//! This module implements the abstract/virtual machine that runs Tvix //! bytecode. //! //! The operation of the VM is facilitated by the [`Frame`] type, //! which controls the current execution state of the VM and is //! processed within the VM's operating loop. //! //! A [`VM`] is used by instantiating it with an initial [`Frame`], //! then triggering its execution and waiting for the VM to return or //! yield an error. pub mod generators; mod macros; use codemap::Span; use serde_json::json; use std::{cmp::Ordering, collections::HashMap, ops::DerefMut, path::PathBuf, rc::Rc}; use crate::{ arithmetic_op, chunk::Chunk, cmp_op, compiler::GlobalsMap, errors::{Error, ErrorKind, EvalResult}, io::EvalIO, nix_search_path::NixSearchPath, observer::RuntimeObserver, opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx}, spans::LightSpan, upvalues::Upvalues, value::{ Builtin, BuiltinResult, Closure, CoercionKind, Lambda, NixAttrs, NixList, PointerEquality, SharedThunkSet, Thunk, Value, }, vm::generators::GenCo, warnings::{EvalWarning, WarningKind}, }; use generators::{call_functor, Generator, GeneratorState}; use self::generators::{VMRequest, VMResponse}; /// Internal helper trait for taking a span from a variety of types, to make use /// of `WithSpan` (defined below) more ergonomic at call sites. trait GetSpan { fn get_span(self) -> Span; } impl<'o> GetSpan for &VM<'o> { fn get_span(self) -> Span { self.reasonable_span.span() } } impl GetSpan for &CallFrame { fn get_span(self) -> Span { self.current_span() } } impl GetSpan for &LightSpan { fn get_span(self) -> Span { self.span() } } impl GetSpan for Span { fn get_span(self) -> Span { self } } /// Internal helper trait for ergonomically converting from a `Result<T, /// ErrorKind>` to a `Result<T, Error>` using the current span of a call frame, /// and chaining the VM's frame stack around it for printing a cause chain. trait WithSpan<T, S: GetSpan> { fn with_span(self, top_span: S, vm: &VM) -> Result<T, Error>; } impl<T, S: GetSpan> WithSpan<T, S> for Result<T, ErrorKind> { fn with_span(self, top_span: S, vm: &VM) -> Result<T, Error> { match self { Ok(something) => Ok(something), Err(kind) => { let mut error = Error::new(kind, top_span.get_span()); // Short-circuit the wrapping if we're dealing with tryEval, in // which case the error is hidden and does not need to be // exhaustive. if !vm.try_eval_frames.is_empty() && error.kind.is_catchable() { return Err(error); } // Wrap the top-level error in chaining errors for each element // of the frame stack. for frame in vm.frames.iter().rev() { match frame { Frame::CallFrame { span, .. } => { error = Error::new(ErrorKind::BytecodeError(Box::new(error)), span.span()); } Frame::Generator { name, span, .. } => { error = Error::new( ErrorKind::NativeError { err: Box::new(error), gen_type: name, }, span.span(), ); } } } Err(error) } } } } struct CallFrame { /// The lambda currently being executed. lambda: Rc<Lambda>, /// Optional captured upvalues of this frame (if a thunk or /// closure if being evaluated). upvalues: Rc<Upvalues>, /// Instruction pointer to the instruction currently being /// executed. ip: CodeIdx, /// Stack offset, i.e. the frames "view" into the VM's full stack. stack_offset: usize, } impl CallFrame { /// Retrieve an upvalue from this frame at the given index. fn upvalue(&self, idx: UpvalueIdx) -> &Value { &self.upvalues[idx] } /// Borrow the chunk of this frame's lambda. fn chunk(&self) -> &Chunk { &self.lambda.chunk } /// Increment this frame's instruction pointer and return the operation that /// the pointer moved past. fn inc_ip(&mut self) -> OpCode { let op = self.chunk()[self.ip]; self.ip += 1; op } /// Construct an error result from the given ErrorKind and the source span /// of the current instruction. pub fn error<T>(&self, vm: &VM, kind: ErrorKind) -> Result<T, Error> { Err(kind).with_span(self, vm) } /// Returns