about summary refs log blame commit diff
path: root/absl/container/fixed_array_test.cc
blob: 205ff41fe1142bbe8e187a44f17a5a5a73b5c548 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
















                                                                           
                  


                  
                           






                                                 
                                   

                               

                                  





























































                                                                               


































                                                                              

























































































































































































































































































































































































                                                                                     
 





































































































                                                                       

















































































































































































































                                                                                















































                                                                               
 
               
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/container/fixed_array.h"

#include <stdio.h>
#include <cstring>
#include <list>
#include <memory>
#include <numeric>
#include <scoped_allocator>
#include <stdexcept>
#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/exception_testing.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"

using ::testing::ElementsAreArray;

namespace {

// Helper routine to determine if a absl::FixedArray used stack allocation.
template <typename ArrayType>
static bool IsOnStack(const ArrayType& a) {
  return a.size() <= ArrayType::inline_elements;
}

class ConstructionTester {
 public:
  ConstructionTester()
      : self_ptr_(this),
        value_(0) {
    constructions++;
  }
  ~ConstructionTester() {
    assert(self_ptr_ == this);
    self_ptr_ = nullptr;
    destructions++;
  }

  // These are incremented as elements are constructed and destructed so we can
  // be sure all elements are properly cleaned up.
  static int constructions;
  static int destructions;

  void CheckConstructed() {
    assert(self_ptr_ == this);
  }

  void set(int value) { value_ = value; }
  int get() { return value_; }

 private:
  // self_ptr_ should always point to 'this' -- that's how we can be sure the
  // constructor has been called.
  ConstructionTester* self_ptr_;
  int value_;
};

int ConstructionTester::constructions = 0;
int ConstructionTester::destructions = 0;

// ThreeInts will initialize its three ints to the value stored in
// ThreeInts::counter. The constructor increments counter so that each object
// in an array of ThreeInts will have different values.
class ThreeInts {
 public:
  ThreeInts() {
    x_ = counter;
    y_ = counter;
    z_ = counter;
    ++counter;
  }

  static int counter;

  int x_, y_, z_;
};

int ThreeInts::counter = 0;

TEST(FixedArrayTest, CopyCtor) {
  absl::FixedArray<int, 10> on_stack(5);
  std::iota(on_stack.begin(), on_stack.end(), 0);
  absl::FixedArray<int, 10> stack_copy = on_stack;
  EXPECT_THAT(stack_copy, ElementsAreArray(on_stack));
  EXPECT_TRUE(IsOnStack(stack_copy));

  absl::FixedArray<int, 10> allocated(15);
  std::iota(allocated.begin(), allocated.end(), 0);
  absl::FixedArray<int, 10> alloced_copy = allocated;
  EXPECT_THAT(alloced_copy, ElementsAreArray(allocated));
  EXPECT_FALSE(IsOnStack(alloced_copy));
}

TEST(FixedArrayTest, MoveCtor) {
  absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5);
  for (int i = 0; i < 5; ++i) {
    on_stack[i] = absl::make_unique<int>(i);
  }

  absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack);
  for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i);
  EXPECT_EQ(stack_copy.size(), on_stack.size());

  absl::FixedArray<std::unique_ptr<int>, 10> allocated(15);
  for (int i = 0; i < 15; ++i) {
    allocated[i] = absl::make_unique<int>(i);
  }

  absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy =
      std::move(allocated);
  for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i);
  EXPECT_EQ(allocated.size(), alloced_copy.size());
}

TEST(FixedArrayTest, SmallObjects) {
  // Small object arrays
  {
    // Short arrays should be on the stack
    absl::FixedArray<int> array(4);
    EXPECT_TRUE(IsOnStack(array));
  }

  {
    // Large arrays should be on the heap
    absl::FixedArray<int> array(1048576);
    EXPECT_FALSE(IsOnStack(array));
  }

  {
    // Arrays of <= default size should be on the stack
    absl::FixedArray<int, 100> array(100);
    EXPECT_TRUE(IsOnStack(array));
  }

  {
    // Arrays of > default size should be on the stack
    absl::FixedArray<int, 100> array(101);
    EXPECT_FALSE(IsOnStack(array));
  }

