// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: fixed_array.h
// -----------------------------------------------------------------------------
//
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
// the array can be determined at run-time. It is a good replacement for
// non-standard and deprecated uses of `alloca()` and variable length arrays
// within the GCC extension. (See
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
//
// `FixedArray` allocates small arrays inline, keeping performance fast by
// avoiding heap operations. It also helps reduce the chances of
// accidentally overflowing your stack if large input is passed to
// your function.
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
#define ABSL_CONTAINER_FIXED_ARRAY_H_
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include "absl/algorithm/algorithm.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
namespace absl {
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
// -----------------------------------------------------------------------------
// FixedArray
// -----------------------------------------------------------------------------
//
// A `FixedArray` provides a run-time fixed-size array, allocating small arrays
// inline for efficiency and correctness.
//
// Most users should not specify an `inline_elements` argument and let
// `FixedArray<>` automatically determine the number of elements
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
// `FixedArray<>` implementation will inline arrays of
// length <= `inline_elements`.
//
// Note that a `FixedArray` constructed with a `size_type` argument will
// default-initialize its values by leaving trivially constructible types
// uninitialized (e.g. int, int[4], double), and others default-constructed.
// This matches the behavior of c-style arrays and `std::array`, but not
// `std::vector`.
//
// Note that `FixedArray` does not provide a public allocator; if it requires a
// heap allocation, it will do so with global `::operator new[]()` and
// `::operator delete[]()`, even if T provides class-scope overrides for these
// operators.
template <typename T, size_t inlined = kFixedArrayUseDefault>
class FixedArray {
static constexpr size_t kInlineBytesDefault = 256;
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
// but this seems to be mostly pedantic.
template <typename Iter>
using EnableIfForwardIterator = typename std::enable_if<
std::is_convertible<
typename std::iterator_traits<Iter>::iterator_category,
std::forward_iterator_tag>::value,
int>::type;
public:
// For playing nicely with stl:
using value_type = T;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using difference_type = ptrdiff_t;
using size_type = size_t;
static constexpr size_type inline_elements =
inlined == kFixedArrayUseDefault
? kInlineBytesDefault / sizeof(value_type)
: inlined;
// Creates an array object that can store `n` elements.
// Note that trivially constructible elements will be uninitialized.
explicit FixedArray(size_type n) : rep_(n) {}
// Creates an array initialized with `n` copies of `val`.
FixedArray(size_type n, const value_type& val) : rep_(n, val) {}
// Creates an array initialized with the elements from the input
// range. The array's size will always be `std::distance(first, last)`.
// REQUIRES: Iter must be a forward_iterator or better.
template <typename Iter, EnableIfForwardIterator<Iter> = 0>
FixedArray(Iter first, Iter last) : rep_(first, last) {}
// Creates the array from an initializer_list.
FixedArray(std::initializer_list<T> init_list)
: FixedArray(init_list.begin(), init_list.end()) {}
~FixedArray() {}
// Copy and move construction and assignment are deleted because (1) you can't
// copy or move an array, (2) assignment breaks the invariant that the size of
// a `FixedArray` never changes, and (3) there's no clear answer as to what
// should happen to a moved-from `FixedArray`.
FixedArray(const FixedArray&) = delete;
void operator=(const FixedArray&) = delete;
// FixedArray::size()
//
// Returns the length of the fixed array.
size_type size() const { return rep_.size(); }
// FixedArray::max_size()
//
// Returns the largest possible value of `std::distance(begin(), end())` for a
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes
// over the number of bytes taken by T.
constexpr size_type max_size() const {
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
}
// FixedArray::empty()
//
// Returns whether or not the fixed array is empty.
bool empty() const { return size() == 0; }
// FixedArray::memsize()
//
// Returns the memory size of the fixed array in bytes.
size_t memsize() const { return size() * sizeof(value_type); }
// FixedArray::data()
//
// Returns a const T* pointer to elements of the `FixedArray`. This pointer
// can be used to access (but not modify) the contained elements.
const_pointer data() const { return AsValue(rep_.begin()); }
// Overload of FixedArray::data() to return a T* pointer to elements of the
// fixed array. This pointer can be used to access and modify the contained
// elements.
pointer data() { return AsValue(rep_.begin()); }
// FixedArray::operator[]
//
// Returns a reference the ith element of the fixed array.
