about summary refs log blame commit diff
path: root/absl/algorithm/container.h
blob: acddec484b0a85c9c3652f5bac574d11340f3e5d (plain) (tree)
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431






































































                                                                                





                                                                           

















































































































































































































































                                                                                
                                                           








                                                                               
                                                           










































































































































































                                                                                






































































































































                                                                                
                                                                             



































































































































































































































                                                                                
                                                                        











































































































































































                                                                                
                                                                       








                                                                            
                                                                       





























































































































































































































































































































































































                                                                                
                                                         







                                                                              
                                                         










































































































































                                                                                
                                                                              




























































                                                                                
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: container.h
// -----------------------------------------------------------------------------
//
// This header file provides Container-based versions of algorithmic functions
// within the C++ standard library. The following standard library sets of
// functions are covered within this file:
//
//   * Algorithmic <iterator> functions
//   * Algorithmic <numeric> functions
//   * <algorithm> functions
//
// The standard library functions operate on iterator ranges; the functions
// within this API operate on containers, though many return iterator ranges.
//
// All functions within this API are named with a `c_` prefix. Calls such as
// `absl::c_xx(container, ...) are equivalent to std:: functions such as
// `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on
// iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`)
// have no equivalent here.
//
// For template parameter and variable naming, `C` indicates the container type
// to which the function is applied, `Pred` indicates the predicate object type
// to be used by the function and `T` indicates the applicable element type.
//

#ifndef ABSL_ALGORITHM_CONTAINER_H_
#define ABSL_ALGORITHM_CONTAINER_H_

#include <algorithm>
#include <cassert>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <utility>
#include <vector>

#include "absl/algorithm/algorithm.h"
#include "absl/base/macros.h"
#include "absl/meta/type_traits.h"

namespace absl {

namespace container_algorithm_internal {

// NOTE: it is important to defer to ADL lookup for building with C++ modules,
// especially for headers like <valarray> which are not visible from this file
// but specialize std::begin and std::end.
using std::begin;
using std::end;

// The type of the iterator given by begin(c) (possibly std::begin(c)).
// ContainerIter<const vector<T>> gives vector<T>::const_iterator,
// while ContainerIter<vector<T>> gives vector<T>::iterator.
template <typename C>
using ContainerIter = decltype(begin(std::declval<C&>()));

// An MSVC bug involving template parameter substitution requires us to use
// decltype() here instead of just std::pair.
template <typename C1, typename C2>
using ContainerIterPairType =
    decltype(std::make_pair(ContainerIter<C1>(), ContainerIter<C2>()));

template <typename C>
using ContainerDifferenceType =
    decltype(std::distance(std::declval<ContainerIter<C>>(),
                           std::declval<ContainerIter<C>>()));

template <typename C>
using ContainerPointerType =
    typename std::iterator_traits<ContainerIter<C>>::pointer;

// container_algorithm_internal::c_begin and
// container_algorithm_internal::c_end are abbreviations for proper ADL
// lookup of std::begin and std::end, i.e.
//   using std::begin;
//   using std::end;
//   std::foo(begin(c), end(c);
// becomes
//   std::foo(container_algorithm_internal::begin(c),
//   container_algorithm_internal::end(c));
// These are meant for internal use only.

template <typename C>
ContainerIter<C> c_begin(C& c) { return begin(c); }

template <typename C>
ContainerIter<C> c_end(C& c) { return end(c); }

}  // namespace container_algorithm_internal

// PUBLIC API

//------------------------------------------------------------------------------
// Abseil algorithm.h functions
//------------------------------------------------------------------------------

// c_linear_search()
//
// Container-based version of absl::linear_search() for performing a linear
// search within a container.
template <typename C, typename EqualityComparable>
bool c_linear_search(const C& c, EqualityComparable&& value) {
  return linear_search(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<EqualityComparable>(value));
}

//------------------------------------------------------------------------------
// <iterator> algorithms
//------------------------------------------------------------------------------

// c_distance()
//
// Container-based version of the <iterator> `std::distance()` function to
// return the number of elements within a container.
template <typename C>
container_algorithm_internal::ContainerDifferenceType<const C> c_distance(
    const C& c) {
  return std::distance(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c));
}

//------------------------------------------------------------------------------
// <algorithm> Non-modifying sequence operations
//------------------------------------------------------------------------------

// c_all_of()
//
// Container-based version of the <algorithm> `std::all_of()` function to
// test a condition on all elements within a container.
template <typename C, typename Pred>
bool c_all_of(const C& c, Pred&& pred) {
  return std::all_of(container_algorithm_internal::c_begin(c),
                     container_algorithm_internal::c_end(c),
                     std::forward<Pred>(pred));
}

// c_any_of()
//
// Container-based version of the <algorithm> `std::any_of()` function to
// test if any element in a container fulfills a condition.
template <typename C, typename Pred>
bool c_any_of(const C& c, Pred&& pred) {
  return std::any_of(container_algorithm_internal::c_begin(c),
                     container_algorithm_internal::c_end(c),
                     std::forward<Pred>(pred));
}

// c_none_of()
//
// Container-based version of the <algorithm> `std::none_of()` function to
// test if no elements in a container fulfil a condition.
template <typename C, typename Pred>
bool c_none_of(const C& c, Pred&& pred) {
  return std::none_of(container_algorithm_internal::c_begin(c),
                      container_algorithm_internal::c_end(c),
                      std::forward<Pred>(pred));
}

// c_for_each()
//
// Container-based version of the <algorithm> `std::for_each()` function to
// apply a function to a container's elements.
template <typename C, typename Function>
decay_t<Function> c_for_each(C&& c, Function&& f) {
  return std::for_each(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<Function>(f));
}

// c_find()
//
// Container-based version of the <algorithm> `std::find()` function to find
// the first element containing the passed value within a container value.
template <typename C, typename T>
container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) {
  return std::find(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c),
                   std::forward<T>(value));
}