the current span. This is potentially expensive and should only /// be used when actually constructing an error or warning. pub fn current_span(&self) -> Span { self.chunk().get_span(self.ip - 1) } /// Returns the information needed to calculate the current span, /// but without performing that calculation. // TODO: why pub? pub(crate) fn current_light_span(&self) -> LightSpan { LightSpan::new_delayed(self.lambda.clone(), self.ip - 1) } } /// A frame represents an execution state of the VM. The VM has a stack of /// frames representing the nesting of execution inside of the VM, and operates /// on the frame at the top. /// /// When a frame has been fully executed, it is removed from the VM's frame /// stack and expected to leave a result [`Value`] on the top of the stack. enum Frame { /// CallFrame represents the execution of Tvix bytecode within a thunk, /// function or closure. CallFrame { /// The call frame itself, separated out into another type to pass it /// around easily. call_frame: CallFrame, /// Span from which the call frame was launched. span: LightSpan, }, /// Generator represents a frame that can yield further /// instructions to the VM while its execution is being driven. /// /// A generator is essentially an asynchronous function that can /// be suspended while waiting for the VM to do something (e.g. /// thunk forcing), and resume at the same point. Generator { /// human-readable description of the generator, name: &'static str, /// Span from which the generator was launched. span: LightSpan, state: GeneratorState, /// Generator itself, which can be resumed with `.resume()`. generator: Generator, }, } impl Frame { pub fn span(&self) -> LightSpan { match self { Frame::CallFrame { span, .. } | Frame::Generator { span, .. } => span.clone(), } } } struct VM<'o> { /// VM's frame stack, representing the execution contexts the VM is working /// through. Elements are usually pushed when functions are called, or /// thunks are being forced. frames: Vec<Frame>, /// The VM's top-level value stack. Within this stack, each code-executing /// frame holds a "view" of the stack representing the slice of the /// top-level stack that is relevant to its operation. This is done to avoid /// allocating a new `Vec` for each frame's stack. pub(crate) stack: Vec<Value>, /// Stack indices (absolute indexes into `stack`) of attribute /// sets from which variables should be dynamically resolved /// (`with`). with_stack: Vec<usize>, /// Runtime warnings collected during evaluation. warnings: Vec<EvalWarning>, /// Import cache, mapping absolute file paths to the value that /// they compile to. Note that this reuses thunks, too! // TODO: should probably be based on a file hash pub import_cache: Box<HashMap<PathBuf, Value>>, /// Parsed Nix search path, which is used to resolve `<...>` /// references. nix_search_path: NixSearchPath, /// Implementation of I/O operations used for impure builtins and /// features like `import`. io_handle: Box<dyn EvalIO>, /// Runtime observer which can print traces of runtime operations. observer: &'o mut dyn RuntimeObserver, /// Strong reference to the globals, guaranteeing that they are /// kept alive for the duration of evaluation. /// /// This is important because recursive builtins (specifically /// `import`) hold a weak reference to the builtins, while the /// original strong reference is held by the compiler which does /// not exist anymore at runtime. #[allow(dead_code)] globals: Rc<GlobalsMap>, /// A reasonably applicable span that can be used for errors in each /// execution situation. /// /// The VM should update this whenever control flow changes take place (i.e. /// entering or exiting a frame to yield control somewhere). reasonable_span: LightSpan, /// This field is responsible for handling `builtins.tryEval`. When that /// builtin is encountered, it sends a special message to the VM which /// pushes the frame index that requested to be informed of catchable /// errors in this field. /// /// The frame stack is then laid out like this: /// /// ```notrust /// ┌──┬──────────────────────────┐ /// │ 0│ `Result`-producing frame │ /// ├──┼──────────────────────────┤ /// │-1│ `builtins.tryEval` frame │ /// ├──┼──────────────────────────┤ /// │..