use super::{Error, STORE_DIR}; use crate::nixbase32; use crate::nixhash::{HashAlgo, NixHash, NixHashWithMode}; use crate::store_path::StorePath; use sha2::{Digest, Sha256}; use thiserror; /// Errors that can occur when creating a content-addressed store path. /// /// This wraps the main [Error].. #[derive(Debug, PartialEq, Eq, thiserror::Error)] pub enum BuildStorePathError { #[error("Invalid Store Path: {0}")] InvalidStorePath(Error), /// This error occurs when we have references outside the SHA-256 + /// Recursive case. The restriction comes from upstream Nix. It may be /// lifted at some point but there isn't a pressing need to anticipate that. #[error("References were not supported as much as requested")] InvalidReference(), } /// compress_hash takes an arbitrarily long sequence of bytes (usually /// a hash digest), and returns a sequence of bytes of length /// OUTPUT_SIZE. /// /// It's calculated by rotating through the bytes in the output buffer /// (zero- initialized), and XOR'ing with each byte of the passed /// input. It consumes 1 byte at a time, and XOR's it with the current /// value in the output buffer. /// /// This mimics equivalent functionality in C++ Nix. pub fn compress_hash<const OUTPUT_SIZE: usize>(input: &[u8]) -> [u8; OUTPUT_SIZE] { let mut output = [0; OUTPUT_SIZE]; for (ii, ch) in input.iter().enumerate() { output[ii % OUTPUT_SIZE] ^= ch; } output } /// This builds a store path, by calculating the text_hash_string of either a /// derivation or a literal text file that may contain references. pub fn build_text_path<S: AsRef<str>, I: IntoIterator<Item = S>, C: AsRef<[u8]>>( name: &str, content: C, references: I, ) -> Result<StorePath, Error> { build_store_path_from_fingerprint_parts( &make_type("text", references, false), // the nix_hash_string representation of the sha256 digest of some contents &{ let content_digest = { let hasher = Sha256::new_with_prefix(content); hasher.finalize() }; NixHash::new(crate::nixhash::HashAlgo::Sha256, content_digest.to_vec()) }, name, ) } /// This builds a more "regular" content-addressed store path pub fn build_regular_ca_path<S: AsRef<str>, I: IntoIterator<Item = S>>( name: &str, hash_with_mode: &NixHashWithMode, references: I, self_reference: bool, ) -> Result<StorePath, BuildStorePathError> { match &hash_with_mode { NixHashWithMode::Recursive( ref hash @ NixHash { algo: HashAlgo::Sha256, .. }, ) => build_store_path_from_fingerprint_parts( &make_type("source", references, self_reference), hash, name, ) .map_err(BuildStorePathError::InvalidStorePath), _ => { if references.into_iter().next().is_some() { return Err(BuildStorePathError::InvalidReference()); } if self_reference { return Err(BuildStorePathError::InvalidReference()); } build_store_path_from_fingerprint_parts( "output:out", &{ let content_digest = { let mut hasher = Sha256::new_with_prefix("fixed:out:"); hasher.update(hash_with_mode.mode().prefix()); hasher.update(hash_with_mode.digest().algo.to_string()); hasher.update(":"); hasher.update( &data_encoding::HEXLOWER.encode(&hash_with_mode.digest().digest), ); hasher.update(":"); hasher.finalize() }; NixHash::new(crate::nixhash::HashAlgo::Sha256, content_digest.to_vec()) }, name, ) .map_err(BuildStorePathError::InvalidStorePath) } } } /// This builds an input-addressed store path /// /// Input-addresed store paths are always derivation outputs, the "input" in question is the /// derivation and its closure. pub fn build_output_path( drv_hash: &NixHash, output_name: &str, output_path_name: &str, ) -> Result<StorePath, Error> { build_store_path_from_fingerprint_parts( &(String::from("output:") + output_name), drv_hash, output_path_name, ) } /// This builds a store path from fingerprint parts. /// Usually, that function is used from [build_text_path] and /// passed a "text hash string" (starting with "text:" as fingerprint), /// but other fingerprints starting with "output:" are also used in Derivation /// output path calculation. /// /// The fingerprint is hashed with sha256, its digest is compressed to 20 bytes, /// and nixbase32-encoded (32 