// c_find_if()
//
// Container-based version of the <algorithm> `std::find_if()` function to find
// the first element in a container matching the given condition.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) {
  return std::find_if(container_algorithm_internal::c_begin(c),
                      container_algorithm_internal::c_end(c),
                      std::forward<Pred>(pred));
}

// c_find_if_not()
//
// Container-based version of the <algorithm> `std::find_if_not()` function to
// find the first element in a container not matching the given condition.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c,
                                                             Pred&& pred) {
  return std::find_if_not(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c),
                          std::forward<Pred>(pred));
}

// c_find_end()
//
// Container-based version of the <algorithm> `std::find_end()` function to
// find the last subsequence within a container.
template <typename Sequence1, typename Sequence2>
container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
    Sequence1& sequence, Sequence2& subsequence) {
  return std::find_end(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence),
                       container_algorithm_internal::c_begin(subsequence),
                       container_algorithm_internal::c_end(subsequence));
}

// Overload of c_find_end() for using a predicate evaluation other than `==` as
// the function's test condition.
template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
  return std::find_end(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence),
                       container_algorithm_internal::c_begin(subsequence),
                       container_algorithm_internal::c_end(subsequence),
                       std::forward<BinaryPredicate>(pred));
}

// c_find_first_of()
//
// Container-based version of the <algorithm> `std::find_first_of()` function to
// find the first elements in an ordered set within a container.
template <typename C1, typename C2>
container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container,
                                                                C2& options) {
  return std::find_first_of(container_algorithm_internal::c_begin(container),
                            container_algorithm_internal::c_end(container),
                            container_algorithm_internal::c_begin(options),
                            container_algorithm_internal::c_end(options));
}

// Overload of c_find_first_of() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<C1> c_find_first_of(
    C1& container, C2& options, BinaryPredicate&& pred) {
  return std::find_first_of(container_algorithm_internal::c_begin(container),
                            container_algorithm_internal::c_end(container),
                            container_algorithm_internal::c_begin(options),
                            container_algorithm_internal::c_end(options),
                            std::forward<BinaryPredicate>(pred));
}

// c_adjacent_find()
//
// Container-based version of the <algorithm> `std::adjacent_find()` function to
// find equal adjacent elements within a container.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
    Sequence& sequence) {
  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence));
}

// Overload of c_adjacent_find() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
    Sequence& sequence, BinaryPredicate&& pred) {
  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<BinaryPredicate>(pred));
}

// c_count()
//
// Container-based version of the <algorithm> `std::count()` function to count
// values that match within a container.
template <typename C, typename T>
container_algorithm_internal::ContainerDifferenceType<const C> c_count(
    const C& c, T&& value) {
  return std::count(container_algorithm_internal::c_begin(c),
                    container_algorithm_internal::c_end(c),
                    std::forward<T>(value));
}

// c_count_if()
//
// Container-based version of the <algorithm> `std::count_if()` function to
// count values matching a condition within a container.
template <typename C, typename Pred>
container_algorithm_internal::ContainerDifferenceType<const C> c_count_if(
    const C& c, Pred&& pred) {
  return std::count_if(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<Pred>(pred));
}

// c_mismatch()
//
// Container-based version of the <algorithm> `std::mismatchf()` function to
// return the first element where two ordered containers differ.
template <typename C1, typename C2>
container_algorithm_internal::ContainerIterPairType<C1, C2>
c_mismatch(C1& c1, C2& c2) {
  return std::mismatch(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2));
}

// Overload of c_mismatch() for using a predicate evaluation other than `==` as
// the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
container_algorithm_internal::ContainerIterPairType<C1, C2>
c_mismatch(C1& c1, C2& c2, BinaryPredicate&& pred) {
  return std::mismatch(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2),
                       std::forward<BinaryPredicate>(pred));
}

// c_equal()
//
// Container-based version of the <algorithm> `std::equal()` function to
// test whether two containers are equal.
//
// NOTE: the semantics of c_equal() are slightly different than those of
// equal(): while the latter iterates over the second container only up to the
// size of the first container, c_equal() also checks whether the container
// sizes are equal.  This better matches expectations about c_equal() based on
// its signature.
//
// Example:
//   vector v1 = <1, 2, 3>;
//   vector v2 = <1, 2, 3, 4>;
//   equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true
//   c_equal(v1, v2) returns false

template <typename C1, typename C2>
bool c_equal(const C1& c1, const C2& c2) {
  return ((c1.size() == c2.size()) &&
          std::equal(container_algorithm_internal::c_begin(c1),
                     container_algorithm_internal::c_end(c1),
                     container_algorithm_internal::c_begin(c2)));
}

// Overload of c_equal() for using a predicate evaluation other than `==` as
// the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
  return ((c1.size() == c2.size()) &&
          std::equal(container_algorithm_internal::c_begin(c1),
                     container_algorithm_internal::c_end(c1),
                     container_algorithm_internal::c_begin(c2),
                     std::forward<BinaryPredicate>(pred)));
}

// c_is_permutation()
//
// Container-based version of the <algorithm> `std::is_permutation()` function
// to test whether a container is a permutation of another.
template <typename C1, typename C2>
bool c_is_permutation(const C1& c1, const C2& c2) {
  using std::begin;
  using std::end;
  return c1.size() == c2.size() &&
         std::is_permutation(begin(c1), end(c1), begin(c2));
}

// Overload of c_is_permutation() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
  using std::begin;
  using std::end;
  return c1.size() == c2.size() &&
         std::is_permutation(begin(c1), end(c1), begin(c2),
                             std::forward<BinaryPredicate>(pred));
}

// c_search()
//
// Container-based version of the <algorithm> `std::search()` function to search
// a container for a subsequence.
template <typename Sequence1, typename Sequence2>
container_algorithm_internal::ContainerIter<Sequence1> c_search(
    Sequence1& sequence, Sequence2& subsequence) {
  return std::search(container_algorithm_internal::c_begin(sequence),
                     container_algorithm_internal::c_end(sequence),
                     container_algorithm_internal::c_begin(subsequence),
                     container_algorithm_internal::c_end(subsequence));
}