  {
    // Arrays with different size elements should use approximately
    // same amount of stack space
    absl::FixedArray<int> array1(0);
    absl::FixedArray<char> array2(0);
    EXPECT_LE(sizeof(array1), sizeof(array2)+100);
    EXPECT_LE(sizeof(array2), sizeof(array1)+100);
  }

  {
    // Ensure that vectors are properly constructed inside a fixed array.
    absl::FixedArray<std::vector<int> > array(2);
    EXPECT_EQ(0, array[0].size());
    EXPECT_EQ(0, array[1].size());
  }

  {
    // Regardless of absl::FixedArray implementation, check that a type with a
    // low alignment requirement and a non power-of-two size is initialized
    // correctly.
    ThreeInts::counter = 1;
    absl::FixedArray<ThreeInts> array(2);
    EXPECT_EQ(1, array[0].x_);
    EXPECT_EQ(1, array[0].y_);
    EXPECT_EQ(1, array[0].z_);
    EXPECT_EQ(2, array[1].x_);
    EXPECT_EQ(2, array[1].y_);
    EXPECT_EQ(2, array[1].z_);
  }
}

TEST(FixedArrayTest, AtThrows) {
  absl::FixedArray<int> a = {1, 2, 3};
  EXPECT_EQ(a.at(2), 3);
  ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range,
                                 "failed bounds check");
}

TEST(FixedArrayRelationalsTest, EqualArrays) {
  for (int i = 0; i < 10; ++i) {
    absl::FixedArray<int, 5> a1(i);
    std::iota(a1.begin(), a1.end(), 0);
    absl::FixedArray<int, 5> a2(a1.begin(), a1.end());

    EXPECT_TRUE(a1 == a2);
    EXPECT_FALSE(a1 != a2);
    EXPECT_TRUE(a2 == a1);
    EXPECT_FALSE(a2 != a1);
    EXPECT_FALSE(a1 < a2);
    EXPECT_FALSE(a1 > a2);
    EXPECT_FALSE(a2 < a1);
    EXPECT_FALSE(a2 > a1);
    EXPECT_TRUE(a1 <= a2);
    EXPECT_TRUE(a1 >= a2);
    EXPECT_TRUE(a2 <= a1);
    EXPECT_TRUE(a2 >= a1);
  }
}

TEST(FixedArrayRelationalsTest, UnequalArrays) {
  for (int i = 1; i < 10; ++i) {
    absl::FixedArray<int, 5> a1(i);
    std::iota(a1.begin(), a1.end(), 0);
    absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
    --a2[i / 2];

    EXPECT_FALSE(a1 == a2);
    EXPECT_TRUE(a1 != a2);
    EXPECT_FALSE(a2 == a1);
    EXPECT_TRUE(a2 != a1);
    EXPECT_FALSE(a1 < a2);
    EXPECT_TRUE(a1 > a2);
    EXPECT_TRUE(a2 < a1);
    EXPECT_FALSE(a2 > a1);
    EXPECT_FALSE(a1 <= a2);
    EXPECT_TRUE(a1 >= a2);
    EXPECT_TRUE(a2 <= a1);
    EXPECT_FALSE(a2 >= a1);
  }
}

template <int stack_elements>
static void TestArray(int n) {
  SCOPED_TRACE(n);
  SCOPED_TRACE(stack_elements);
  ConstructionTester::constructions = 0;
  ConstructionTester::destructions = 0;
  {
    absl::FixedArray<ConstructionTester, stack_elements> array(n);

    EXPECT_THAT(array.size(), n);
    EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n);
    EXPECT_THAT(array.begin() + n, array.end());

    // Check that all elements were constructed
    for (int i = 0; i < n; i++) {
      array[i].CheckConstructed();
    }
    // Check that no other elements were constructed
    EXPECT_THAT(ConstructionTester::constructions, n);

    // Test operator[]
    for (int i = 0; i < n; i++) {
      array[i].set(i);
    }
    for (int i = 0; i < n; i++) {
      EXPECT_THAT(array[i].get(), i);
      EXPECT_THAT(array.data()[i].get(), i);
    }

    // Test data()
    for (int i = 0; i < n; i++) {
      array.data()[i].set(i + 1);
    }
    for (int i = 0; i < n; i++) {
      EXPECT_THAT(array[i].get(), i+1);
      EXPECT_THAT(array.data()[i].get(), i+1);
    }
  }  // Close scope containing 'array'.

