                                    original_contents.end());
      v.assign(new_contents.begin(), new_contents.end());

      EXPECT_EQ(new_contents.size(), v.size());
      EXPECT_LE(new_contents.size(), v.capacity());
      if (target_size <= 3 && original_size <= 3) {
        // Storage should stay inline when target size is small.
        EXPECT_EQ(3, v.capacity());
      }
      EXPECT_THAT(v, ElementsAreArray(new_contents));
    }
  }
}

// Returns true if lhs and rhs have the same value.
template <typename Instance>
static bool InstanceValuesEqual(const Instance& lhs, const Instance& rhs) {
  return lhs.value() == rhs.value();
}

// Test for ranged assign() using Instance as the element type and
// SourceContainer as the source container type.
template <typename Instance, typename SourceContainer>
void InstanceRangedAssignTestForContainer() {
  // Test for all combinations of original sizes (empty and non-empty inline,
  // and out of line) and target sizes.
  for (size_t original_size = 0; original_size <= 5; ++original_size) {
    SCOPED_TRACE(original_size);
    // Original contents are [12345, 12345, ...]
    std::vector<Instance> original_contents(original_size, Instance(12345));

    for (size_t target_size = 0; target_size <= 5; ++target_size) {
      SCOPED_TRACE(target_size);

      // New contents are [3, 4, ...]
      // Generate data using a non-const container, because SourceContainer
      // itself may be const.
      // TODO(bsamwel): Test with an input iterator.
      std::vector<Instance> new_contents_in;
      for (size_t i = 0; i < target_size; ++i) {
        new_contents_in.push_back(Instance(i + 3));
      }
      SourceContainer new_contents(new_contents_in.begin(),
                                   new_contents_in.end());

      absl::InlinedVector<Instance, 3> v(original_contents.begin(),
                                         original_contents.end());
      v.assign(new_contents.begin(), new_contents.end());

      EXPECT_EQ(new_contents.size(), v.size());
      EXPECT_LE(new_contents.size(), v.capacity());
      if (target_size <= 3 && original_size <= 3) {
        // Storage should stay inline when target size is small.
        EXPECT_EQ(3, v.capacity());
      }
      EXPECT_TRUE(std::equal(v.begin(), v.end(), new_contents.begin(),
                             InstanceValuesEqual<Instance>));
    }
  }
}

TYPED_TEST_P(InstanceTest, RangedAssign) {
  using Instance = TypeParam;
  // Test with const and non-const, random access and non-random-access sources.
  // TODO(bsamwel): Test with an input iterator source.
  SCOPED_TRACE("std::list");
  InstanceRangedAssignTestForContainer<Instance, std::list<Instance>>();
  SCOPED_TRACE("const std::list");
  InstanceRangedAssignTestForContainer<Instance, const std::list<Instance>>();
  SCOPED_TRACE("std::vector");
  InstanceRangedAssignTestForContainer<Instance, std::vector<Instance>>();
  SCOPED_TRACE("const std::vector");
  InstanceRangedAssignTestForContainer<Instance, const std::vector<Instance>>();
}

TEST(InitializerListConstructor, SimpleTypeWithInlineBacking) {
  EXPECT_THAT((absl::InlinedVector<int, 4>{4, 5, 6}),
              AllOf(SizeIs(3), CapacityIs(4), ElementsAre(4, 5, 6)));
}

TEST(InitializerListConstructor, SimpleTypeWithReallocationRequired) {
  EXPECT_THAT((absl::InlinedVector<int, 2>{4, 5, 6}),
              AllOf(SizeIs(3), CapacityIs(Gt(2)), ElementsAre(4, 5, 6)));
}

TEST(InitializerListConstructor, DisparateTypesInList) {
  EXPECT_THAT((absl::InlinedVector<int, 2>{-7, 8ULL}), ElementsAre(-7, 8));

  EXPECT_THAT((absl::InlinedVector<std::string, 2>{"foo", std::string("bar")}),
              ElementsAre("foo", "bar"));
}

