use std::{ future::Future, io, ops::RangeBounds, pin::Pin, task::{self, ready, Poll}, }; use tokio::io::{AsyncRead, AsyncReadExt, ReadBuf}; use trailer::{read_trailer, ReadTrailer, Trailer}; #[doc(hidden)] pub use self::trailer::Pad; pub(crate) use self::trailer::Tag; mod trailer; /// Reads a "bytes wire packet" from the underlying reader. /// The format is the same as in [crate::wire::bytes::read_bytes], /// however this structure provides a [AsyncRead] interface, /// allowing to not having to pass around the entire payload in memory. /// /// It is constructed by reading a size with [BytesReader::new], /// and yields payload data until the end of the packet is reached. /// /// It will not return the final bytes before all padding has been successfully /// consumed as well, but the full length of the reader must be consumed. /// /// If the data is not read all the way to the end, or an error is encountered, /// the underlying reader is no longer usable and might return garbage. #[derive(Debug)] #[allow(private_bounds)] pub struct BytesReader<R, T: Tag = Pad> { state: State<R, T>, } #[derive(Debug)] enum State<R, T: Tag> { /// Full 8-byte blocks are being read and released to the caller. Body { reader: Option<R>, consumed: u64, /// The total length of all user data contained in both the body and trailer. user_len: u64, }, /// The trailer is in the process of being read. ReadTrailer(ReadTrailer<R, T>), /// The trailer has been fully read and validated, /// and data can now be released to the caller. ReleaseTrailer { consumed: u8, data: Trailer }, } impl<R> BytesReader<R> where R: AsyncRead + Unpin, { /// Constructs a new BytesReader, using the underlying passed reader. pub async fn new<S: RangeBounds<u64>>(reader: R, allowed_size: S) -> io::Result<Self> { BytesReader::new_internal(reader, allowed_size).await } } #[allow(private_bounds)] impl<R, T: Tag> BytesReader<R, T> where R: AsyncRead + Unpin, { /// Constructs a new BytesReader, using the underlying passed reader. pub(crate) async fn new_internal<S: RangeBounds<u64>>( mut reader: R, allowed_size: S, ) -> io::Result<Self> { let size = reader.read_u64_le().await?; if !allowed_size.contains(&size) { return Err(io::Error::new(io::ErrorKind::InvalidData, "invalid size")); } Ok(Self { state: State::Body { reader: Some(reader), consumed: 0, user_len: size, }, }) } /// Returns whether there is any remaining data to be read. pub fn is_empty(&self) -> bool { self.len() == 0 } /// Remaining data length, ie not including data already read. /// /// If the size has not been read yet, this is [None]. pub fn len(&self) -> u64 { match self.state { State::Body { consumed, user_len, .. } => user_len - consumed, State::ReadTrailer(ref fut) => fut.len() as u64, State::ReleaseTrailer { consumed, ref data } => data.len() as u64 - consumed as u64, } } } #[allow(private_bounds)] impl<R: AsyncRead + Unpin, T: Tag> AsyncRead for BytesReader<R, T> { fn poll_read( mut self: Pin<&mut Self>, cx: &mut task::Context, buf: &mut ReadBuf, ) -> Poll<io::Result<()>> { let this = &mut self.state; loop { match this { State::Body { reader, consumed, user_len, } => { let body_len = *user_len & !7; let remaining = body_len - *consumed; let reader = if remaining == 0 { let reader = reader.take().unwrap(); let user_len = (*user_len & 7) as u8; *this = State::ReadTrailer(read_trailer(reader, user_len)); continue; } else { reader.as_mut().unwrap() }; let mut bytes_read = 0; ready!(with_limited(buf, remaining, |buf| { let ret = Pin::new(reader).poll_read(cx, buf); bytes_read = buf.initialized().len(); ret }))?; *consumed += bytes_read as u64; return if bytes_read != 0 { Ok(()) } else { Err(io::ErrorKind::UnexpectedEof.into()) } .into(); } State::ReadTrailer(fut) => { *this = State::ReleaseTrailer { consumed: 0, data: ready!