  // Check that all constructed elements were destructed.
  EXPECT_EQ(ConstructionTester::constructions,
            ConstructionTester::destructions);
}

template <int elements_per_inner_array, int inline_elements>
static void TestArrayOfArrays(int n) {
  SCOPED_TRACE(n);
  SCOPED_TRACE(inline_elements);
  SCOPED_TRACE(elements_per_inner_array);
  ConstructionTester::constructions = 0;
  ConstructionTester::destructions = 0;
  {
    using InnerArray = ConstructionTester[elements_per_inner_array];
    // Heap-allocate the FixedArray to avoid blowing the stack frame.
    auto array_ptr =
        absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n);
    auto& array = *array_ptr;

    ASSERT_EQ(array.size(), n);
    ASSERT_EQ(array.memsize(),
             sizeof(ConstructionTester) * elements_per_inner_array * n);
    ASSERT_EQ(array.begin() + n, array.end());

    // Check that all elements were constructed
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < elements_per_inner_array; j++) {
        (array[i])[j].CheckConstructed();
      }
    }
    // Check that no other elements were constructed
    ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array);

    // Test operator[]
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < elements_per_inner_array; j++) {
        (array[i])[j].set(i * elements_per_inner_array + j);
      }
    }
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < elements_per_inner_array; j++) {
        ASSERT_EQ((array[i])[j].get(),  i * elements_per_inner_array + j);
        ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j);
      }
    }

    // Test data()
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < elements_per_inner_array; j++) {
        (array.data()[i])[j].set((i + 1) * elements_per_inner_array + j);
      }
    }
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < elements_per_inner_array; j++) {
        ASSERT_EQ((array[i])[j].get(),
                  (i + 1) * elements_per_inner_array + j);
        ASSERT_EQ((array.data()[i])[j].get(),
                  (i + 1) * elements_per_inner_array + j);
      }
    }
  }  // Close scope containing 'array'.

  // Check that all constructed elements were destructed.
  EXPECT_EQ(ConstructionTester::constructions,
            ConstructionTester::destructions);
}

TEST(IteratorConstructorTest, NonInline) {
  int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
  absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed(
      kInput, kInput + ABSL_ARRAYSIZE(kInput));
  ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
  for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
    ASSERT_EQ(kInput[i], fixed[i]);
  }
}

TEST(IteratorConstructorTest, Inline) {
  int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
  absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed(
      kInput, kInput + ABSL_ARRAYSIZE(kInput));
  ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
  for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
    ASSERT_EQ(kInput[i], fixed[i]);
  }
}

TEST(IteratorConstructorTest, NonPod) {
  char const* kInput[] =
      { "red", "orange", "yellow", "green", "blue", "indigo", "violet" };
  absl::FixedArray<std::string> const fixed(kInput, kInput + ABSL_ARRAYSIZE(kInput));
  ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
  for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
    ASSERT_EQ(kInput[i], fixed[i]);
  }
}

TEST(IteratorConstructorTest, FromEmptyVector) {
  std::vector<int> const empty;
  absl::FixedArray<int> const fixed(empty.begin(), empty.end());
  EXPECT_EQ(0, fixed.size());
  EXPECT_EQ(empty.size(), fixed.size());
}

TEST(IteratorConstructorTest, FromNonEmptyVector) {
  int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
  std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
  absl::FixedArray<int> const fixed(items.begin(), items.end());
  ASSERT_EQ(items.size(), fixed.size());
  for (size_t i = 0; i < items.size(); ++i) {
    ASSERT_EQ(items[i], fixed[i]);
  }
}

TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) {
  int const kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
  std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
  absl::FixedArray<int> const fixed(items.begin(), items.end());
  EXPECT_THAT(fixed, testing::ElementsAreArray(kInput));
}

TEST(InitListConstructorTest, InitListConstruction) {
  absl::FixedArray<int> fixed = {1, 2, 3};
  EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3}));
}

TEST(FillConstructorTest, NonEmptyArrays) {
  absl::FixedArray<int> stack_array(4, 1);
  EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));

  absl::FixedArray<int, 0> heap_array(4, 1);
  EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
}

