#include "absl/base/internal/exception_safety_testing.h"
#include <cstddef>
#include <exception>
#include <iostream>
#include <list>
#include <vector>
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
namespace absl {
namespace {
using ::absl::exceptions_internal::TestException;
// EXPECT_NO_THROW can't inspect the thrown inspection in general.
template <typename F>
void ExpectNoThrow(const F& f) {
try {
f();
} catch (TestException e) {
ADD_FAILURE() << "Unexpected exception thrown from " << e.what();
}
}
class ThrowingValueTest : public ::testing::Test {
protected:
void SetUp() override { UnsetCountdown(); }
private:
AllocInspector clouseau_;
};
TEST_F(ThrowingValueTest, Throws) {
SetCountdown();
EXPECT_THROW(ThrowingValue<> bomb, TestException);
// It's not guaranteed that every operator only throws *once*. The default
// ctor only throws once, though, so use it to make sure we only throw when
// the countdown hits 0
exceptions_internal::countdown = 2;
ExpectNoThrow([]() { ThrowingValue<> bomb; });
ExpectNoThrow([]() { ThrowingValue<> bomb; });
EXPECT_THROW(ThrowingValue<> bomb, TestException);
}
// Tests that an operation throws when the countdown is at 0, doesn't throw when
// the countdown doesn't hit 0, and doesn't modify the state of the
// ThrowingValue if it throws
template <typename F>
void TestOp(F&& f) {
UnsetCountdown();
ExpectNoThrow(f);
SetCountdown();
EXPECT_THROW(f(), TestException);
UnsetCountdown();
}
TEST_F(ThrowingValueTest, ThrowingCtors) {
ThrowingValue<> bomb;
TestOp([]() { ThrowingValue<> bomb(1); });
TestOp([&]() { ThrowingValue<> bomb1 = bomb; });
TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); });
}
TEST_F(ThrowingValueTest, ThrowingAssignment) {
ThrowingValue<> bomb, bomb1;
TestOp([&]() { bomb = bomb1; });
TestOp([&]() { bomb = std::move(bomb1); });
}
TEST_F(ThrowingValueTest, ThrowingComparisons) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { return bomb1 == bomb2; });
TestOp([&]() { return bomb1 != bomb2; });
TestOp([&]() { return bomb1 < bomb2; });
TestOp([&]() { return bomb1 <= bomb2; });
TestOp([&]() { return bomb1 > bomb2; });
TestOp([&]() { return bomb1 >= bomb2; });
}
TEST_F(ThrowingValueTest, ThrowingArithmeticOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&bomb1]() { +bomb1; });
TestOp([&bomb1]() { -bomb1; });
TestOp([&bomb1]() { ++bomb1; });
TestOp([&bomb1]() { bomb1++; });
TestOp([&bomb1]() { --bomb1; });
TestOp([&bomb1]() { bomb1--; });
TestOp([&]() { bomb1 + bomb2; });
TestOp([&]() { bomb1 - bomb2; });
TestOp([&]() { bomb1* bomb2; });
TestOp([&]() { bomb1 / bomb2; });
TestOp([&]() { bomb1 << 1; });
TestOp([&]() { bomb1 >> 1; });
}
TEST_F(ThrowingValueTest, ThrowingLogicalOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { !bomb1; });
TestOp([&]() { bomb1&& bomb2; });
TestOp([&]() { bomb1 || bomb2; });
}
TEST_F(ThrowingValueTest, ThrowingBitwiseOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { ~bomb1; });
TestOp([&]() { bomb1& bomb2; });
TestOp([&]() { bomb1 | bomb2; });
TestOp([&]() { bomb1 ^ bomb2; });
}
TEST_F(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&]() { bomb1 += bomb2; });
TestOp([&]() { bomb1 -= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
TestOp([&]() { bomb1 /= bomb2; });
TestOp([&]() { bomb1 %= bomb2; });
TestOp([&]() { bomb1 &= bomb2; });
TestOp([&]() { bomb1 |= bomb2; });
TestOp([&]() { bomb1 ^= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
}
TEST_F(ThrowingValueTest, ThrowingStreamOps) {
ThrowingValue<> bomb;
TestOp([&]() { std::cin >> bomb; });
TestOp([&]() { std::cout << bomb; });
}
TEST_F(ThrowingValueTest, ThrowingAllocatingOps) {
// make_unique calls unqualified operator new, so these exercise the
// ThrowingValue overloads.