// REQUIRES: 0 <= i < size()
reference operator[](size_type i) {
assert(i < size());
return data()[i];
}
// Overload of FixedArray::operator()[] to return a const reference to the
// ith element of the fixed array.
// REQUIRES: 0 <= i < size()
const_reference operator[](size_type i) const {
assert(i < size());
return data()[i];
}
// FixedArray::at
//
// Bounds-checked access. Returns a reference to the ith element of the
// fiexed array, or throws std::out_of_range
reference at(size_type i) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
}
return data()[i];
}
// Overload of FixedArray::at() to return a const reference to the ith element
// of the fixed array.
const_reference at(size_type i) const {
if (i >= size()) {
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
}
return data()[i];
}
// FixedArray::front()
//
// Returns a reference to the first element of the fixed array.
reference front() { return *begin(); }
// Overload of FixedArray::front() to return a reference to the first element
// of a fixed array of const values.
const_reference front() const { return *begin(); }
// FixedArray::back()
//
// Returns a reference to the last element of the fixed array.
reference back() { return *(end() - 1); }
// Overload of FixedArray::back() to return a reference to the last element
// of a fixed array of const values.
const_reference back() const { return *(end() - 1); }
// FixedArray::begin()
//
// Returns an iterator to the beginning of the fixed array.
iterator begin() { return data(); }
// Overload of FixedArray::begin() to return a const iterator to the
// beginning of the fixed array.
const_iterator begin() const { return data(); }
// FixedArray::cbegin()
//
// Returns a const iterator to the beginning of the fixed array.
const_iterator cbegin() const { return begin(); }
// FixedArray::end()
//
// Returns an iterator to the end of the fixed array.
iterator end() { return data() + size(); }
// Overload of FixedArray::end() to return a const iterator to the end of the
// fixed array.
const_iterator end() const { return data() + size(); }
// FixedArray::cend()
//
// Returns a const iterator to the end of the fixed array.
const_iterator cend() const { return end(); }
// FixedArray::rbegin()
//
// Returns a reverse iterator from the end of the fixed array.
reverse_iterator rbegin() { return reverse_iterator(end()); }
// Overload of FixedArray::rbegin() to return a const reverse iterator from
// the end of the fixed array.
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
// FixedArray::crbegin()
//
// Returns a const reverse iterator from the end of the fixed array.
const_reverse_iterator crbegin() const { return rbegin(); }
// FixedArray::rend()
//
// Returns a reverse iterator from the beginning of the fixed array.
reverse_iterator rend() { return reverse_iterator(begin()); }
// Overload of FixedArray::rend() for returning a const reverse iterator
// from the beginning of the fixed array.
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// FixedArray::crend()
//
// Returns a reverse iterator from the beginning of the fixed array.
const_reverse_iterator crend() const { return rend(); }
// FixedArray::fill()
//
// Assigns the given `value` to all elements in the fixed array.
void fill(const T& value) { std::fill(begin(), end(), value); }
// Relational operators. Equality operators are elementwise using
// `operator==`, while order operators order FixedArrays lexicographically.
friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
}
friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
rhs.end());
}
friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
return rhs < lhs;
}
friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
return !(rhs < lhs);
}
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
return !(lhs < rhs);
}
private:
// HolderTraits
//
// Wrapper to hold elements of type T for the case where T is an array type.
// If 'T' is an array type, HolderTraits::type is a struct with a 'T v;'.
// Otherwise, HolderTraits::type is simply 'T'.
//
// Maintainer's Note: The simpler solution would be to simply wrap T in a
// struct whether it's an array or not: 'struct Holder { T v; };', but
// that causes some paranoid diagnostics to misfire about uses of data(),
// believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single
// element, rather than the packed array that it really is.
// e.g.:
//
// FixedArray<char> buf(1);
// sprintf(buf.data(), "foo");
//
// error: call to int __builtin___sprintf_chk(etc...)