TEST(FillConstructorTest, EmptyArray) {
  absl::FixedArray<int> empty_fill(0, 1);
  absl::FixedArray<int> empty_size(0);
  EXPECT_EQ(empty_fill, empty_size);
}

TEST(FillConstructorTest, NotTriviallyCopyable) {
  std::string str = "abcd";
  absl::FixedArray<std::string> strings = {str, str, str, str};

  absl::FixedArray<std::string> array(4, str);
  EXPECT_EQ(array, strings);
}

TEST(FillConstructorTest, Disambiguation) {
  absl::FixedArray<size_t> a(1, 2);
  EXPECT_THAT(a, testing::ElementsAre(2));
}

TEST(FixedArrayTest, ManySizedArrays) {
  std::vector<int> sizes;
  for (int i = 1; i < 100; i++) sizes.push_back(i);
  for (int i = 100; i <= 1000; i += 100) sizes.push_back(i);
  for (int n : sizes) {
    TestArray<0>(n);
    TestArray<1>(n);
    TestArray<64>(n);
    TestArray<1000>(n);
  }
}

TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) {
  for (int n = 1; n < 1000; n++) {
    ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n)));
    ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n)));
    ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n)));
    ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n)));
  }
}

TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) {
  for (int n = 1; n < 1000; n++) {
    TestArrayOfArrays<2, 0>(n);
    TestArrayOfArrays<2, 1>(n);
    TestArrayOfArrays<2, 64>(n);
    TestArrayOfArrays<2, 1000>(n);
  }
}

// If value_type is put inside of a struct container,
// we might evoke this error in a hardened build unless data() is carefully
// written, so check on that.
//     error: call to int __builtin___sprintf_chk(etc...)
//     will always overflow destination buffer [-Werror]
TEST(FixedArrayTest, AvoidParanoidDiagnostics) {
  absl::FixedArray<char, 32> buf(32);
  sprintf(buf.data(), "foo");  // NOLINT(runtime/printf)
}

TEST(FixedArrayTest, TooBigInlinedSpace) {
  struct TooBig {
    char c[1 << 20];
  };  // too big for even one on the stack

  // Simulate the data members of absl::FixedArray, a pointer and a size_t.
  struct Data {
    TooBig* p;
    size_t size;
  };

  // Make sure TooBig objects are not inlined for 0 or default size.
  static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data),
                "0-sized absl::FixedArray should have same size as Data.");
  static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data),
                "0-sized absl::FixedArray should have same alignment as Data.");
  static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data),
                "default-sized absl::FixedArray should have same size as Data");
  static_assert(
      alignof(absl::FixedArray<TooBig>) == alignof(Data),
      "default-sized absl::FixedArray should have same alignment as Data.");
}

// PickyDelete EXPECTs its class-scope deallocation funcs are unused.
struct PickyDelete {
  PickyDelete() {}
  ~PickyDelete() {}
  void operator delete(void* p) {
    EXPECT_TRUE(false) << __FUNCTION__;
    ::operator delete(p);
  }
  void operator delete[](void* p) {
    EXPECT_TRUE(false) << __FUNCTION__;
    ::operator delete[](p);
  }
};

TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); }


TEST(FixedArrayTest, Data) {
  static const int kInput[] = { 2, 3, 5, 7, 11, 13, 17 };
  absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput));
  EXPECT_EQ(fa.data(), &*fa.begin());
  EXPECT_EQ(fa.data(), &fa[0]);

  const absl::FixedArray<int>& cfa = fa;
  EXPECT_EQ(cfa.data(), &*cfa.begin());
  EXPECT_EQ(cfa.data(), &cfa[0]);
}

TEST(FixedArrayTest, Empty) {
  absl::FixedArray<int> empty(0);
  absl::FixedArray<int> inline_filled(1);
  absl::FixedArray<int, 0> heap_filled(1);
  EXPECT_TRUE(empty.empty());
  EXPECT_FALSE(inline_filled.empty());
  EXPECT_FALSE(heap_filled.empty());
}