TEST(InitializerListConstructor, ComplexTypeWithInlineBacking) {
  EXPECT_THAT((absl::InlinedVector<CopyableMovableInstance, 1>{
                  CopyableMovableInstance(0)}),
              AllOf(SizeIs(1), CapacityIs(1), ElementsAre(ValueIs(0))));
}

TEST(InitializerListConstructor, ComplexTypeWithReallocationRequired) {
  EXPECT_THAT(
      (absl::InlinedVector<CopyableMovableInstance, 1>{
          CopyableMovableInstance(0), CopyableMovableInstance(1)}),
      AllOf(SizeIs(2), CapacityIs(Gt(1)), ElementsAre(ValueIs(0), ValueIs(1))));
}

TEST(InitializerListAssign, SimpleTypeFitsInlineBacking) {
  for (size_t original_size = 0; original_size <= 4; ++original_size) {
    SCOPED_TRACE(original_size);

    absl::InlinedVector<int, 2> v1(original_size, 12345);
    const size_t original_capacity_v1 = v1.capacity();
    v1.assign({3});
    EXPECT_THAT(
        v1, AllOf(SizeIs(1), CapacityIs(original_capacity_v1), ElementsAre(3)));

    absl::InlinedVector<int, 2> v2(original_size, 12345);
    const size_t original_capacity_v2 = v2.capacity();
    v2 = {3};
    EXPECT_THAT(
        v2, AllOf(SizeIs(1), CapacityIs(original_capacity_v2), ElementsAre(3)));
  }
}

TEST(InitializerListAssign, SimpleTypeDoesNotFitInlineBacking) {
  for (size_t original_size = 0; original_size <= 4; ++original_size) {
    SCOPED_TRACE(original_size);
    absl::InlinedVector<int, 2> v1(original_size, 12345);
    v1.assign({3, 4, 5});
    EXPECT_THAT(v1, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));
    EXPECT_LE(3, v1.capacity());

    absl::InlinedVector<int, 2> v2(original_size, 12345);
    v2 = {3, 4, 5};
    EXPECT_THAT(v2, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));
    EXPECT_LE(3, v2.capacity());
  }
}

TEST(InitializerListAssign, DisparateTypesInList) {
  absl::InlinedVector<int, 2> v_int1;
  v_int1.assign({-7, 8ULL});
  EXPECT_THAT(v_int1, ElementsAre(-7, 8));

  absl::InlinedVector<int, 2> v_int2;
  v_int2 = {-7, 8ULL};
  EXPECT_THAT(v_int2, ElementsAre(-7, 8));

  absl::InlinedVector<std::string, 2> v_string1;
  v_string1.assign({"foo", std::string("bar")});
  EXPECT_THAT(v_string1, ElementsAre("foo", "bar"));

  absl::InlinedVector<std::string, 2> v_string2;
  v_string2 = {"foo", std::string("bar")};
  EXPECT_THAT(v_string2, ElementsAre("foo", "bar"));
}

TYPED_TEST_P(InstanceTest, InitializerListAssign) {
  using Instance = TypeParam;
  for (size_t original_size = 0; original_size <= 4; ++original_size) {
    SCOPED_TRACE(original_size);
    absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));
    const size_t original_capacity = v.capacity();
    v.assign({Instance(3)});
    EXPECT_THAT(v, AllOf(SizeIs(1), CapacityIs(original_capacity),
                         ElementsAre(ValueIs(3))));
  }
  for (size_t original_size = 0; original_size <= 4; ++original_size) {
    SCOPED_TRACE(original_size);
    absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));
    v.assign({Instance(3), Instance(4), Instance(5)});
    EXPECT_THAT(v, AllOf(SizeIs(3),
                         ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5))));
    EXPECT_LE(3, v.capacity());
  }
}

REGISTER_TYPED_TEST_CASE_P(InstanceTest, Swap, CountConstructorsDestructors,
                           CountConstructorsDestructorsOnCopyConstruction,
                           CountConstructorsDestructorsOnMoveConstruction,
                           CountConstructorsDestructorsOnAssignment,
                           CountConstructorsDestructorsOnMoveAssignment,
                           CountElemAssignInlineBacking, RangedConstructor,
                           RangedAssign, InitializerListAssign);

using InstanceTypes =
    ::testing::Types<CopyableOnlyInstance, CopyableMovableInstance>;
INSTANTIATE_TYPED_TEST_CASE_P(InstanceTestOnTypes, InstanceTest, InstanceTypes);

