//! Implements the slightly odd "base32" encoding that's used in Nix. //! //! Nix uses a custom alphabet. Contrary to other implementations (RFC4648), //! encoding to "nix base32" doesn't use any padding, and reads in characters //! in reverse order. //! //! This is also the main reason why we can't use `data_encoding::Encoding` - //! it gets things wrong if there normally would be a need for padding. use std::fmt::Write; use thiserror::Error; const ALPHABET: &[u8; 32] = b"0123456789abcdfghijklmnpqrsvwxyz"; /// Errors that can occur while decoding nixbase32-encoded data. #[derive(Debug, Eq, PartialEq, Error)] pub enum Nixbase32DecodeError { #[error("character {0:x} not in alphabet")] CharacterNotInAlphabet(u8), #[error("nonzero carry")] NonzeroCarry(), #[error("invalid length")] InvalidLength, } /// Returns encoded input pub fn encode(input: &[u8]) -> String { let output_len = encode_len(input.len()); let mut output = String::with_capacity(output_len); if output_len > 0 { for n in (0..=output_len - 1).rev() { let b = n * 5; // bit offset within the entire input let i = b / 8; // input byte index let j = b % 8; // bit offset within that input byte let mut c = input[i] >> j; if i + 1 < input.len() { // we want to right shift, and discard shifted out bits (unchecked) // To do this without panicing, we need to do the shifting in u16 // and convert back to u8 afterwards. c |= ((input[i + 1] as u16) << (8 - j as u16)) as u8 } output .write_char(ALPHABET[(c & 0x1f) as usize] as char) .unwrap(); } } output } /// This maps a nixbase32-encoded character to its binary representation, which /// is also the index of the character in the alphabet. Invalid characters are /// mapped to 0xFF, which is itself an invalid value. const BASE32_ORD: [u8; 256] = { let mut ord = [0xFF; 256]; let mut alphabet = ALPHABET.as_slice(); let mut i = 0; while let &[c, ref tail @ ..] = alphabet { ord[c as usize] = i; alphabet = tail; i += 1; } ord }; /// Returns decoded input pub fn decode(input: impl AsRef<[u8]>) -> Result<Vec<u8>, Nixbase32DecodeError> { let input = input.as_ref(); let output_len = decode_len(input.len()); let mut output: Vec<u8> = vec![0x00; output_len]; decode_inner(input, &mut output)?; Ok(output) } pub fn decode_fixed<const K: usize>( input: impl AsRef<[u8]>, ) -> Result<[u8; K], Nixbase32DecodeError> { let input = input.as_ref(); if input.len() != encode_len(K) { return Err(Nixbase32DecodeError::InvalidLength); } let mut output = [0; K]; decode_inner(input, &mut output)?; Ok(output) } fn decode_inner(input: &[u8], output: &mut [u8]) -> Result<(), Nixbase32DecodeError> { // loop over all characters in reverse, and keep the iteration count in n. let mut carry = 0; let mut mask = 0; for (n, &c) in input.iter().rev().enumerate() { let b = n * 5; let i = b / 8; let j = b % 8; let digit = BASE32_ORD[c as usize]; let value = (digit as u16) << j; output[i] |= value as u8 | carry; carry = (value >> 8) as u8; mask |= digit; } if mask == 0xFF { let c = find_invalid(input); return Err(Nixbase32DecodeError::CharacterNotInAlphabet(c)); } // if we're at the end, but have a nonzero carry, the encoding is invalid. if carry != 0 { return Err(Nixbase32DecodeError::NonzeroCarry()); } Ok(()) } #[cold] fn find_invalid(input: &[u8]) -> u8 { for &c in input { if !ALPHABET.contains(&c) { return c; } } unreachable!() } /// Returns the decoded length of an input of length len. pub fn decode_len(len: usize) -> usize { (len * 5) / 8 } /// Returns the encoded length of an input of length len pub fn encode_len(len: usize) -> usize { (len * 8 + 4) / 5 } #[cfg(test)] mod tests { use hex_literal::hex; use test_case::test_case; #[test_case("", &[]; "empty bytes")] #[test_case("0z", &hex!("1f"); "one byte")] #[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", &hex!("8a12321522fd91efbd60ebb2481af88580f61600"); "store path")] #[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", &hex!("b3a24de97a8fdbc835b9833169501030b8977031bcb54b3b3ac13740f846ab30"); "sha256")] fn encode(enc: &str, dec: &[u8]) { assert_eq!(enc, super::encode(&dec)); } #[test_case("", Some(&[]) ; "empty bytes")] #[test_case("0z", Some(&hex!("1f")); "one byte")] #[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", Some(&hex!("8a12321522fd91efbd60ebb2481af88580f61600")); "store path")] #[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", Some(&hex!("b3a24de97a8fdbc835b9833169501030b8977031bcb54b3b3ac13740f846ab30")); "sha256")] // this is invalid encoding, because it encodes 10 1-bits, so the carry // would be 2 1-bits #[test_case("zz", None; "invalid encoding-1")] // this is an even more specific example - it'd decode as 00000000 11 #[test_case("c0", None; "invalid encoding-2")] fn decode(enc: &str, dec: Option<&[u8]>) { match dec { Some(dec) => { // The decode needs to match what's passed in dec assert_eq!(dec, super::decode(enc).unwrap()); } None => { // the decode needs to be an error assert!(super::decode(enc).is_err()); } } } #[test] fn decode_fixed() { assert_eq!( super::decode_fixed("00bgd045z0d4icpbc2yyz4gx48ak44la").unwrap(), hex!("8a12321522fd91efbd60ebb2481af88580f61600") ); assert_eq!( super::decode_fixed::<32>("00").unwrap_err(), super::Nixbase32DecodeError::InvalidLength ); } #[test] fn encode_len() { assert_eq!(super::encode_len(0), 0); assert_eq!(super::encode_len(20), 32); } #[test] fn decode_len() { assert_eq!(super::decode_len(0), 0); assert_eq!(super::decode_len(32), 20); } }