// Overload of c_search() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence1> c_search(
    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
  return std::search(container_algorithm_internal::c_begin(sequence),
                     container_algorithm_internal::c_end(sequence),
                     container_algorithm_internal::c_begin(subsequence),
                     container_algorithm_internal::c_end(subsequence),
                     std::forward<BinaryPredicate>(pred));
}

// c_search_n()
//
// Container-based version of the <algorithm> `std::search_n()` function to
// search a container for the first sequence of N elements.
template <typename Sequence, typename Size, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_search_n(
    Sequence& sequence, Size count, T&& value) {
  return std::search_n(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence), count,
                       std::forward<T>(value));
}

// Overload of c_search_n() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence, typename Size, typename T,
          typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence> c_search_n(
    Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) {
  return std::search_n(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence), count,
                       std::forward<T>(value),
                       std::forward<BinaryPredicate>(pred));
}

//------------------------------------------------------------------------------
// <algorithm> Modifying sequence operations
//------------------------------------------------------------------------------

// c_copy()
//
// Container-based version of the <algorithm> `std::copy()` function to copy a
// container's elements into an iterator.
template <typename InputSequence, typename OutputIterator>
OutputIterator c_copy(const InputSequence& input, OutputIterator output) {
  return std::copy(container_algorithm_internal::c_begin(input),
                   container_algorithm_internal::c_end(input), output);
}

// c_copy_n()
//
// Container-based version of the <algorithm> `std::copy_n()` function to copy a
// container's first N elements into an iterator.
template <typename C, typename Size, typename OutputIterator>
OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) {
  return std::copy_n(container_algorithm_internal::c_begin(input), n, output);
}

// c_copy_if()
//
// Container-based version of the <algorithm> `std::copy_if()` function to copy
// a container's elements satisfying some condition into an iterator.
template <typename InputSequence, typename OutputIterator, typename Pred>
OutputIterator c_copy_if(const InputSequence& input, OutputIterator output,
                         Pred&& pred) {
  return std::copy_if(container_algorithm_internal::c_begin(input),
                      container_algorithm_internal::c_end(input), output,
                      std::forward<Pred>(pred));
}

// c_copy_backward()
//
// Container-based version of the <algorithm> `std::copy_backward()` function to
// copy a container's elements in reverse order into an iterator.
template <typename C, typename BidirectionalIterator>
BidirectionalIterator c_copy_backward(const C& src,
                                      BidirectionalIterator dest) {
  return std::copy_backward(container_algorithm_internal::c_begin(src),
                            container_algorithm_internal::c_end(src), dest);
}

// c_move()
//
// Container-based version of the <algorithm> `std::move()` function to move
// a container's elements into an iterator.
template <typename C, typename OutputIterator>
OutputIterator c_move(C& src, OutputIterator dest) {
  return std::move(container_algorithm_internal::c_begin(src),
                   container_algorithm_internal::c_end(src), dest);
}

// c_swap_ranges()
//
// Container-based version of the <algorithm> `std::swap_ranges()` function to
// swap a container's elements with another container's elements.
template <typename C1, typename C2>
container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) {
  return std::swap_ranges(container_algorithm_internal::c_begin(c1),
                          container_algorithm_internal::c_end(c1),
                          container_algorithm_internal::c_begin(c2));
}

// c_transform()
//
// Container-based version of the <algorithm> `std::transform()` function to
// transform a container's elements using the unary operation, storing the
// result in an iterator pointing to the last transformed element in the output
// range.
template <typename InputSequence, typename OutputIterator, typename UnaryOp>
OutputIterator c_transform(const InputSequence& input, OutputIterator output,
                           UnaryOp&& unary_op) {
  return std::transform(container_algorithm_internal::c_begin(input),
                        container_algorithm_internal::c_end(input), output,
                        std::forward<UnaryOp>(unary_op));
}

// Overload of c_transform() for performing a transformation using a binary
// predicate.
template <typename InputSequence1, typename InputSequence2,
          typename OutputIterator, typename BinaryOp>
OutputIterator c_transform(const InputSequence1& input1,
                           const InputSequence2& input2, OutputIterator output,
                           BinaryOp&& binary_op) {
  return std::transform(container_algorithm_internal::c_begin(input1),
                        container_algorithm_internal::c_end(input1),
                        container_algorithm_internal::c_begin(input2), output,
                        std::forward<BinaryOp>(binary_op));
}

// c_replace()
//
// Container-based version of the <algorithm> `std::replace()` function to
// replace a container's elements of some value with a new value. The container
// is modified in place.
template <typename Sequence, typename T>
void c_replace(Sequence& sequence, const T& old_value, const T& new_value) {
  std::replace(container_algorithm_internal::c_begin(sequence),
               container_algorithm_internal::c_end(sequence), old_value,
               new_value);
}

// c_replace_if()
//
// Container-based version of the <algorithm> `std::replace_if()` function to
// replace a container's elements of some value with a new value based on some
// condition. The container is modified in place.
template <typename C, typename Pred, typename T>
void c_replace_if(C& c, Pred&& pred, T&& new_value) {
  std::replace_if(container_algorithm_internal::c_begin(c),
                  container_algorithm_internal::c_end(c),
                  std::forward<Pred>(pred), std::forward<T>(new_value));
}

// c_replace_copy()
//
// Container-based version of the <algorithm> `std::replace_copy()` function to
// replace a container's elements of some value with a new value  and return the
// results within an iterator.
template <typename C, typename OutputIterator, typename T>
OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value,
                              T&& new_value) {
  return std::replace_copy(container_algorithm_internal::c_begin(c),
                           container_algorithm_internal::c_end(c), result,
                           std::forward<T>(old_value),
                           std::forward<T>(new_value));
}

// c_replace_copy_if()
//
// Container-based version of the <algorithm> `std::replace_copy_if()` function
// to replace a container's elements of some value with a new value based on
// some condition, and return the results within an iterator.
template <typename C, typename OutputIterator, typename Pred, typename T>
OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred,
                                 T&& new_value) {
  return std::replace_copy_if(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c), result,
                              std::forward<Pred>(pred),
                              std::forward<T>(new_value));
}

