//! This module implements the virtual (or abstract) machine that runs //! Tvix bytecode. use serde_json::json; use std::{cmp::Ordering, collections::BTreeMap, ops::DerefMut, path::PathBuf, rc::Rc}; use crate::{ chunk::Chunk, errors::{Error, ErrorKind, EvalResult}, io::EvalIO, nix_search_path::NixSearchPath, observer::RuntimeObserver, opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx}, spans::LightSpan, unwrap_or_clone_rc, upvalues::Upvalues, value::{Builtin, Closure, CoercionKind, Lambda, NixAttrs, NixList, Thunk, Value}, warnings::{EvalWarning, WarningKind}, }; /// Representation of a VM continuation; /// see: https://en.wikipedia.org/wiki/Continuation-passing_style#CPS_in_Haskell type Continuation = Box<dyn FnOnce(&mut VM) -> EvalResult<Trampoline>>; /// A description of how to continue evaluation of a thunk when returned to by the VM /// /// This struct is used when forcing thunks to avoid stack-based recursion, which for deeply nested /// evaluation can easily overflow the stack. #[must_use = "this `Trampoline` may be a continuation request, which should be handled"] #[derive(Default)] pub struct Trampoline { /// The action to perform upon return to the trampoline pub action: Option<TrampolineAction>, /// The continuation to execute after the action has completed pub continuation: Option<Continuation>, } impl Trampoline { /// Add the execution of a new [`Continuation`] to the existing continuation /// of this `Trampoline`, returning the resulting `Trampoline`. pub fn append_to_continuation(self, f: Continuation) -> Self { Trampoline { action: self.action, continuation: match self.continuation { None => Some(f), Some(f0) => Some(Box::new(move |vm| { let trampoline = f0(vm)?; Ok(trampoline.append_to_continuation(f)) })), }, } } } /// Description of an action to perform upon return to a [`Trampoline`] by the VM pub enum TrampolineAction { /// Enter a new stack frame EnterFrame { lambda: Rc<Lambda>, upvalues: Rc<Upvalues>, light_span: LightSpan, arg_count: usize, }, } struct CallFrame { /// The lambda currently being executed. lambda: Rc<Lambda>, /// Optional captured upvalues of this frame (if a thunk or /// closure if being evaluated). upvalues: Rc<Upvalues>, /// Instruction pointer to the instruction currently being /// executed. ip: CodeIdx, /// Stack offset, i.e. the frames "view" into the VM's full stack. stack_offset: usize, continuation: Option<Continuation>, } impl CallFrame { /// Retrieve an upvalue from this frame at the given index. fn upvalue(&self, idx: UpvalueIdx) -> &Value { &self.upvalues[idx] } } pub struct VM<'o> { /// The VM call stack. One element is pushed onto this stack /// each time a function is called or a thunk is forced. frames: Vec<CallFrame>, /// The VM value stack. This is actually a "stack of stacks", /// with one stack-of-Values for each CallFrame in frames. This /// is represented as a Vec<Value> rather than as /// Vec<Vec<Value>> or a Vec<Value> inside CallFrame for /// efficiency reasons: it avoids having to allocate a Vec on /// the heap each time a CallFrame is entered. stack: Vec<Value>, /// Stack indices (absolute indexes into `stack`) of attribute /// sets from which variables should be dynamically resolved /// (`with`). with_stack: Vec<usize>, /// Runtime warnings collected during evaluation. warnings: Vec<EvalWarning>, pub import_cache: Box<BTreeMap<PathBuf, Value>>, nix_search_path: NixSearchPath, io_handle: Box<dyn EvalIO>, observer: &'o mut dyn RuntimeObserver, } /// The result of a VM's runtime evaluation. pub struct RuntimeResult { pub value: Value, pub warnings: Vec<EvalWarning>, } /// This macro wraps a computation that returns an ErrorKind or a /// result, and wraps the ErrorKind in an Error struct if present. /// /// The reason for this macro's existence is that calculating spans is /// potentially expensive, so it should be avoided to the last moment /// (i.e. definite instantiation of a runtime error) if possible. macro_rules! fallible { ( $self:ident, $body:expr) => { match $body { Ok(result) => result, Err(kind) => { return Err(Error { kind, span: $self.current_span(), }) } } }; } #[macro_export] macro_rules! arithmetic_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); let result = fallible!($self, arithmetic_op!