(Pin::new(fut).poll(cx))?, }; } State::ReleaseTrailer { consumed, data } => { let data = &data[*consumed as usize..]; let data = &data[..usize::min(data.len(), buf.remaining())]; buf.put_slice(data); *consumed += data.len() as u8; return Ok(()).into(); } } } } } /// Make a limited version of `buf`, consisting only of up to `n` bytes of the unfilled section, and call `f` with it. /// After `f` returns, we propagate the filled cursor advancement back to `buf`. fn with_limited<R>(buf: &mut ReadBuf, n: u64, f: impl FnOnce(&mut ReadBuf) -> R) -> R { let mut nbuf = buf.take(n.try_into().unwrap_or(usize::MAX)); let ptr = nbuf.initialized().as_ptr(); let ret = f(&mut nbuf); // SAFETY: `ReadBuf::take` only returns the *unfilled* section of `buf`, // so anything filled is new, initialized data. // // We verify that `nbuf` still points to the same buffer, // so we're sure it hasn't been swapped out. unsafe { // ensure our buffer hasn't been swapped out assert_eq!(nbuf.initialized().as_ptr(), ptr); let n = nbuf.filled().len(); buf.assume_init(n); buf.advance(n); } ret } #[cfg(test)] mod tests { use std::time::Duration; use crate::wire::bytes::{padding_len, write_bytes}; use hex_literal::hex; use lazy_static::lazy_static; use rstest::rstest; use tokio::io::AsyncReadExt; use tokio_test::io::Builder; use super::*; /// The maximum length of bytes packets we're willing to accept in the test /// cases. const MAX_LEN: u64 = 1024; lazy_static! { pub static ref LARGE_PAYLOAD: Vec<u8> = (0..255).collect::<Vec<u8>>().repeat(4 * 1024); } /// Helper function, calling the (simpler) write_bytes with the payload. /// We use this to create data we want to read from the wire. async fn produce_packet_bytes(payload: &[u8]) -> Vec<u8> { let mut exp = vec![]; write_bytes(&mut exp, payload).await.unwrap(); exp } /// Read bytes packets of various length, and ensure read_to_end returns the /// expected payload. #[rstest] #[case::empty(&[])] // empty bytes packet #[case::size_1b(&[0xff])] // 1 bytes payload #[case::size_8b(&hex!("0001020304050607"))] // 8 bytes payload (no padding) #[case::size_9b(&hex!("000102030405060708"))] // 9 bytes payload (7 bytes padding) #[case::size_1m(LARGE_PAYLOAD.as_slice())] // larger bytes packet #[tokio::test] async fn read_payload_correct(#[case] payload: &[u8]) { let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await) .build(); let mut r = BytesReader::new(&mut mock, ..=LARGE_PAYLOAD.len() as u64) .await .unwrap(); let mut buf = Vec::new(); r.read_to_end(&mut buf).await.expect("must succeed"); assert_eq!(payload, &buf[..]); } /// Fail if the bytes packet is larger than allowed #[tokio::test] async fn read_bigger_than_allowed_fail() { let payload = LARGE_PAYLOAD.as_slice(); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[0..8]) // We stop reading after the size packet .build(); assert_eq!( BytesReader::new(&mut mock, ..2048) .await .unwrap_err() .kind(), io::ErrorKind::InvalidData ); } /// Fail if the bytes packet is smaller than allowed #[tokio::test] async fn read_smaller_than_allowed_fail() { let payload = &[0x00, 0x01, 0x02]; let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[0..8]) // We stop reading after the size packet .build(); assert_eq!( BytesReader::new(&mut mock, 1024..2048) .await .unwrap_err() .kind(), io::ErrorKind::InvalidData ); } /// Fail if the padding is not all zeroes #[tokio::test] async fn read_fail_if_nonzero_padding() { let payload = &[0x00, 0x01, 0x02]; let mut packet_bytes = produce_packet_bytes(payload).await; // Flip some bits in the padding packet_bytes[12] = 0xff; let mut mock = Builder::new().read(&packet_bytes).build(); // We stop reading after the faulty bit let mut r = BytesReader::new(&mut mock, ..MAX_LEN).await.unwrap(); let mut buf = Vec::new(); r.read_to_end(&mut buf).await.expect_err("must fail"); } /// Start a 9 bytes payload packet, but have the underlying reader return /// EOF in the middle of the size packet (after 4 bytes). /// We should get an unexpected EOF error, already when trying to read the /// first byte (of payload) #[tokio::test] async fn read_9b_eof_during_size() { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[..4]) .build(); assert_eq!