// c_fill()
//
// Container-based version of the <algorithm> `std::fill()` function to fill a
// container with some value.
template <typename C, typename T>
void c_fill(C& c, T&& value) {
  std::fill(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c), std::forward<T>(value));
}

// c_fill_n()
//
// Container-based version of the <algorithm> `std::fill_n()` function to fill
// the first N elements in a container with some value.
template <typename C, typename Size, typename T>
void c_fill_n(C& c, Size n, T&& value) {
  std::fill_n(container_algorithm_internal::c_begin(c), n,
              std::forward<T>(value));
}

// c_generate()
//
// Container-based version of the <algorithm> `std::generate()` function to
// assign a container's elements to the values provided by the given generator.
template <typename C, typename Generator>
void c_generate(C& c, Generator&& gen) {
  std::generate(container_algorithm_internal::c_begin(c),
                container_algorithm_internal::c_end(c),
                std::forward<Generator>(gen));
}

// c_generate_n()
//
// Container-based version of the <algorithm> `std::generate_n()` function to
// assign a container's first N elements to the values provided by the given
// generator.
template <typename C, typename Size, typename Generator>
container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n,
                                                            Generator&& gen) {
  return std::generate_n(container_algorithm_internal::c_begin(c), n,
                         std::forward<Generator>(gen));
}

// Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`,
// and `unique()` are omitted, because it's not clear whether or not such
// functions should call erase on their supplied sequences afterwards. Either
// behavior would be surprising for a different set of users.
//

// c_remove_copy()
//
// Container-based version of the <algorithm> `std::remove_copy()` function to
// copy a container's elements while removing any elements matching the given
// `value`.
template <typename C, typename OutputIterator, typename T>
OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) {
  return std::remove_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result,
                          std::forward<T>(value));
}

// c_remove_copy_if()
//
// Container-based version of the <algorithm> `std::remove_copy_if()` function
// to copy a container's elements while removing any elements matching the given
// condition.
template <typename C, typename OutputIterator, typename Pred>
OutputIterator c_remove_copy_if(const C& c, OutputIterator result,
                                Pred&& pred) {
  return std::remove_copy_if(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c), result,
                             std::forward<Pred>(pred));
}

// c_unique_copy()
//
// Container-based version of the <algorithm> `std::unique_copy()` function to
// copy a container's elements while removing any elements containing duplicate
// values.
template <typename C, typename OutputIterator>
OutputIterator c_unique_copy(const C& c, OutputIterator result) {
  return std::unique_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result);
}

// Overload of c_unique_copy() for using a predicate evaluation other than
// `==` for comparing uniqueness of the element values.
template <typename C, typename OutputIterator, typename BinaryPredicate>
OutputIterator c_unique_copy(const C& c, OutputIterator result,
                             BinaryPredicate&& pred) {
  return std::unique_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result,
                          std::forward<BinaryPredicate>(pred));
}

// c_reverse()
//
// Container-based version of the <algorithm> `std::reverse()` function to
// reverse a container's elements.
template <typename Sequence>
void c_reverse(Sequence& sequence) {
  std::reverse(container_algorithm_internal::c_begin(sequence),
               container_algorithm_internal::c_end(sequence));
}

// c_reverse_copy()
//
// Container-based version of the <algorithm> `std::reverse()` function to
// reverse a container's elements and write them to an iterator range.
template <typename C, typename OutputIterator>
OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) {
  return std::reverse_copy(container_algorithm_internal::c_begin(sequence),
                           container_algorithm_internal::c_end(sequence),
                           result);
}

// c_rotate()
//
// Container-based version of the <algorithm> `std::rotate()` function to
// shift a container's elements leftward such that the `middle` element becomes
// the first element in the container.
template <typename C,
          typename Iterator = container_algorithm_internal::ContainerIter<C>>
Iterator c_rotate(C& sequence, Iterator middle) {
  return absl::rotate(container_algorithm_internal::c_begin(sequence), middle,
                      container_algorithm_internal::c_end(sequence));
}

// c_rotate_copy()
//
// Container-based version of the <algorithm> `std::rotate_copy()` function to
// shift a container's elements leftward such that the `middle` element becomes
// the first element in a new iterator range.
template <typename C, typename OutputIterator>
OutputIterator c_rotate_copy(
    const C& sequence,
    container_algorithm_internal::ContainerIter<const C> middle,
    OutputIterator result) {
  return std::rotate_copy(container_algorithm_internal::c_begin(sequence),
                          middle, container_algorithm_internal::c_end(sequence),
                          result);
}

// c_shuffle()
//
// Container-based version of the <algorithm> `std::shuffle()` function to
// randomly shuffle elements within the container using a `gen()` uniform random
// number generator.
template <typename RandomAccessContainer, typename UniformRandomBitGenerator>
void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) {
  std::shuffle(container_algorithm_internal::c_begin(c),
               container_algorithm_internal::c_end(c),
               std::forward<UniformRandomBitGenerator>(gen));
}

//------------------------------------------------------------------------------
// <algorithm> Partition functions
//------------------------------------------------------------------------------

// c_is_partitioned()
//
// Container-based version of the <algorithm> `std::is_partitioned()` function
// to test whether all elements in the container for which `pred` returns `true`
// precede those for which `pred` is `false`.
template <typename C, typename Pred>
bool c_is_partitioned(const C& c, Pred&& pred) {
  return std::is_partitioned(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c),
                             std::forward<Pred>(pred));
}

// c_partition()
//
// Container-based version of the <algorithm> `std::partition()` function
// to rearrange all elements in a container in such a way that all elements for
// which `pred` returns `true` precede all those for which it returns `false`,
// returning an iterator to the first element of the second group.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) {
  return std::partition(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c),
                        std::forward<Pred>(pred));
}

// c_stable_partition()
//
// Container-based version of the <algorithm> `std::stable_partition()` function
// to rearrange all elements in a container in such a way that all elements for
// which `pred` returns `true` precede all those for which it returns `false`,
// preserving the relative ordering between the two groups. The function returns
// an iterator to the first element of the second group.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c,
                                                                  Pred&& pred) {
  return std::stable_partition(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<Pred>(pred));
}