TEST(DynamicVec, DynamicVecCompiles) {
  DynamicVec v;
  (void)v;
}

TEST(AllocatorSupportTest, Constructors) {
  using MyAlloc = CountingAllocator<int>;
  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
  const int ia[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
  int64_t allocated = 0;
  MyAlloc alloc(&allocated);
  { AllocVec ABSL_ATTRIBUTE_UNUSED v; }
  { AllocVec ABSL_ATTRIBUTE_UNUSED v(alloc); }
  { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); }
  { AllocVec ABSL_ATTRIBUTE_UNUSED v({1, 2, 3}, alloc); }

  AllocVec v2;
  { AllocVec ABSL_ATTRIBUTE_UNUSED v(v2, alloc); }
  { AllocVec ABSL_ATTRIBUTE_UNUSED v(std::move(v2), alloc); }
}

TEST(AllocatorSupportTest, CountAllocations) {
  using MyAlloc = CountingAllocator<int>;
  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
  const int ia[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
  int64_t allocated = 0;
  MyAlloc alloc(&allocated);
  {
    AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + 4, alloc);
    EXPECT_THAT(allocated, 0);
  }
  EXPECT_THAT(allocated, 0);
  {
    AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
    EXPECT_THAT(allocated, v.size() * sizeof(int));
  }
  EXPECT_THAT(allocated, 0);
  {
    AllocVec v(4, 1, alloc);
    EXPECT_THAT(allocated, 0);

    int64_t allocated2 = 0;
    MyAlloc alloc2(&allocated2);
    AllocVec v2(v, alloc2);
    EXPECT_THAT(allocated2, 0);

    int64_t allocated3 = 0;
    MyAlloc alloc3(&allocated3);
    AllocVec v3(std::move(v), alloc3);
    EXPECT_THAT(allocated3, 0);
  }
  EXPECT_THAT(allocated, 0);
  {
    AllocVec v(8, 2, alloc);
    EXPECT_THAT(allocated, v.size() * sizeof(int));

    int64_t allocated2 = 0;
    MyAlloc alloc2(&allocated2);
    AllocVec v2(v, alloc2);
    EXPECT_THAT(allocated2, v2.size() * sizeof(int));

    int64_t allocated3 = 0;
    MyAlloc alloc3(&allocated3);
    AllocVec v3(std::move(v), alloc3);
    EXPECT_THAT(allocated3, v3.size() * sizeof(int));
  }
  EXPECT_EQ(allocated, 0);
  {
    // Test shrink_to_fit deallocations.
    AllocVec v(8, 2, alloc);
    EXPECT_EQ(allocated, 8 * sizeof(int));
    v.resize(5);
    EXPECT_EQ(allocated, 8 * sizeof(int));
    v.shrink_to_fit();
    EXPECT_EQ(allocated, 5 * sizeof(int));
    v.resize(4);
    EXPECT_EQ(allocated, 5 * sizeof(int));
    v.shrink_to_fit();
    EXPECT_EQ(allocated, 0);
  }
}

TEST(AllocatorSupportTest, SwapBothAllocated) {
  using MyAlloc = CountingAllocator<int>;
  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
  int64_t allocated1 = 0;
  int64_t allocated2 = 0;
  {
    const int ia1[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
    const int ia2[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
    MyAlloc a1(&allocated1);
    MyAlloc a2(&allocated2);
    AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
    AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);
    EXPECT_LT(v1.capacity(), v2.capacity());
    EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));
    EXPECT_THAT(allocated2, v2.capacity() * sizeof(int));
    v1.swap(v2);
    EXPECT_THAT(v1, ElementsAreArray(ia2));
    EXPECT_THAT(v2, ElementsAreArray(ia1));
    EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));
    EXPECT_THAT(allocated2, v1.capacity() * sizeof(int));
  }
  EXPECT_THAT(allocated1, 0);
  EXPECT_THAT(allocated2, 0);
}