TestOp([]() { return absl::make_unique<ThrowingValue<>>(1); });
TestOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); });
}
TEST_F(ThrowingValueTest, NonThrowingMoveCtor) {
ThrowingValue<NoThrow::kMoveCtor> nothrow_ctor;
SetCountdown();
ExpectNoThrow([¬hrow_ctor]() {
ThrowingValue<NoThrow::kMoveCtor> nothrow1 = std::move(nothrow_ctor);
});
}
TEST_F(ThrowingValueTest, NonThrowingMoveAssign) {
ThrowingValue<NoThrow::kMoveAssign> nothrow_assign1, nothrow_assign2;
SetCountdown();
ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() {
nothrow_assign1 = std::move(nothrow_assign2);
});
}
TEST_F(ThrowingValueTest, ThrowingSwap) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { std::swap(bomb1, bomb2); });
ThrowingValue<NoThrow::kMoveCtor> bomb3, bomb4;
TestOp([&]() { std::swap(bomb3, bomb4); });
ThrowingValue<NoThrow::kMoveAssign> bomb5, bomb6;
TestOp([&]() { std::swap(bomb5, bomb6); });
}
TEST_F(ThrowingValueTest, NonThrowingSwap) {
ThrowingValue<NoThrow::kMoveAssign | NoThrow::kMoveCtor> bomb1, bomb2;
ExpectNoThrow([&]() { std::swap(bomb1, bomb2); });
}
TEST_F(ThrowingValueTest, NonThrowingAllocation) {
ThrowingValue<NoThrow::kAllocation>* allocated;
ThrowingValue<NoThrow::kAllocation>* array;
ExpectNoThrow([&allocated]() {
allocated = new ThrowingValue<NoThrow::kAllocation>(1);
delete allocated;
});
ExpectNoThrow([&array]() {
array = new ThrowingValue<NoThrow::kAllocation>[2];
delete[] array;
});
}
TEST_F(ThrowingValueTest, NonThrowingDelete) {
auto* allocated = new ThrowingValue<>(1);
auto* array = new ThrowingValue<>[2];
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
SetCountdown();
ExpectNoThrow([array]() { delete[] array; });
}
using Storage =
absl::aligned_storage_t<sizeof(ThrowingValue<>), alignof(ThrowingValue<>)>;
TEST_F(ThrowingValueTest, NonThrowingPlacementDelete) {
constexpr int kArrayLen = 2;
// We intentionally create extra space to store the tag allocated by placement
// new[].
constexpr int kStorageLen = 4;
Storage buf;
Storage array_buf[kStorageLen];
auto* placed = new (&buf) ThrowingValue<>(1);
auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen];
SetCountdown();
ExpectNoThrow([placed, &buf]() {
placed->~ThrowingValue<>();
ThrowingValue<>::operator delete(placed, &buf);
});
SetCountdown();
ExpectNoThrow([&, placed_array]() {
for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>();
ThrowingValue<>::operator delete[](placed_array, &array_buf);
});
}
TEST_F(ThrowingValueTest, NonThrowingDestructor) {
auto* allocated = new ThrowingValue<>();
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
}
TEST(ThrowingBoolTest, ThrowingBool) {
UnsetCountdown();
ThrowingBool t = true;
// Test that it's contextually convertible to bool
if (t) { // NOLINT(whitespace/empty_if_body)
}
EXPECT_TRUE(t);
TestOp([&]() { (void)!t; });
}
class ThrowingAllocatorTest : public ::testing::Test {
protected:
void SetUp() override { UnsetCountdown(); }
private:
AllocInspector borlu_;
};
TEST_F(ThrowingAllocatorTest, MemoryManagement) {
// Just exercise the memory management capabilities under LSan to make sure we
// don't leak.
ThrowingAllocator<int> int_alloc;
int* ip = int_alloc.allocate(1);
int_alloc.deallocate(ip, 1);
int* i_array = int_alloc.allocate(2);
int_alloc.deallocate(i_array, 2);
ThrowingAllocator<ThrowingValue<>> ef_alloc;
ThrowingValue<>* efp = ef_alloc.allocate(1);
ef_alloc.deallocate(efp, 1);
ThrowingValue<>* ef_array = ef_alloc.allocate(2);
ef_alloc.deallocate(ef_array, 2);
}
TEST_F(ThrowingAllocatorTest, CallsGlobalNew) {
ThrowingAllocator<ThrowingValue<>, NoThrow::kNoThrow> nothrow_alloc;
ThrowingValue<>* ptr;
SetCountdown();
// This will only throw if ThrowingValue::new is called.