// c_partition_copy()
//
// Container-based version of the <algorithm> `std::partition_copy()` function
// to partition a container's elements and return them into two iterators: one
// for which `pred` returns `true`, and one for which `pred` returns `false.`

template <typename C, typename OutputIterator1, typename OutputIterator2,
          typename Pred>
std::pair<OutputIterator1, OutputIterator2> c_partition_copy(
    const C& c, OutputIterator1 out_true, OutputIterator2 out_false,
    Pred&& pred) {
  return std::partition_copy(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c), out_true,
                             out_false, std::forward<Pred>(pred));
}

// c_partition_point()
//
// Container-based version of the <algorithm> `std::partition_point()` function
// to return the first element of an already partitioned container for which
// the given `pred` is not `true`.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_partition_point(C& c,
                                                                 Pred&& pred) {
  return std::partition_point(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c),
                              std::forward<Pred>(pred));
}

//------------------------------------------------------------------------------
// <algorithm> Sorting functions
//------------------------------------------------------------------------------

// c_sort()
//
// Container-based version of the <algorithm> `std::sort()` function
// to sort elements in ascending order of their values.
template <typename C>
void c_sort(C& c) {
  std::sort(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c));
}

// Overload of c_sort() for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename Compare>
void c_sort(C& c, Compare&& comp) {
  std::sort(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c),
            std::forward<Compare>(comp));
}

// c_stable_sort()
//
// Container-based version of the <algorithm> `std::stable_sort()` function
// to sort elements in ascending order of their values, preserving the order
// of equivalents.
template <typename C>
void c_stable_sort(C& c) {
  std::stable_sort(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c));
}

// Overload of c_stable_sort() for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename Compare>
void c_stable_sort(C& c, Compare&& comp) {
  std::stable_sort(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c),
                   std::forward<Compare>(comp));
}

// c_is_sorted()
//
// Container-based version of the <algorithm> `std::is_sorted()` function
// to evaluate whether the given container is sorted in ascending order.
template <typename C>
bool c_is_sorted(const C& c) {
  return std::is_sorted(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c));
}

// c_is_sorted() overload for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename Compare>
bool c_is_sorted(const C& c, Compare&& comp) {
  return std::is_sorted(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c),
                        std::forward<Compare>(comp));
}

// c_partial_sort()
//
// Container-based version of the <algorithm> `std::partial_sort()` function
// to rearrange elements within a container such that elements before `middle`
// are sorted in ascending order.
template <typename RandomAccessContainer>
void c_partial_sort(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) {
  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
                    container_algorithm_internal::c_end(sequence));
}

// Overload of c_partial_sort() for performing a `comp` comparison other than
// the default `operator<`.
template <typename RandomAccessContainer, typename Compare>
void c_partial_sort(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle,
    Compare&& comp) {
  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
                    container_algorithm_internal::c_end(sequence),
                    std::forward<Compare>(comp));
}

// c_partial_sort_copy()
//
// Container-based version of the <algorithm> `std::partial_sort_copy()`
// function to sort elements within a container such that elements before
// `middle` are sorted in ascending order, and return the result within an
// iterator.
template <typename C, typename RandomAccessContainer>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) {
  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
                                container_algorithm_internal::c_end(sequence),
                                container_algorithm_internal::c_begin(result),
                                container_algorithm_internal::c_end(result));
}

// Overload of c_partial_sort_copy() for performing a `comp` comparison other
// than the default `operator<`.
template <typename C, typename RandomAccessContainer, typename Compare>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_partial_sort_copy(const C& sequence, RandomAccessContainer& result,
                    Compare&& comp) {
  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
                                container_algorithm_internal::c_end(sequence),
                                container_algorithm_internal::c_begin(result),
                                container_algorithm_internal::c_end(result),
                                std::forward<Compare>(comp));
}

// c_is_sorted_until()
//
// Container-based version of the <algorithm> `std::is_sorted_until()` function
// to return the first element within a container that is not sorted in
// ascending order as an iterator.
template <typename C>
container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) {
  return std::is_sorted_until(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c));
}

// Overload of c_is_sorted_until() for performing a `comp` comparison other than
// the default `operator<`.
template <typename C, typename Compare>
container_algorithm_internal::ContainerIter<C> c_is_sorted_until(
    C& c, Compare&& comp) {
  return std::is_sorted_until(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c),
                              std::forward<Compare>(comp));
}

// c_nth_element()
//
// Container-based version of the <algorithm> `std::nth_element()` function
// to rearrange the elements within a container such that the `nth` element
// would be in that position in an ordered sequence; other elements may be in
// any order, except that all preceding `nth` will be less than that element,
// and all following `nth` will be greater than that element.
template <typename RandomAccessContainer>
void c_nth_element(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) {
  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
                   container_algorithm_internal::c_end(sequence));
}

// Overload of c_nth_element() for performing a `comp` comparison other than
// the default `operator<`.
template <typename RandomAccessContainer, typename Compare>
void c_nth_element(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth,
    Compare&& comp) {
  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
                   container_algorithm_internal::c_end(sequence),
                   std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Binary Search
//------------------------------------------------------------------------------

// c_lower_bound()
//
// Container-based version of the <algorithm> `std::lower_bound()` function
// to return an iterator pointing to the first element in a sorted container
// which does not compare less than `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
    Sequence& sequence, T&& value) {
  return std::lower_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_lower_bound() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename Compare>
container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
    Sequence& sequence, T&& value, Compare&& comp) {
  return std::lower_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<Compare>(comp));
}

// c_upper_bound()
//
// Container-based version of the <algorithm> `std::upper_bound()` function
// to return an iterator pointing to the first element in a sorted container
// which is greater than `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
    Sequence& sequence, T&& value) {
  return std::upper_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_upper_bound() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename Compare>
container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
    Sequence& sequence, T&& value, Compare&& comp) {
  return std::upper_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<Compare>(comp));
}