// will always overflow destination buffer [-Werror]
//
class HolderTraits {
template <typename U>
struct SelectImpl {
using type = U;
static pointer AsValue(type* p) { return p; }
};
// Partial specialization for elements of array type.
template <typename U, size_t N>
struct SelectImpl<U[N]> {
struct Holder { U v[N]; };
using type = Holder;
static pointer AsValue(type* p) { return &p->v; }
};
using Impl = SelectImpl<value_type>;
public:
using type = typename Impl::type;
static pointer AsValue(type *p) { return Impl::AsValue(p); }
// TODO(billydonahue): fix the type aliasing violation
// this assertion hints at.
static_assert(sizeof(type) == sizeof(value_type),
"Holder must be same size as value_type");
};
using Holder = typename HolderTraits::type;
static pointer AsValue(Holder *p) { return HolderTraits::AsValue(p); }
// InlineSpace
//
// Allocate some space, not an array of elements of type T, so that we can
// skip calling the T constructors and destructors for space we never use.
// How many elements should we store inline?
// a. If not specified, use a default of kInlineBytesDefault bytes (This is
// currently 256 bytes, which seems small enough to not cause stack overflow
// or unnecessary stack pollution, while still allowing stack allocation for
// reasonably long character arrays).
// b. Never use 0 length arrays (not ISO C++)
//
template <size_type N, typename = void>
class InlineSpace {
public:
Holder* data() { return reinterpret_cast<Holder*>(space_.data()); }
void AnnotateConstruct(size_t n) const { Annotate(n, true); }
void AnnotateDestruct(size_t n) const { Annotate(n, false); }
private:
#ifndef ADDRESS_SANITIZER
void Annotate(size_t, bool) const { }
#else
void Annotate(size_t n, bool creating) const {
if (!n) return;
const void* bot = &left_redzone_;
const void* beg = space_.data();
const void* end = space_.data() + n;
const void* top = &right_redzone_ + 1;
// args: (beg, end, old_mid, new_mid)
if (creating) {
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end);
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot);
} else {
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top);
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg);
}
}
#endif // ADDRESS_SANITIZER
using Buffer =
typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type;
ADDRESS_SANITIZER_REDZONE(left_redzone_);
std::array<Buffer, N> space_;
ADDRESS_SANITIZER_REDZONE(right_redzone_);
};
// specialization when N = 0.
template <typename U>
class InlineSpace<0, U> {
public:
Holder* data() { return nullptr; }
void AnnotateConstruct(size_t) const {}
void AnnotateDestruct(size_t) const {}
};
// Rep
//
// A const Rep object holds FixedArray's size and data pointer.
//
class Rep : public InlineSpace<inline_elements> {
public:
Rep(size_type n, const value_type& val) : n_(n), p_(MakeHolder(n)) {
std::uninitialized_fill_n(p_, n, val);
}
explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) {
// Loop optimizes to nothing for trivially constructible T.
for (Holder* p = p_; p != p_ + n; ++p)
// Note: no parens: default init only.
// Also note '::' to avoid Holder class placement new operator.
::new (static_cast<void*>(p)) Holder;
}
template <typename Iter>
Rep(Iter first, Iter last)
: n_(std::distance(first, last)), p_(MakeHolder(n_)) {
std::uninitialized_copy(first, last, AsValue(p_));
}
~Rep() {
// Destruction must be in reverse order.
// Loop optimizes to nothing for trivially destructible T.
for (Holder* p = end(); p != begin();) (--p)->~Holder();
if (IsAllocated(size())) {
::operator delete[](begin());
} else {
this->AnnotateDestruct(size());
}
}
Holder* begin() const { return p_; }
Holder* end() const { return p_ + n_; }
size_type size() const { return n_; }
private:
Holder* MakeHolder(size_type n) {
if (IsAllocated(n)) {
return Allocate(n);
} else {
this->AnnotateConstruct(n);
return this->data();
}
}
Holder* Allocate(size_type n) {
return static_cast<Holder*>(::operator new[](n * sizeof(Holder)));
}
bool IsAllocated(size_type n) const { return n > inline_elements; }
const size_type n_;
Holder* const p_;
};
// Data members
Rep rep_;
};
template <typename T, size_t N>
constexpr size_t FixedArray<T, N>::inline_elements;
template <typename T, size_t N>
constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
} // namespace absl
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_