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
nothrow_alloc.deallocate(ptr, 1);
}
TEST_F(ThrowingAllocatorTest, ThrowingConstructors) {
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
SetCountdown();
EXPECT_THROW(ip = int_alloc.allocate(1), TestException);
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
*ip = 1;
SetCountdown();
EXPECT_THROW(int_alloc.construct(ip, 2), TestException);
EXPECT_EQ(*ip, 1);
int_alloc.deallocate(ip, 1);
}
TEST_F(ThrowingAllocatorTest, NonThrowingConstruction) {
{
ThrowingAllocator<int, NoThrow::kNoThrow> int_alloc;
int* ip = nullptr;
SetCountdown();
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
}
UnsetCountdown();
{
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
}
UnsetCountdown();
{
ThrowingAllocator<ThrowingValue<NoThrow::kIntCtor>, NoThrow::kNoThrow>
ef_alloc;
ThrowingValue<NoThrow::kIntCtor>* efp;
SetCountdown();
ExpectNoThrow([&]() { efp = ef_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow([&]() { ef_alloc.construct(efp, 2); });
EXPECT_EQ(efp->Get(), 2);
ef_alloc.destroy(efp);
ef_alloc.deallocate(efp, 1);
}
UnsetCountdown();
{
ThrowingAllocator<int> a;
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; });
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); });
}
}
TEST_F(ThrowingAllocatorTest, ThrowingAllocatorConstruction) {
ThrowingAllocator<int> a;
TestOp([]() { ThrowingAllocator<int> a; });
TestOp([&]() { a.select_on_container_copy_construction(); });
}
TEST_F(ThrowingAllocatorTest, State) {
ThrowingAllocator<int> a1, a2;
EXPECT_NE(a1, a2);
auto a3 = a1;
EXPECT_EQ(a3, a1);
int* ip = a1.allocate(1);
EXPECT_EQ(a3, a1);
a3.deallocate(ip, 1);
EXPECT_EQ(a3, a1);
}
TEST_F(ThrowingAllocatorTest, InVector) {
std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v;
for (int i = 0; i < 20; ++i) v.push_back({});
for (int i = 0; i < 20; ++i) v.pop_back();
}
TEST_F(ThrowingAllocatorTest, InList) {
std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l;
for (int i = 0; i < 20; ++i) l.push_back({});
for (int i = 0; i < 20; ++i) l.pop_back();
for (int i = 0; i < 20; ++i) l.push_front({});
for (int i = 0; i < 20; ++i) l.pop_front();
}
struct CallOperator {
template <typename T>
void operator()(T* t) const {
(*t)();
}
};
struct NonNegative {
friend testing::AssertionResult AbslCheckInvariants(NonNegative* g) {
if (g->i >= 0) return testing::AssertionSuccess();
return testing::AssertionFailure()
<< "i should be non-negative but is " << g->i;
}
bool operator==(const NonNegative& other) const { return i == other.i; }
int i;
};
template <typename T>
struct DefaultFactory {
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(); }
};
struct FailsBasicGuarantee : public NonNegative {
void operator()() {
--i;
ThrowingValue<> bomb;
++i;
}
};
TEST(ExceptionCheckTest, BasicGuaranteeFailure) {
EXPECT_FALSE(TestExceptionSafety(DefaultFactory<FailsBasicGuarantee>(),
CallOperator{}));
}
struct FollowsBasicGuarantee : public NonNegative {
void operator()() {
++i;
ThrowingValue<> bomb;
}
};
TEST(ExceptionCheckTest, BasicGuarantee) {
EXPECT_TRUE(TestExceptionSafety(DefaultFactory<FollowsBasicGuarantee>(),
CallOperator{}));
}
TEST(ExceptionCheckTest, StrongGuaranteeFailure) {
{
DefaultFactory<FailsBasicGuarantee> factory;
EXPECT_FALSE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
{
DefaultFactory<FollowsBasicGuarantee> factory;
EXPECT_FALSE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
}
struct BasicGuaranteeWithExtraInvariants : public NonNegative {
// After operator(), i is incremented. If operator() throws, i is set to 9999
void operator()() {
int old_i = i;
i = kExceptionSentinel;
ThrowingValue<> bomb;
i = ++old_i;
}
static constexpr int kExceptionSentinel = 9999;
};
constexpr int BasicGuaranteeWithExtraInvariants::kExceptionSentinel;
TEST(ExceptionCheckTest, BasicGuaranteeWithInvariants) {
DefaultFactory<BasicGuaranteeWithExtraInvariants> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(TestExceptionSafety(
factory, CallOperator{}, [](BasicGuaranteeWithExtraInvariants* w) {
if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraInvariants::kExceptionSentinel
<< ", but is " << w->i;
}));
}