TEST(FixedArrayTest, FrontAndBack) {
  absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3};
  EXPECT_EQ(inlined.front(), 1);
  EXPECT_EQ(inlined.back(), 3);

  absl::FixedArray<int, 0> allocated = {1, 2, 3};
  EXPECT_EQ(allocated.front(), 1);
  EXPECT_EQ(allocated.back(), 3);

  absl::FixedArray<int> one_element = {1};
  EXPECT_EQ(one_element.front(), one_element.back());
}

TEST(FixedArrayTest, ReverseIteratorInlined) {
  absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4};

  int counter = 5;
  for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
       iter != a.rend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);

  counter = 5;
  for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
       iter != a.rend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);

  counter = 5;
  for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);
}

TEST(FixedArrayTest, ReverseIteratorAllocated) {
  absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4};

  int counter = 5;
  for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
       iter != a.rend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);

  counter = 5;
  for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
       iter != a.rend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);

  counter = 5;
  for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
    counter--;
    EXPECT_EQ(counter, *iter);
  }
  EXPECT_EQ(counter, 0);
}

TEST(FixedArrayTest, Fill) {
  absl::FixedArray<int, 5 * sizeof(int)> inlined(5);
  int fill_val = 42;
  inlined.fill(fill_val);
  for (int i : inlined) EXPECT_EQ(i, fill_val);

  absl::FixedArray<int, 0> allocated(5);
  allocated.fill(fill_val);
  for (int i : allocated) EXPECT_EQ(i, fill_val);

  // It doesn't do anything, just make sure this compiles.
  absl::FixedArray<int> empty(0);
  empty.fill(fill_val);
}

// TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x
#ifndef __GNUC__
TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
  using T = char;
  constexpr auto capacity = 10;
  using FixedArrType = absl::FixedArray<T, capacity>;
  using FixedArrBuffType =
      absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>;
  constexpr auto scrubbed_bits = 0x95;
  constexpr auto length = capacity / 2;

  FixedArrBuffType buff;
  std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType));

  FixedArrType* arr =
      ::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
  EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
  arr->~FixedArrType();
}
#endif  // __GNUC__

// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator : public std::allocator<T> {
 public:
  using Alloc = std::allocator<T>;
  using pointer = typename Alloc::pointer;
  using size_type = typename Alloc::size_type;

  CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
  explicit CountingAllocator(int64_t* b)
      : bytes_used_(b), instance_count_(nullptr) {}
  CountingAllocator(int64_t* b, int64_t* a)
      : bytes_used_(b), instance_count_(a) {}

  template <typename U>
  explicit CountingAllocator(const CountingAllocator<U>& x)
      : Alloc(x),
        bytes_used_(x.bytes_used_),
        instance_count_(x.instance_count_) {}

  pointer allocate(size_type n, const void* const hint = nullptr) {
    assert(bytes_used_ != nullptr);
    *bytes_used_ += n * sizeof(T);
    return Alloc::allocate(n, hint);
  }

  void deallocate(pointer p, size_type n) {
    Alloc::deallocate(p, n);
    assert(bytes_used_ != nullptr);
    *bytes_used_ -= n * sizeof(T);
  }

  template <typename... Args>
  void construct(pointer p, Args&&... args) {
    Alloc::construct(p, absl::forward<Args>(args)...);
    if (instance_count_) {
      *instance_count_ += 1;
    }
  }

  void destroy(pointer p) {
    Alloc::destroy(p);
    if (instance_count_) {
      *instance_count_ -= 1;
    }
  }

  template <typename U>
  class rebind {
   public:
    using other = CountingAllocator<U>;
  };

  int64_t* bytes_used_;
  int64_t* instance_count_;
};

TEST(AllocatorSupportTest, CountInlineAllocations) {
  constexpr size_t inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;

  int64_t allocated = 0;
  int64_t active_instances = 0;

  {
    const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};

    Alloc alloc(&allocated, &active_instances);

    AllocFxdArr arr(ia, ia + inlined_size, alloc);
    static_cast<void>(arr);
  }

  EXPECT_EQ(allocated, 0);
  EXPECT_EQ(active_instances, 0);
}

TEST(AllocatorSupportTest, CountOutoflineAllocations) {
  constexpr size_t inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;

  int64_t allocated = 0;
  int64_t active_instances = 0;