│ ... other frames ... │ /// └──┴──────────────────────────┘ /// ``` /// /// Control is yielded to the outer VM loop, which evaluates the next frame /// and returns the result itself to the `builtins.tryEval` frame. try_eval_frames: Vec<usize>, } impl<'o> VM<'o> { pub fn new( nix_search_path: NixSearchPath, io_handle: Box<dyn EvalIO>, observer: &'o mut dyn RuntimeObserver, globals: Rc<GlobalsMap>, reasonable_span: LightSpan, ) -> Self { Self { nix_search_path, io_handle, observer, globals, reasonable_span, frames: vec![], stack: vec![], with_stack: vec![], warnings: vec![], import_cache: Default::default(), try_eval_frames: vec![], } } /// Push a call frame onto the frame stack. fn push_call_frame(&mut self, span: LightSpan, call_frame: CallFrame) { self.frames.push(Frame::CallFrame { span, call_frame }) } /// Run the VM's primary (outer) execution loop, continuing execution based /// on the current frame at the top of the frame stack. fn execute(mut self) -> EvalResult<RuntimeResult> { let mut catchable_error_occurred = false; while let Some(frame) = self.frames.pop() { self.reasonable_span = frame.span(); let frame_id = self.frames.len(); match frame { Frame::CallFrame { call_frame, span } => { self.observer .observe_enter_call_frame(0, &call_frame.lambda, frame_id); match self.execute_bytecode(span, call_frame) { Ok(true) => self.observer.observe_exit_call_frame(frame_id, &self.stack), Ok(false) => self .observer .observe_suspend_call_frame(frame_id, &self.stack), Err(err) => { if let Some(catching_frame_idx) = self.try_eval_frames.pop() { if err.kind.is_catchable() { self.observer.observe_exit_call_frame(frame_id, &self.stack); catchable_error_occurred = true; // truncate the frame stack back to the // frame that can catch this error self.frames.truncate(/* len = */ catching_frame_idx + 1); continue; } } return Err(err); } }; } // Handle generator frames, which can request thunk forcing // during their execution. Frame::Generator { name, span, state, generator, } => { self.observer .observe_enter_generator(frame_id, name, &self.stack); let initial_msg = if catchable_error_occurred { catchable_error_occurred = false; Some(VMResponse::ForceError) } else { None }; match self.run_generator(name, span, frame_id, state, generator, initial_msg) { Ok(true) => { self.observer .observe_exit_generator(frame_id, name, &self.stack) } Ok(false) => { self.observer .observe_suspend_generator(frame_id, name, &self.stack) } Err(err) => { if let Some(catching_frame_idx) = self.try_eval_frames.pop() { if err.kind.is_catchable() { self.observer.observe_exit_generator( frame_id, name, &self.stack, ); catchable_error_occurred = true; // truncate the frame stack back to the // frame that can catch this error self.frames.truncate(/* len = */ catching_frame_idx + 1); continue; } } return Err(err); } }; } } } // Once no more frames are present, return the stack's top value as the // result. Ok(RuntimeResult { value: self .stack .pop() .expect("tvix bug: runtime stack empty after execution"), warnings: self.warnings, }) } /// Run the VM's inner execution loop, processing Tvix bytecode from a /// chunk. This function returns if: /// /// 1. The code has run to the end, and has left a value on the top of the /// stack. In this case, the frame is not returned to the frame stack. /// /// 2. The code encounters a generator, in which case the frame in its /// current state is pushed back on the stack, and the generator