// c_equal_range()
//
// Container-based version of the <algorithm> `std::equal_range()` function
// to return an iterator pair pointing to the first and last elements in a
// sorted container which compare equal to `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>
c_equal_range(Sequence& sequence, T&& value) {
  return std::equal_range(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_equal_range() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename Compare>
container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>
c_equal_range(Sequence& sequence, T&& value, Compare&& comp) {
  return std::equal_range(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<Compare>(comp));
}

// c_binary_search()
//
// Container-based version of the <algorithm> `std::binary_search()` function
// to test if any element in the sorted container contains a value equivalent to
// 'value'.
template <typename Sequence, typename T>
bool c_binary_search(Sequence&& sequence, T&& value) {
  return std::binary_search(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<T>(value));
}

// Overload of c_binary_search() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename Compare>
bool c_binary_search(Sequence&& sequence, T&& value, Compare&& comp) {
  return std::binary_search(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<T>(value),
                            std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Merge functions
//------------------------------------------------------------------------------

// c_merge()
//
// Container-based version of the <algorithm> `std::merge()` function
// to merge two sorted containers into a single sorted iterator.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) {
  return std::merge(container_algorithm_internal::c_begin(c1),
                    container_algorithm_internal::c_end(c1),
                    container_algorithm_internal::c_begin(c2),
                    container_algorithm_internal::c_end(c2), result);
}

// Overload of c_merge() for performing a `comp` comparison other than
// the default `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename Compare>
OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result,
                       Compare&& comp) {
  return std::merge(container_algorithm_internal::c_begin(c1),
                    container_algorithm_internal::c_end(c1),
                    container_algorithm_internal::c_begin(c2),
                    container_algorithm_internal::c_end(c2), result,
                    std::forward<Compare>(comp));
}

// c_inplace_merge()
//
// Container-based version of the <algorithm> `std::inplace_merge()` function
// to merge a supplied iterator `middle` into a container.
template <typename C>
void c_inplace_merge(C& c,
                     container_algorithm_internal::ContainerIter<C> middle) {
  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
                     container_algorithm_internal::c_end(c));
}

// Overload of c_inplace_merge() for performing a merge using a `comp` other
// than `operator<`.
template <typename C, typename Compare>
void c_inplace_merge(C& c,
                     container_algorithm_internal::ContainerIter<C> middle,
                     Compare&& comp) {
  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
                     container_algorithm_internal::c_end(c),
                     std::forward<Compare>(comp));
}

// c_includes()
//
// Container-based version of the <algorithm> `std::includes()` function
// to test whether a sorted container `c1` entirely contains another sorted
// container `c2`.
template <typename C1, typename C2>
bool c_includes(const C1& c1, const C2& c2) {
  return std::includes(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2),
                       container_algorithm_internal::c_end(c2));
}

// Overload of c_includes() for performing a merge using a `comp` other than
// `operator<`.
template <typename C1, typename C2, typename Compare>
bool c_includes(const C1& c1, const C2& c2, Compare&& comp) {
  return std::includes(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2),
                       container_algorithm_internal::c_end(c2),
                       std::forward<Compare>(comp));
}

// c_set_union()
//
// Container-based version of the <algorithm> `std::set_union()` function
// to return an iterator containing the union of two containers; duplicate
// values are not copied into the output.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) {
  return std::set_union(container_algorithm_internal::c_begin(c1),
                        container_algorithm_internal::c_end(c1),
                        container_algorithm_internal::c_begin(c2),
                        container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_union() for performing a merge using a `comp` other than
// `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename Compare>
OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output,
                           Compare&& comp) {
  return std::set_union(container_algorithm_internal::c_begin(c1),
                        container_algorithm_internal::c_end(c1),
                        container_algorithm_internal::c_begin(c2),
                        container_algorithm_internal::c_end(c2), output,
                        std::forward<Compare>(comp));
}

// c_set_intersection()
//
// Container-based version of the <algorithm> `std::set_intersection()` function
// to return an iterator containing the intersection of two containers.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_set_intersection(const C1& c1, const C2& c2,
                                  OutputIterator output) {
  return std::set_intersection(container_algorithm_internal::c_begin(c1),
                               container_algorithm_internal::c_end(c1),
                               container_algorithm_internal::c_begin(c2),
                               container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_intersection() for performing a merge using a `comp` other
// than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename Compare>
OutputIterator c_set_intersection(const C1& c1, const C2& c2,
                                  OutputIterator output, Compare&& comp) {
  return std::set_intersection(container_algorithm_internal::c_begin(c1),
                               container_algorithm_internal::c_end(c1),
                               container_algorithm_internal::c_begin(c2),
                               container_algorithm_internal::c_end(c2), output,
                               std::forward<Compare>(comp));
}

// c_set_difference()
//
// Container-based version of the <algorithm> `std::set_difference()` function
// to return an iterator containing elements present in the first container but
// not in the second.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_set_difference(const C1& c1, const C2& c2,
                                OutputIterator output) {
  return std::set_difference(container_algorithm_internal::c_begin(c1),
                             container_algorithm_internal::c_end(c1),
                             container_algorithm_internal::c_begin(c2),
                             container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_difference() for performing a merge using a `comp` other
// than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename Compare>
OutputIterator c_set_difference(const C1& c1, const C2& c2,
                                OutputIterator output, Compare&& comp) {
  return std::set_difference(container_algorithm_internal::c_begin(c1),
                             container_algorithm_internal::c_end(c1),
                             container_algorithm_internal::c_begin(c2),
                             container_algorithm_internal::c_end(c2), output,
                             std::forward<Compare>(comp));
}