( BytesReader::new(&mut mock, ..MAX_LEN) .await .expect_err("must fail") .kind(), io::ErrorKind::UnexpectedEof ); } /// Start a 9 bytes payload packet, but have the underlying reader return /// EOF in the middle of the payload (4 bytes into the payload). /// We should get an unexpected EOF error, after reading the first 4 bytes /// (successfully). #[tokio::test] async fn read_9b_eof_during_payload() { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[..8 + 4]) .build(); let mut r = BytesReader::new(&mut mock, ..MAX_LEN).await.unwrap(); let mut buf = [0; 9]; r.read_exact(&mut buf[..4]).await.expect("must succeed"); assert_eq!( r.read_exact(&mut buf[4..=4]) .await .expect_err("must fail") .kind(), std::io::ErrorKind::UnexpectedEof ); } /// Start a 9 bytes payload packet, but don't supply the necessary padding. /// This is expected to always fail before returning the final data. #[rstest] #[case::before_padding(8 + 9)] #[case::during_padding(8 + 9 + 2)] #[case::after_padding(8 + 9 + padding_len(9) as usize - 1)] #[tokio::test] async fn read_9b_eof_after_payload(#[case] offset: usize) { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[..offset]) .build(); let mut r = BytesReader::new(&mut mock, ..MAX_LEN).await.unwrap(); // read_exact of the payload *body* will succeed, but a subsequent read will // return UnexpectedEof error. assert_eq!(r.read_exact(&mut [0; 8]).await.unwrap(), 8); assert_eq!( r.read_exact(&mut [0]).await.unwrap_err().kind(), std::io::ErrorKind::UnexpectedEof ); } /// Start a 9 bytes payload packet, but return an error after a certain position. /// Ensure that error is propagated. #[rstest] #[case::during_size(4)] #[case::before_payload(8)] #[case::during_payload(8 + 4)] #[case::before_padding(8 + 4)] #[case::during_padding(8 + 9 + 2)] #[tokio::test] async fn propagate_error_from_reader(#[case] offset: usize) { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[..offset]) .read_error(std::io::Error::new(std::io::ErrorKind::Other, "foo")) .build(); // Either length reading or data reading can fail, depending on which test case we're in. let err: io::Error = async { let mut r = BytesReader::new(&mut mock, ..MAX_LEN).await?; let mut buf = Vec::new(); r.read_to_end(&mut buf).await?; Ok(()) } .await .expect_err("must fail"); assert_eq!( err.kind(), std::io::ErrorKind::Other, "error kind must match" ); assert_eq!( err.into_inner().unwrap().to_string(), "foo", "error payload must contain foo" ); } /// If there's an error right after the padding, we don't propagate it, as /// we're done reading. We just return EOF. #[tokio::test] async fn no_error_after_eof() { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await) .read_error(std::io::Error::new(std::io::ErrorKind::Other, "foo")) .build(); let mut r = BytesReader::new(&mut mock, ..MAX_LEN).await.unwrap(); let mut buf = Vec::new(); r.read_to_end(&mut buf).await.expect("must succeed"); assert_eq!(buf.as_slice(), payload); } /// Introduce various stalls in various places of the packet, to ensure we /// handle these cases properly, too. #[rstest] #[case::beginning(0)] #[case::before_payload(8)] #[case::during_payload(8 + 4)] #[case::before_padding(8 + 4)] #[case::during_padding(8 + 9 + 2)] #[tokio::test] async fn read_payload_correct_pending(#[case] offset: usize) { let payload = &hex!("FF0102030405060708"); let mut mock = Builder::new() .read(&produce_packet_bytes(payload).await[..offset]) .wait(Duration::from_nanos(0)) .read(&produce_packet_bytes(payload).await[offset..]) .build(); let mut r = BytesReader::new(&mut mock, ..=LARGE_PAYLOAD.len() as u64) .await .unwrap(); let mut buf = Vec::new(); r.read_to_end(&mut buf).await.expect("must succeed"); assert_eq!(payload, &buf[..]); } }