is left on /// top of it for the outer loop to execute. /// /// 3. An error is encountered. /// /// This function *must* ensure that it leaves the frame stack in the /// correct order, especially when re-enqueuing a frame to execute. /// /// The return value indicates whether the bytecode has been executed to /// completion, or whether it has been suspended in favour of a generator. fn execute_bytecode(&mut self, span: LightSpan, mut frame: CallFrame) -> EvalResult<bool> { loop { let op = frame.inc_ip(); self.observer.observe_execute_op(frame.ip, &op, &self.stack); match op { OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => { let blueprint = match &frame.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; let thunk = if matches!(op, OpCode::OpThunkClosure(_)) { debug_assert!( upvalue_count > 0, "OpThunkClosure should not be called for plain lambdas" ); Thunk::new_closure(blueprint) } else { Thunk::new_suspended(blueprint, frame.current_light_span()) }; let upvalues = thunk.upvalues_mut(); self.stack.push(Value::Thunk(thunk.clone())); // From this point on we internally mutate the // upvalues. The closure (if `is_closure`) is // already in its stack slot, which means that it // can capture itself as an upvalue for // self-recursion. self.populate_upvalues(&mut frame, upvalue_count, upvalues)?; } OpCode::OpForce => { if let Some(Value::Thunk(_)) = self.stack.last() { let thunk = match self.stack_pop() { Value::Thunk(t) => t, _ => unreachable!(), }; let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("force", gen_span.clone(), |co| { thunk.force(co, gen_span) }); return Ok(false); } } OpCode::OpGetUpvalue(upv_idx) => { let value = frame.upvalue(upv_idx).clone(); self.stack.push(value); } // Discard the current frame. OpCode::OpReturn => { return Ok(true); } OpCode::OpConstant(idx) => { let c = frame.chunk()[idx].clone(); self.stack.push(c); } OpCode::OpCall => { let callable = self.stack_pop(); self.call_value(frame.current_light_span(), Some(frame), callable)?; // exit this loop and let the outer loop enter the new call return Ok(true); } // Remove the given number of elements from the stack, // but retain the top value. OpCode::OpCloseScope(Count(count)) => { // Immediately move the top value into the right // position. let target_idx = self.stack.len() - 1 - count; self.stack[target_idx] = self.stack_pop(); // Then drop the remaining values. for _ in 0..(count - 1) { self.stack.pop(); } } OpCode::OpClosure(idx) => { let blueprint = match &frame.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; debug_assert!( upvalue_count > 0, "OpClosure should not be called for plain lambdas" ); let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count); self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?; self.stack .push(Value::Closure(Rc::new(Closure::new_with_upvalues( Rc::new(upvalues), blueprint, )))); } OpCode::OpAttrsSelect => { let key = self.stack_pop().to_str().with_span(&frame, self)?; let attrs = self.stack_pop().to_attrs().with_span(&frame, self)?; match attrs.select(key.as_str()) { Some(value) => self.stack.push(value.clone()), None => { return frame.error( self, ErrorKind::AttributeNotFound { name: key.as_str().to_string(), }, ); } } } OpCode::OpJumpIfFalse(JumpOffset(offset)) => { debug_assert!(offset != 0); if !self.stack_peek(0).as_bool().with_span(&frame, self)? { frame.ip += offset; } } OpCode::OpPop => { self.stack.pop(); } OpCode::OpAttrsTrySelect => { let key = self.stack_pop().to_str().with_span(&frame, self)?; let value = match self.stack_pop() { Value::Attrs(attrs) => match attrs.select(key.as_str()) { Some(value) => value.clone(), None => Value::AttrNotFound, }, _ => Value::AttrNotFound, }; self.stack.push(value); } OpCode::OpGetLocal(StackIdx(local_idx)) => { let idx = frame.stack_offset + local_idx; self.stack.push(self.stack[idx].clone()); } OpCode::OpJumpIfNotFound(JumpOffset(offset)) => { debug_assert!