  {
    const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
    Alloc alloc(&allocated, &active_instances);

    AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);

    EXPECT_EQ(allocated, arr.size() * sizeof(int));
    static_cast<void>(arr);
  }

  EXPECT_EQ(active_instances, 0);
}

TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
  constexpr size_t inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;

  int64_t allocated1 = 0;
  int64_t allocated2 = 0;
  int64_t active_instances = 0;
  Alloc alloc(&allocated1, &active_instances);
  Alloc alloc2(&allocated2, &active_instances);

  {
    int initial_value = 1;

    AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);

    EXPECT_EQ(allocated1, 0);

    AllocFxdArr arr2(arr1, alloc2);

    EXPECT_EQ(allocated2, 0);
    static_cast<void>(arr1);
    static_cast<void>(arr2);
  }

  EXPECT_EQ(active_instances, 0);
}

TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
  constexpr size_t inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;

  int64_t allocated1 = 0;
  int64_t allocated2 = 0;
  int64_t active_instances = 0;
  Alloc alloc(&allocated1, &active_instances);
  Alloc alloc2(&allocated2, &active_instances);

  {
    int initial_value = 1;

    AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);

    EXPECT_EQ(allocated1, arr1.size() * sizeof(int));

    AllocFxdArr arr2(arr1, alloc2);

    EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
    static_cast<void>(arr1);
    static_cast<void>(arr2);
  }

  EXPECT_EQ(active_instances, 0);
}

TEST(AllocatorSupportTest, SizeValAllocConstructor) {
  using testing::AllOf;
  using testing::Each;
  using testing::SizeIs;

  constexpr size_t inlined_size = 4;
  using Alloc = CountingAllocator<int>;
  using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;

  {
    auto len = inlined_size / 2;
    auto val = 0;
    int64_t allocated = 0;
    AllocFxdArr arr(len, val, Alloc(&allocated));

    EXPECT_EQ(allocated, 0);
    EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
  }

  {
    auto len = inlined_size * 2;
    auto val = 0;
    int64_t allocated = 0;
    AllocFxdArr arr(len, val, Alloc(&allocated));

    EXPECT_EQ(allocated, len * sizeof(int));
    EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
  }
}

#ifdef ADDRESS_SANITIZER
TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
  absl::FixedArray<int, 32> a(10);
  int *raw = a.data();
  raw[0] = 0;
  raw[9] = 0;
  EXPECT_DEATH(raw[-2] = 0, "container-overflow");
  EXPECT_DEATH(raw[-1] = 0, "container-overflow");
  EXPECT_DEATH(raw[10] = 0, "container-overflow");
  EXPECT_DEATH(raw[31] = 0, "container-overflow");
}

TEST(FixedArrayTest, AddressSanitizerAnnotations2) {
  absl::FixedArray<char, 17> a(12);
  char *raw = a.data();
  raw[0] = 0;
  raw[11] = 0;
  EXPECT_DEATH(raw[-7] = 0, "container-overflow");
  EXPECT_DEATH(raw[-1] = 0, "container-overflow");
  EXPECT_DEATH(raw[12] = 0, "container-overflow");
  EXPECT_DEATH(raw[17] = 0, "container-overflow");
}

TEST(FixedArrayTest, AddressSanitizerAnnotations3) {
  absl::FixedArray<uint64_t, 20> a(20);
  uint64_t *raw = a.data();
  raw[0] = 0;
  raw[19] = 0;
  EXPECT_DEATH(raw[-1] = 0, "container-overflow");
  EXPECT_DEATH(raw[20] = 0, "container-overflow");
}

TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
  absl::FixedArray<ThreeInts> a(10);
  ThreeInts *raw = a.data();
  raw[0] = ThreeInts();
  raw[9] = ThreeInts();
  // Note: raw[-1] is pointing to 12 bytes before the container range. However,
  // there is only a 8-byte red zone before the container range, so we only
  // access the last 4 bytes of the struct to make sure it stays within the red
  // zone.
  EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow");
  EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow");
  // The actual size of storage is kDefaultBytes=256, 21*12 = 252,
  // so reading raw[21] should still trigger the correct warning.
  EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
}
#endif  // ADDRESS_SANITIZER

}  // namespace