TEST(AllocatorSupportTest, SwapOneAllocated) {
  using MyAlloc = CountingAllocator<int>;
  using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
  int64_t allocated1 = 0;
  int64_t allocated2 = 0;
  {
    const int ia1[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
    const int ia2[] = { 0, 1, 2, 3 };
    MyAlloc a1(&allocated1);
    MyAlloc a2(&allocated2);
    AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
    AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);
    EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));
    EXPECT_THAT(allocated2, 0);
    v1.swap(v2);
    EXPECT_THAT(v1, ElementsAreArray(ia2));
    EXPECT_THAT(v2, ElementsAreArray(ia1));
    EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));
    EXPECT_THAT(allocated2, 0);
    EXPECT_TRUE(v2.get_allocator() == a1);
    EXPECT_TRUE(v1.get_allocator() == a2);
  }
  EXPECT_THAT(allocated1, 0);
  EXPECT_THAT(allocated2, 0);
}

TEST(AllocatorSupportTest, ScopedAllocatorWorks) {
  using StdVector = std::vector<int, CountingAllocator<int>>;
  using MyAlloc =
      std::scoped_allocator_adaptor<CountingAllocator<StdVector>>;
  using AllocVec = absl::InlinedVector<StdVector, 4, MyAlloc>;

  // MSVC 2017's std::vector allocates different amounts of memory in debug
  // versus opt mode.
  int64_t test_allocated = 0;
  StdVector v(CountingAllocator<int>{&test_allocated});
  // The amount of memory allocated by a default constructed vector<int>
  auto default_std_vec_allocated = test_allocated;
  v.push_back(1);
  // The amound of memory allocated by a copy-constructed vector<int> with one
  // element.
  int64_t one_element_std_vec_copy_allocated = test_allocated;

  int64_t allocated = 0;
  AllocVec vec(MyAlloc{CountingAllocator<StdVector>{&allocated}});
  EXPECT_EQ(allocated, 0);

  // This default constructs a vector<int>, but the allocator should pass itself
  // into the vector<int>, so check allocation compared to that.
  // The absl::InlinedVector does not allocate any memory.
  // The vector<int> may allocate any memory.
  auto expected = default_std_vec_allocated;
  vec.resize(1);
  EXPECT_EQ(allocated, expected);

  // We make vector<int> allocate memory.
  // It must go through the allocator even though we didn't construct the
  // vector directly.  This assumes that vec[0] doesn't need to grow its
  // allocation.
  expected += sizeof(int);
  vec[0].push_back(1);
  EXPECT_EQ(allocated, expected);

  // Another allocating vector.
  expected += one_element_std_vec_copy_allocated;
  vec.push_back(vec[0]);
  EXPECT_EQ(allocated, expected);

  // Overflow the inlined memory.
  // The absl::InlinedVector will now allocate.
  expected += sizeof(StdVector) * 8 + default_std_vec_allocated * 3;
  vec.resize(5);
  EXPECT_EQ(allocated, expected);

  // Adding one more in external mode should also work.
  expected += one_element_std_vec_copy_allocated;
  vec.push_back(vec[0]);
  EXPECT_EQ(allocated, expected);

  // And extending these should still work.  This assumes that vec[0] does not
  // need to grow its allocation.
  expected += sizeof(int);
  vec[0].push_back(1);
  EXPECT_EQ(allocated, expected);

  vec.clear();
  EXPECT_EQ(allocated, 0);
}

TEST(AllocatorSupportTest, SizeAllocConstructor) {
  constexpr int inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>;

  {
    auto len = inlined_size / 2;
    int64_t allocated = 0;
    auto v = AllocVec(len, Alloc(&allocated));

    // Inline storage used; allocator should not be invoked
    EXPECT_THAT(allocated, 0);
    EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
  }

  {
    auto len = inlined_size * 2;
    int64_t allocated = 0;
    auto v = AllocVec(len, Alloc(&allocated));

    // Out of line storage used; allocation of 8 elements expected
    EXPECT_THAT(allocated, len * sizeof(int));
    EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
  }
}

}  // anonymous namespace