(offset != 0); if matches!(self.stack_peek(0), Value::AttrNotFound) { self.stack_pop(); frame.ip += offset; } } OpCode::OpJump(JumpOffset(offset)) => { debug_assert!(offset != 0); frame.ip += offset; } OpCode::OpEqual => { let b = self.stack_pop(); let a = self.stack_pop(); let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("nix_eq", gen_span, |co| { a.nix_eq(b, co, PointerEquality::ForbidAll) }); return Ok(false); } // These assertion operations error out if the stack // top is not of the expected type. This is necessary // to implement some specific behaviours of Nix // exactly. OpCode::OpAssertBool => { let val = self.stack_peek(0); if !val.is_bool() { return frame.error( self, ErrorKind::TypeError { expected: "bool", actual: val.type_of(), }, ); } } OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?, OpCode::OpAttrsUpdate => { let rhs = self.stack_pop().to_attrs().with_span(&frame, self)?; let lhs = self.stack_pop().to_attrs().with_span(&frame, self)?; self.stack.push(Value::attrs(lhs.update(*rhs))) } OpCode::OpInvert => { let v = self.stack_pop().as_bool().with_span(&frame, self)?; self.stack.push(Value::Bool(!v)); } OpCode::OpList(Count(count)) => { let list = NixList::construct(count, self.stack.split_off(self.stack.len() - count)); self.stack.push(Value::List(list)); } OpCode::OpJumpIfTrue(JumpOffset(offset)) => { debug_assert!(offset != 0); if self.stack_peek(0).as_bool().with_span(&frame, self)? { frame.ip += offset; } } OpCode::OpHasAttr => { let key = self.stack_pop().to_str().with_span(&frame, self)?; let result = match self.stack_pop() { Value::Attrs(attrs) => attrs.contains(key.as_str()), // Nix allows use of `?` on non-set types, but // always returns false in those cases. _ => false, }; self.stack.push(Value::Bool(result)); } OpCode::OpConcat => { let rhs = self .stack_pop() .to_list() .with_span(&frame, self)? .into_inner(); let lhs = self .stack_pop() .to_list() .with_span(&frame, self)? .into_inner(); self.stack.push(Value::List(NixList::from(lhs + rhs))) } OpCode::OpResolveWith => { let ident = self.stack_pop().to_str().with_span(&frame, self)?; // Re-enqueue this frame. let op_span = frame.current_light_span(); self.push_call_frame(span, frame); // Construct a generator frame doing the lookup in constant // stack space. let with_stack_len = self.with_stack.len(); let closed_with_stack_len = self .last_call_frame() .map(|frame| frame.upvalues.with_stack_len()) .unwrap_or(0); self.enqueue_generator("resolve_with", op_span, |co| { resolve_with( co, ident.as_str().to_owned(), with_stack_len, closed_with_stack_len, ) }); return Ok(false); } OpCode::OpFinalise(StackIdx(idx)) => { match &self.stack[frame.stack_offset + idx] { Value::Closure(_) => panic!("attempted to finalise a closure"), Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]), // In functions with "formals" attributes, it is // possible for `OpFinalise` to be called on a // non-capturing value, in which case it is a no-op. // // TODO: detect this in some phase and skip the finalise; fail here _ => { /* TODO: panic here again to catch bugs */ } } } OpCode::OpCoerceToString => { let value = self.stack_pop(); let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("coerce_to_string", gen_span, |co| { value.coerce_to_string(co, CoercionKind::Weak) }); return Ok(false); } OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?, OpCode::OpValidateClosedFormals => { let formals = frame.lambda.formals.as_ref().expect( "OpValidateClosedFormals called within the frame of a lambda without formals", ); let args = self.stack_peek(0).to_attrs().with_span(&frame, self)?; for arg in args.keys() { if !formals.contains(arg) { return frame.error( self, ErrorKind::UnexpectedArgument { arg: arg.clone(), formals_span: formals.span, }, ); } } } OpCode::OpAdd => { let b = self.stack_pop(); let a = self.stack_pop(); let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); // OpAdd can add not just numbers, but also string-like // things, which requires more VM logic. This operation is // evaluated in a generator frame. self.enqueue_generator("add_values", gen_span, |co| add_values(co, a, b)); return Ok(false); } OpCode::OpSub => { let b = self.stack_pop(); let a = self.stack_pop(); let result = arithmetic_op!