struct FollowsStrongGuarantee : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, StrongGuarantee) {
DefaultFactory<FollowsStrongGuarantee> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
struct HasReset : public NonNegative {
void operator()() {
i = -1;
ThrowingValue<> bomb;
i = 1;
}
void reset() { i = 0; }
friend bool AbslCheckInvariants(HasReset* h) {
h->reset();
return h->i == 0;
}
};
TEST(ExceptionCheckTest, ModifyingChecker) {
{
DefaultFactory<FollowsBasicGuarantee> factory;
EXPECT_FALSE(TestExceptionSafety(
factory, CallOperator{},
[](FollowsBasicGuarantee* g) {
g->i = 1000;
return true;
},
[](FollowsBasicGuarantee* g) { return g->i == 1000; }));
}
{
DefaultFactory<FollowsStrongGuarantee> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{},
[](FollowsStrongGuarantee* g) {
++g->i;
return true;
},
StrongGuarantee(factory)));
}
{
DefaultFactory<HasReset> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
}
}
struct NonCopyable : public NonNegative {
NonCopyable(const NonCopyable&) = delete;
NonCopyable() : NonNegative{0} {}
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, NonCopyable) {
DefaultFactory<NonCopyable> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
struct NonEqualityComparable : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
void ModifyOnThrow() {
++i;
ThrowingValue<> bomb;
static_cast<void>(bomb);
--i;
}
};
TEST(ExceptionCheckTest, NonEqualityComparable) {
DefaultFactory<NonEqualityComparable> factory;
auto comp = [](const NonEqualityComparable& a,
const NonEqualityComparable& b) { return a.i == b.i; };
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{},
absl::StrongGuarantee(factory, comp)));
EXPECT_FALSE(TestExceptionSafety(
factory, [&](NonEqualityComparable* n) { n->ModifyOnThrow(); },
absl::StrongGuarantee(factory, comp)));
}
template <typename T>
struct ExhaustivenessTester {
void operator()() {
successes |= 1;
T b1;
static_cast<void>(b1);
successes |= (1 << 1);
T b2;
static_cast<void>(b2);
successes |= (1 << 2);
T b3;
static_cast<void>(b3);
successes |= (1 << 3);
}
bool operator==(const ExhaustivenessTester<ThrowingValue<>>&) const {
return true;
}
friend testing::AssertionResult AbslCheckInvariants(ExhaustivenessTester*) {
return testing::AssertionSuccess();
}
static unsigned char successes;
};
template <typename T>
unsigned char ExhaustivenessTester<T>::successes = 0;
TEST(ExceptionCheckTest, Exhaustiveness) {
DefaultFactory<ExhaustivenessTester<int>> int_factory;
EXPECT_TRUE(TestExceptionSafety(int_factory, CallOperator{}));
EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF);
DefaultFactory<ExhaustivenessTester<ThrowingValue<>>> bomb_factory;
EXPECT_TRUE(TestExceptionSafety(bomb_factory, CallOperator{}));
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
ExhaustivenessTester<ThrowingValue<>>::successes = 0;
EXPECT_TRUE(TestExceptionSafety(bomb_factory, CallOperator{},
StrongGuarantee(bomb_factory)));
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
}
struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject {
LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) {
++counter;
ThrowingValue<> v;
static_cast<void>(v);
--counter;
}
LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION) {}
static int counter;
};
int LeaksIfCtorThrows::counter = 0;
TEST(ExceptionCheckTest, TestLeakyCtor) {
absl::TestThrowingCtor<LeaksIfCtorThrows>();
EXPECT_EQ(LeaksIfCtorThrows::counter, 1);
LeaksIfCtorThrows::counter = 0;
}
struct Tracked : private exceptions_internal::TrackedObject {
Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {}
};
TEST(AllocInspectorTest, Pass) {
AllocInspector javert;
Tracked t;
}
TEST(AllocInspectorTest, NotDestroyed) {
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage;
EXPECT_NONFATAL_FAILURE(
{
AllocInspector gadget;
new (&storage) Tracked;
},
"not destroyed");
}
TEST(AllocInspectorTest, DestroyedTwice) {
EXPECT_NONFATAL_FAILURE(
{
Tracked t;
t.~Tracked();
},
"destroyed improperly");
}
TEST(AllocInspectorTest, ConstructedTwice) {
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage;
EXPECT_NONFATAL_FAILURE(
{
new (&storage) Tracked;
new (&storage) Tracked;
},
"re-constructed");
}
} // namespace
} // namespace absl