// c_set_symmetric_difference()
//
// Container-based version of the <algorithm> `std::set_symmetric_difference()`
// function to return an iterator containing elements present in either one
// container or the other, but not both.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
                                          OutputIterator output) {
  return std::set_symmetric_difference(
      container_algorithm_internal::c_begin(c1),
      container_algorithm_internal::c_end(c1),
      container_algorithm_internal::c_begin(c2),
      container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_symmetric_difference() for performing a merge using a
// `comp` other than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename Compare>
OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
                                          OutputIterator output,
                                          Compare&& comp) {
  return std::set_symmetric_difference(
      container_algorithm_internal::c_begin(c1),
      container_algorithm_internal::c_end(c1),
      container_algorithm_internal::c_begin(c2),
      container_algorithm_internal::c_end(c2), output,
      std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Heap functions
//------------------------------------------------------------------------------

// c_push_heap()
//
// Container-based version of the <algorithm> `std::push_heap()` function
// to push a value onto a container heap.
template <typename RandomAccessContainer>
void c_push_heap(RandomAccessContainer& sequence) {
  std::push_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_push_heap() for performing a push operation on a heap using a
// `comp` other than `operator<`.
template <typename RandomAccessContainer, typename Compare>
void c_push_heap(RandomAccessContainer& sequence, Compare&& comp) {
  std::push_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<Compare>(comp));
}

// c_pop_heap()
//
// Container-based version of the <algorithm> `std::pop_heap()` function
// to pop a value from a heap container.
template <typename RandomAccessContainer>
void c_pop_heap(RandomAccessContainer& sequence) {
  std::pop_heap(container_algorithm_internal::c_begin(sequence),
                container_algorithm_internal::c_end(sequence));
}

// Overload of c_pop_heap() for performing a pop operation on a heap using a
// `comp` other than `operator<`.
template <typename RandomAccessContainer, typename Compare>
void c_pop_heap(RandomAccessContainer& sequence, Compare&& comp) {
  std::pop_heap(container_algorithm_internal::c_begin(sequence),
                container_algorithm_internal::c_end(sequence),
                std::forward<Compare>(comp));
}

// c_make_heap()
//
// Container-based version of the <algorithm> `std::make_heap()` function
// to make a container a heap.
template <typename RandomAccessContainer>
void c_make_heap(RandomAccessContainer& sequence) {
  std::make_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_make_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename Compare>
void c_make_heap(RandomAccessContainer& sequence, Compare&& comp) {
  std::make_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<Compare>(comp));
}

// c_sort_heap()
//
// Container-based version of the <algorithm> `std::sort_heap()` function
// to sort a heap into ascending order (after which it is no longer a heap).
template <typename RandomAccessContainer>
void c_sort_heap(RandomAccessContainer& sequence) {
  std::sort_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_sort_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename Compare>
void c_sort_heap(RandomAccessContainer& sequence, Compare&& comp) {
  std::sort_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<Compare>(comp));
}

// c_is_heap()
//
// Container-based version of the <algorithm> `std::is_heap()` function
// to check whether the given container is a heap.
template <typename RandomAccessContainer>
bool c_is_heap(const RandomAccessContainer& sequence) {
  return std::is_heap(container_algorithm_internal::c_begin(sequence),
                      container_algorithm_internal::c_end(sequence));
}

// Overload of c_is_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename Compare>
bool c_is_heap(const RandomAccessContainer& sequence, Compare&& comp) {
  return std::is_heap(container_algorithm_internal::c_begin(sequence),
                      container_algorithm_internal::c_end(sequence),
                      std::forward<Compare>(comp));
}

// c_is_heap_until()
//
// Container-based version of the <algorithm> `std::is_heap_until()` function
// to find the first element in a given container which is not in heap order.
template <typename RandomAccessContainer>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_is_heap_until(RandomAccessContainer& sequence) {
  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence));
}

// Overload of c_is_heap_until() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename Compare>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_is_heap_until(RandomAccessContainer& sequence, Compare&& comp) {
  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
//  <algorithm> Min/max
//------------------------------------------------------------------------------

// c_min_element()
//
// Container-based version of the <algorithm> `std::min_element()` function
// to return an iterator pointing to the element with the smallest value, using
// `operator<` to make the comparisons.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_min_element(
    Sequence& sequence) {
  return std::min_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence));
}

// Overload of c_min_element() for performing a `comp` comparison other than
// `operator<`.
template <typename Sequence, typename Compare>
container_algorithm_internal::ContainerIter<Sequence> c_min_element(
    Sequence& sequence, Compare&& comp) {
  return std::min_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<Compare>(comp));
}

// c_max_element()
//
// Container-based version of the <algorithm> `std::max_element()` function
// to return an iterator pointing to the element with the largest value, using
// `operator<` to make the comparisons.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_max_element(
    Sequence& sequence) {
  return std::max_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence));
}

// Overload of c_max_element() for performing a `comp` comparison other than
// `operator<`.
template <typename Sequence, typename Compare>
container_algorithm_internal::ContainerIter<Sequence> c_max_element(
    Sequence& sequence, Compare&& comp) {
  return std::max_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<Compare>(comp));
}

// c_minmax_element()
//
// Container-based version of the <algorithm> `std::minmax_element()` function
// to return a pair of iterators pointing to the elements containing the
// smallest and largest values, respectively, using `operator<` to make the
// comparisons.
template <typename C>
container_algorithm_internal::ContainerIterPairType<C, C>
c_minmax_element(C& c) {
  return std::minmax_element(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c));
}

// Overload of c_minmax_element() for performing `comp` comparisons other than
// `operator<`.
template <typename C, typename Compare>
container_algorithm_internal::ContainerIterPairType<C, C>
c_minmax_element(C& c, Compare&& comp) {
  return std::minmax_element(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c),
                             std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
//  <algorithm> Lexicographical Comparisons
//------------------------------------------------------------------------------

// c_lexicographical_compare()
//
// Container-based version of the <algorithm> `std::lexicographical_compare()`
// function to lexicographically compare (e.g. sort words alphabetically) two
// container sequences. The comparison is performed using `operator<`. Note
// that capital letters ("A-Z") have ASCII values less than lowercase letters
// ("a-z").
template <typename Sequence1, typename Sequence2>
bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) {
  return std::lexicographical_compare(
      container_algorithm_internal::c_begin(sequence1),
      container_algorithm_internal::c_end(sequence1),
      container_algorithm_internal::c_begin(sequence2),
      container_algorithm_internal::c_end(sequence2));
}