(&a, &b, -).with_span(&frame, self)?; self.stack.push(result); } OpCode::OpMul => { let b = self.stack_pop(); let a = self.stack_pop(); let result = arithmetic_op!(&a, &b, *).with_span(&frame, self)?; self.stack.push(result); } OpCode::OpDiv => { let b = self.stack_pop(); match b { Value::Integer(0) => return frame.error(self, ErrorKind::DivisionByZero), Value::Float(b) if b == 0.0_f64 => { return frame.error(self, ErrorKind::DivisionByZero) } _ => {} }; let a = self.stack_pop(); let result = arithmetic_op!(&a, &b, /).with_span(&frame, self)?; self.stack.push(result); } OpCode::OpNegate => match self.stack_pop() { Value::Integer(i) => self.stack.push(Value::Integer(-i)), Value::Float(f) => self.stack.push(Value::Float(-f)), v => { return frame.error( self, ErrorKind::TypeError { expected: "number (either int or float)", actual: v.type_of(), }, ); } }, OpCode::OpLess => cmp_op!(self, frame, span, <), OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=), OpCode::OpMore => cmp_op!(self, frame, span, >), OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=), OpCode::OpFindFile => match self.stack_pop() { Value::UnresolvedPath(path) => { let resolved = self .nix_search_path .resolve(&*self.io_handle, *path) .with_span(&frame, self)?; self.stack.push(resolved.into()); } _ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"), }, OpCode::OpResolveHomePath => match self.stack_pop() { Value::UnresolvedPath(path) => { match dirs::home_dir() { None => { return frame.error( self, ErrorKind::RelativePathResolution( "failed to determine home directory".into(), ), ); } Some(mut buf) => { buf.push(*path); self.stack.push(buf.into()); } }; } _ => { panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath") } }, OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx), OpCode::OpPopWith => { self.with_stack.pop(); } OpCode::OpAssertFail => { frame.error(self, ErrorKind::AssertionFailed)?; } // Data-carrying operands should never be executed, // that is a critical error in the VM/compiler. OpCode::DataStackIdx(_) | OpCode::DataDeferredLocal(_) | OpCode::DataUpvalueIdx(_) | OpCode::DataCaptureWith => { panic!("Tvix bug: attempted to execute data-carrying operand") } } } } } /// Implementation of helper functions for the runtime logic above. impl<'o> VM<'o> { pub(crate) fn stack_pop(&mut self) -> Value { self.stack.pop().expect("runtime stack empty") } fn stack_peek(&self, offset: usize) -> &Value { &self.stack[self.stack.len() - 1 - offset] } fn run_attrset(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> { let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2)) .with_span(frame, self)?; self.stack.push(Value::attrs(attrs)); Ok(()) } /// Access the last call frame present in the frame stack. fn last_call_frame(&self) -> Option<&CallFrame> { for frame in self.frames.iter().rev() { if let Frame::CallFrame { call_frame, .. } = frame { return Some(call_frame); } } None } /// Push an already constructed warning. pub fn push_warning(&mut self, warning: EvalWarning) { self.warnings.push(warning); } /// Emit a warning with the given WarningKind and the source span /// of the current instruction. pub fn emit_warning(&mut self, _kind: WarningKind) { // TODO: put LightSpan in warning, calculate only *after* eval // TODO: what to do with the spans? // self.push_warning(EvalWarning { // kind, // span: self.current_span(), // }); } /// Interpolate string