characters). fn build_store_path_from_fingerprint_parts( ty: &str, hash: &NixHash, name: &str, ) -> Result<StorePath, Error> { let fingerprint = String::from(ty) + ":" + &hash.to_nix_hash_string() + ":" + STORE_DIR + ":" + name; let digest = { let hasher = Sha256::new_with_prefix(fingerprint); hasher.finalize() }; let compressed = compress_hash::<20>(&digest); super::validate_name(name.as_bytes())?; Ok(StorePath { digest: compressed, name: name.to_string(), }) } /// This contains the Nix logic to create "text hash strings", which are used /// in `builtins.toFile`, as well as in Derivation Path calculation. /// /// A text hash is calculated by concatenating the following fields, separated by a `:`: /// /// - text /// - references, individually joined by `:` /// - the nix_hash_string representation of the sha256 digest of some contents /// - the value of `storeDir` /// - the name fn make_type<S: AsRef<str>, I: IntoIterator<Item = S>>( ty: &str, references: I, self_ref: bool, ) -> String { let mut s = String::from(ty); for reference in references { s.push(':'); s.push_str(reference.as_ref()); } if self_ref { s.push_str(":self"); } s } /// Nix placeholders (i.e. values returned by `builtins.placeholder`) /// are used to populate outputs with paths that must be /// string-replaced with the actual placeholders later, at runtime. /// /// The actual placeholder is basically just a SHA256 hash encoded in /// cppnix format. pub fn hash_placeholder(name: &str) -> String { let digest = { let mut hasher = Sha256::new(); hasher.update(format!("nix-output:{}", name)); hasher.finalize() }; format!("/{}", nixbase32::encode(&digest)) } #[cfg(test)] mod test { use super::*; use crate::nixhash::{NixHash, NixHashWithMode}; #[test] fn build_text_path_with_zero_references() { // This hash should match `builtins.toFile`, e.g.: // // nix-repl> builtins.toFile "foo" "bar" // "/nix/store/vxjiwkjkn7x4079qvh1jkl5pn05j2aw0-foo" let store_path = build_text_path("foo", "bar", Vec::<String>::new()) .expect("build_store_path() should succeed"); assert_eq!( store_path.to_absolute_path().as_str(), "/nix/store/vxjiwkjkn7x4079qvh1jkl5pn05j2aw0-foo" ); } #[test] fn build_text_path_with_non_zero_references() { // This hash should match: // // nix-repl> builtins.toFile "baz" "${builtins.toFile "foo" "bar"}" // "/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz" let inner = build_text_path("foo", "bar", Vec::<String>::new()) .expect("path_with_references() should succeed"); let inner_path = inner.to_absolute_path(); let outer = build_text_path("baz", &inner_path, vec![inner_path.as_str()]) .expect("path_with_references() should succeed"); assert_eq!( outer.to_absolute_path().as_str(), "/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz" ); } #[test] fn build_sha1_path() { let outer = build_regular_ca_path( "bar", &NixHashWithMode::Recursive(NixHash { algo: HashAlgo::Sha1, digest: data_encoding::HEXLOWER .decode(b"0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33") .expect("hex should decode"), }), Vec::<String>::new(), false, ) .expect("path_with_references() should succeed"); assert_eq!( outer.to_absolute_path().as_str(), "/nix/store/mp57d33657rf34lzvlbpfa1gjfv5gmpg-bar" ); } #[test] fn build_store_path_with_non_zero_references() { // This hash should match: // // nix-repl> builtins.toFile "baz" "${builtins.toFile "foo" "bar"}" // "/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz" // // $ nix store make-content-addressed /nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz // rewrote '/nix/store/5xd714cbfnkz02h2vbsj4fm03x3f15nf-baz' to '/nix/store/s89y431zzhmdn3k8r96rvakryddkpv2v-baz' let outer = build_regular_ca_path( "baz", &NixHashWithMode::Recursive(NixHash { algo: HashAlgo::Sha256, digest: nixbase32::decode(b"1xqkzcb3909fp07qngljr4wcdnrh1gdam1m2n29i6hhrxlmkgkv1") .expect("hex should decode"), }), vec!["/nix/store/dxwkwjzdaq7ka55pkk252gh32bgpmql4-foo"], false, ) .expect("path_with_references() should succeed"); assert_eq!( outer.to_absolute_path().as_str(), "/nix/store/s89y431zzhmdn3k8r96rvakryddkpv2v-baz" ); } }