// Overload of c_lexicographical_compare() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename Sequence1, typename Sequence2, typename Compare>
bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2,
                               Compare&& comp) {
  return std::lexicographical_compare(
      container_algorithm_internal::c_begin(sequence1),
      container_algorithm_internal::c_end(sequence1),
      container_algorithm_internal::c_begin(sequence2),
      container_algorithm_internal::c_end(sequence2),
      std::forward<Compare>(comp));
}

// c_next_permutation()
//
// Container-based version of the <algorithm> `std::next_permutation()` function
// to rearrange a container's elements into the next lexicographically greater
// permutation.
template <typename C>
bool c_next_permutation(C& c) {
  return std::next_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c));
}

// Overload of c_next_permutation() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename C, typename Compare>
bool c_next_permutation(C& c, Compare&& comp) {
  return std::next_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<Compare>(comp));
}

// c_prev_permutation()
//
// Container-based version of the <algorithm> `std::prev_permutation()` function
// to rearrange a container's elements into the next lexicographically lesser
// permutation.
template <typename C>
bool c_prev_permutation(C& c) {
  return std::prev_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c));
}

// Overload of c_prev_permutation() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename C, typename Compare>
bool c_prev_permutation(C& c, Compare&& comp) {
  return std::prev_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<Compare>(comp));
}

//------------------------------------------------------------------------------
// <numeric> algorithms
//------------------------------------------------------------------------------

// c_iota()
//
// Container-based version of the <algorithm> `std::iota()` function
// to compute successive values of `value`, as if incremented with `++value`
// after each element is written. and write them to the container.
template <typename Sequence, typename T>
void c_iota(Sequence& sequence, T&& value) {
  std::iota(container_algorithm_internal::c_begin(sequence),
            container_algorithm_internal::c_end(sequence),
            std::forward<T>(value));
}
// c_accumulate()
//
// Container-based version of the <algorithm> `std::accumulate()` function
// to accumulate the element values of a container to `init` and return that
// accumulation by value.
//
// Note: Due to a language technicality this function has return type
// absl::decay_t<T>. As a user of this function you can casually read
// this as "returns T by value" and assume it does the right thing.
template <typename Sequence, typename T>
decay_t<T> c_accumulate(const Sequence& sequence, T&& init) {
  return std::accumulate(container_algorithm_internal::c_begin(sequence),
                         container_algorithm_internal::c_end(sequence),
                         std::forward<T>(init));
}

// Overload of c_accumulate() for using a binary operations other than
// addition for computing the accumulation.
template <typename Sequence, typename T, typename BinaryOp>
decay_t<T> c_accumulate(const Sequence& sequence, T&& init,
                        BinaryOp&& binary_op) {
  return std::accumulate(container_algorithm_internal::c_begin(sequence),
                         container_algorithm_internal::c_end(sequence),
                         std::forward<T>(init),
                         std::forward<BinaryOp>(binary_op));
}

// c_inner_product()
//
// Container-based version of the <algorithm> `std::inner_product()` function
// to compute the cumulative inner product of container element pairs.
//
// Note: Due to a language technicality this function has return type
// absl::decay_t<T>. As a user of this function you can casually read
// this as "returns T by value" and assume it does the right thing.
template <typename Sequence1, typename Sequence2, typename T>
decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
                           T&& sum) {
  return std::inner_product(container_algorithm_internal::c_begin(factors1),
                            container_algorithm_internal::c_end(factors1),
                            container_algorithm_internal::c_begin(factors2),
                            std::forward<T>(sum));
}

// Overload of c_inner_product() for using binary operations other than
// `operator+` (for computing the accumulation) and `operator*` (for computing
// the product between the two container's element pair).
template <typename Sequence1, typename Sequence2, typename T,
          typename BinaryOp1, typename BinaryOp2>
decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
                           T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) {
  return std::inner_product(container_algorithm_internal::c_begin(factors1),
                            container_algorithm_internal::c_end(factors1),
                            container_algorithm_internal::c_begin(factors2),
                            std::forward<T>(sum), std::forward<BinaryOp1>(op1),
                            std::forward<BinaryOp2>(op2));
}

// c_adjacent_difference()
//
// Container-based version of the <algorithm> `std::adjacent_difference()`
// function to compute the difference between each element and the one preceding
// it and write it to an iterator.
template <typename InputSequence, typename OutputIt>
OutputIt c_adjacent_difference(const InputSequence& input,
                               OutputIt output_first) {
  return std::adjacent_difference(container_algorithm_internal::c_begin(input),
                                  container_algorithm_internal::c_end(input),
                                  output_first);
}

// Overload of c_adjacent_difference() for using a binary operation other than
// subtraction to compute the adjacent difference.
template <typename InputSequence, typename OutputIt, typename BinaryOp>
OutputIt c_adjacent_difference(const InputSequence& input,
                               OutputIt output_first, BinaryOp&& op) {
  return std::adjacent_difference(container_algorithm_internal::c_begin(input),
                                  container_algorithm_internal::c_end(input),
                                  output_first, std::forward<BinaryOp>(op));
}

// c_partial_sum()
//
// Container-based version of the <algorithm> `std::partial_sum()` function
// to compute the partial sum of the elements in a sequence and write them
// to an iterator. The partial sum is the sum of all element values so far in
// the sequence.
template <typename InputSequence, typename OutputIt>
OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) {
  return std::partial_sum(container_algorithm_internal::c_begin(input),
                          container_algorithm_internal::c_end(input),
                          output_first);
}

// Overload of c_partial_sum() for using a binary operation other than addition
// to compute the "partial sum".
template <typename InputSequence, typename OutputIt, typename BinaryOp>
OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first,
                       BinaryOp&& op) {
  return std::partial_sum(container_algorithm_internal::c_begin(input),
                          container_algorithm_internal::c_end(input),
                          output_first, std::forward<BinaryOp>(op));
}

}  // namespace absl

#endif  // ABSL_ALGORITHM_CONTAINER_H_