fragments by popping the specified number of /// fragments of the stack, evaluating them to strings, and pushing /// the concatenated result string back on the stack. fn run_interpolate(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> { let mut out = String::new(); for _ in 0..count { out.push_str(self.stack_pop().to_str().with_span(frame, self)?.as_str()); } self.stack.push(Value::String(out.into())); Ok(()) } /// Returns a reasonable light span for the current situation that the VM is /// in. pub fn reasonable_light_span(&self) -> LightSpan { self.reasonable_span.clone() } /// Apply an argument from the stack to a builtin, and attempt to call it. /// /// All calls are tail-calls in Tvix, as every function application is a /// separate thunk and OpCall is thus the last result in the thunk. /// /// Due to this, once control flow exits this function, the generator will /// automatically be run by the VM. fn call_builtin(&mut self, span: LightSpan, mut builtin: Builtin) -> EvalResult<()> { let builtin_name = builtin.name(); self.observer.observe_enter_builtin(builtin_name); builtin.apply_arg(self.stack_pop()); match builtin.call() { // Partially applied builtin is just pushed back on the stack. BuiltinResult::Partial(partial) => self.stack.push(Value::Builtin(partial)), // Builtin is fully applied and the generator needs to be run by the VM. BuiltinResult::Called(name, generator) => self.frames.push(Frame::Generator { generator, span, name, state: GeneratorState::Running, }), } Ok(()) } fn call_value( &mut self, span: LightSpan, parent: Option<CallFrame>, callable: Value, ) -> EvalResult<()> { match callable { Value::Builtin(builtin) => self.call_builtin(span, builtin), Value::Thunk(thunk) => self.call_value(span, parent, thunk.value().clone()), Value::Closure(closure) => { let lambda = closure.lambda(); self.observer.observe_tail_call(self.frames.len(), &lambda); // The stack offset is always `stack.len() - arg_count`, and // since this branch handles native Nix functions (which always // take only a single argument and are curried), the offset is // `stack_len - 1`. let stack_offset = self.stack.len() - 1; self.push_call_frame( span, CallFrame { lambda, upvalues: closure.upvalues(), ip: CodeIdx(0), stack_offset, }, ); Ok(()) } // Attribute sets with a __functor attribute are callable. val @ Value::Attrs(_) => { let gen_span = parent .map(|p| p.current_light_span()) .unwrap_or_else(|| self.reasonable_light_span()); self.enqueue_generator("__functor call", gen_span, |co| call_functor(co, val)); Ok(()) } v => Err(ErrorKind::NotCallable(v.type_of())).with_span(&span, self), } } /// Populate the upvalue fields of a thunk or closure under construction. fn populate_upvalues( &mut self, frame: &mut CallFrame, count: usize, mut upvalues: impl DerefMut<Target = Upvalues>, ) -> EvalResult<()> { for _ in 0..count { match frame.inc_ip() { OpCode::DataStackIdx(StackIdx(stack_idx)) => { let idx = frame.stack_offset + stack_idx; let val = match self.stack.get(idx) { Some(val) => val.clone(), None => { return frame.error( self, ErrorKind::TvixBug { msg: "upvalue to be captured was missing on stack", metadata: Some(Rc::new(json!({ "ip": format!("{:#x}", frame.ip.0 - 1), "stack_idx(relative)": stack_idx, "stack_idx(absolute)": idx, }))), }, ); } }; upvalues.deref_mut().push(val); } OpCode::DataUpvalueIdx(upv_idx) => { upvalues.deref_mut().push(frame.upvalue(upv_idx).clone()); } OpCode::DataDeferredLocal(idx) => { upvalues.deref_mut().push(Value::DeferredUpvalue(idx)); } OpCode::DataCaptureWith => { // Start the captured with_stack off of the // current call frame's captured with_stack, ... let mut captured_with_stack = frame .upvalues .with_stack() .map(Clone::clone) // ... or make an empty one if there isn't one already. .unwrap_or_else(|| Vec::with_capacity(self.with_stack.len())); for idx in &self.with_stack { captured_with_stack.push(self.stack[*idx].clone()); } upvalues.deref_mut().set_with_stack(captured_with_stack); } _ => panic!("compiler error: missing closure operand"), } } Ok(()) } } // TODO(amjoseph): de-asyncify this /// Resolve a dynamically bound identifier (through `with`) by looking /// for matching values in the with-stacks carried at runtime. async fn resolve_with( co: GenCo, ident: String, vm_with_len: usize, upvalue_with_len: usize, ) -> Result<Value, ErrorKind> { /// Fetch and force a value on the with-stack from the VM. async fn fetch_forced_with(co: &GenCo, idx: usize) -> Value { match co.yield_(VMRequest::WithValue(idx)).await { VMResponse::Value(value) => value, msg => panic!( "Tvix bug: VM responded with incorrect generator message: {}", msg ), } } /// Fetch and force a value on the *captured* with-stack from the VM. async fn fetch_captured_with(co: &GenCo, idx: usize) -> Value { match co.yield_(VMRequest::CapturedWithValue(idx)).await { VMResponse::Value(value) => value, msg => panic!( "Tvix bug: VM responded with incorrect generator message: {}", msg ), } } for with_stack_idx in (0..vm_with_len).rev() { // TODO(tazjin): is this branch still live with the current with-thunking? let with = fetch_forced_with(&co, with_stack_idx).await; match with.to_attrs()?.select(&ident) { None => continue, Some(val) => return Ok(val.clone()), } } for upvalue_with_idx in (0..upvalue_with_len).rev() { let with = fetch_captured_with(&co, upvalue_with_idx).await; match with.to_attrs()?.select(&ident) { None => continue, Some(val) => return Ok(val.clone()), } } Err(ErrorKind::UnknownDynamicVariable(ident)) } // TODO(amjoseph): de-asyncify this async fn add_values(co: GenCo, a: Value, b: Value) -> Result<Value, ErrorKind> { let result = match (a, b) { (Value::Path(p), v) => { let mut path = p.to_string_lossy().into_owned(); let vs = generators::request_string_coerce(&co, v, CoercionKind::Weak).await; path.push_str(vs.as_str()); crate::value::canon_path(PathBuf::from(path)).into() } (Value::String(s1), Value::String(s2)) => Value::String(s1.concat(&s2)), (Value::String(s1), v) => Value::String( s1.concat(&generators::request_string_coerce(&co, v, CoercionKind::Weak).await), ), (v, Value::String(s2)) => Value::String( generators::request_string_coerce(&co, v, CoercionKind::Weak) .await .concat(&s2), ), (a, b) => arithmetic_op!(&a, &b, +)?, }; Ok(result) } /// The result of a VM's runtime evaluation. pub struct RuntimeResult { pub value: Value, pub warnings: Vec<EvalWarning>, } // TODO(amjoseph): de-asyncify this /// Generator that retrieves the final value from the stack, and deep-forces it /// before returning. async fn final_deep_force(co: GenCo) -> Result<Value, ErrorKind> { let value = generators::request_stack_pop(&co).await; Ok(generators::request_deep_force(&co, value, SharedThunkSet::default()).await) } pub fn run_lambda( nix_search_path: NixSearchPath, io_handle: Box<dyn EvalIO>, observer: &mut dyn RuntimeObserver, globals: Rc<GlobalsMap>, lambda: Rc<Lambda>, ) -> EvalResult<RuntimeResult> { // Retain the top-level span of the expression in this lambda, as // synthetic "calls" in deep_force will otherwise not have a span // to fall back to. // // We exploit the fact that the compiler emits a final instruction // with the span of the entire file for top-level expressions. let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1)); let mut vm = VM::new( nix_search_path, io_handle, observer, globals, root_span.into(), ); // Synthesise a frame that will instruct the VM to deep-force the final // value before returning it. vm.enqueue_generator("final_deep_force", root_span.into(), final_deep_force); vm.frames.push(Frame::CallFrame { span: root_span.into(), call_frame: CallFrame { lambda, upvalues: Rc::new(Upvalues::with_capacity(0)), ip: CodeIdx(0), stack_offset: 0, }, }); vm.execute() }