(&a, &b, $op)); $self.push(result); }}; ( $a:expr, $b:expr, $op:tt ) => {{ match ($a, $b) { (Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Integer(i1 $op i2)), (Value::Float(f1), Value::Float(f2)) => Ok(Value::Float(f1 $op f2)), (Value::Integer(i1), Value::Float(f2)) => Ok(Value::Float(*i1 as f64 $op f2)), (Value::Float(f1), Value::Integer(i2)) => Ok(Value::Float(f1 $op *i2 as f64)), (v1, v2) => Err(ErrorKind::TypeError { expected: "number (either int or float)", actual: if v1.is_number() { v2.type_of() } else { v1.type_of() }, }), } }}; } #[macro_export] macro_rules! cmp_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); let ordering = fallible!($self, a.nix_cmp(&b, $self)); let result = Value::Bool(cmp_op!(@order $op ordering)); $self.push(result); }}; (@order < $ordering:expr) => { $ordering == Some(Ordering::Less) }; (@order > $ordering:expr) => { $ordering == Some(Ordering::Greater) }; (@order <= $ordering:expr) => { !matches!($ordering, None | Some(Ordering::Greater)) }; (@order >= $ordering:expr) => { !matches!($ordering, None | Some(Ordering::Less)) }; } impl<'o> VM<'o> { pub fn new( nix_search_path: NixSearchPath, io_handle: Box<dyn EvalIO>, observer: &'o mut dyn RuntimeObserver, ) -> Self { // Backtrace-on-stack-overflow is some seriously weird voodoo and // very unsafe. This double-guard prevents it from accidentally // being enabled on release builds. #[cfg(debug_assertions)] #[cfg(feature = "backtrace_overflow")] unsafe { backtrace_on_stack_overflow::enable(); }; Self { nix_search_path, io_handle, observer, frames: vec![], stack: vec![], with_stack: vec![], warnings: vec![], import_cache: Default::default(), } } fn frame(&self) -> &CallFrame { &self.frames[self.frames.len() - 1] } fn chunk(&self) -> &Chunk { &self.frame().lambda.chunk } fn frame_mut(&mut self) -> &mut CallFrame { let idx = self.frames.len() - 1; &mut self.frames[idx] } fn inc_ip(&mut self) -> OpCode { let op = self.chunk()[self.frame().ip]; self.frame_mut().ip += 1; op } pub fn pop(&mut self) -> Value { self.stack.pop().expect("runtime stack empty") } pub fn pop_then_drop(&mut self, num_items: usize) { self.stack.truncate(self.stack.len() - num_items); } pub fn push(&mut self, value: Value) { self.stack.push(value) } fn peek(&self, offset: usize) -> &Value { &self.stack[self.stack.len() - 1 - offset] } /// Returns the source span of the instruction currently being /// executed. pub(crate) fn current_span(&self) -> codemap::Span { self.chunk().get_span(self.frame().ip - 1) } /// Returns the information needed to calculate the current span, /// but without performing that calculation. pub(crate) fn current_light_span(&self) -> LightSpan { LightSpan::new_delayed(self.frame().lambda.clone(), self.frame().ip - 1) } /// Access the I/O handle used for filesystem access in this VM. pub(crate) fn io(&self) -> &dyn EvalIO { &*self.io_handle } /// Construct an error from the given ErrorKind and the source /// span of the current instruction. pub fn error(&self, kind: ErrorKind) -> Error { Error { kind, span: self.current_span(), } } /// Push an already constructed warning. pub fn push_warning(&mut self, warning: EvalWarning) { self.warnings.push(warning); } /// Emit a warning with the given WarningKind and the source span /// of the current instruction. pub fn emit_warning(&mut self, kind: WarningKind) { self.push_warning(EvalWarning { kind, span: self.current_span(), }); } /// Execute the given value in this VM's context, if it is a /// callable. /// /// The stack of the VM must be prepared with all required /// arguments before calling this and the value must have already /// been forced. pub fn call_value(&mut self, callable: &Value) -> EvalResult<()> { match callable { Value::Closure(c) => self.enter_frame(c.lambda(), c.upvalues(), 1), Value::Builtin(b) => self.call_builtin(b.clone()), Value::Thunk(t) => { debug_assert!(t.is_evaluated(), "call_value called with unevaluated thunk"); self.call_value(&t.value()) } // Attribute sets with a __functor attribute are callable. Value::Attrs(ref attrs) => match attrs.select("__functor") { None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))), Some(functor) => { // The functor receives the set itself as its first argument // and needs to be called with it. However, this call is // synthetic (i.e. there is no corresponding OpCall for the // first call in the bytecode.) self.push(callable.clone()); self.call_value(functor)?; let primed = self.pop(); self.call_value(&primed) } }, // TODO: this isn't guaranteed to be a useful span, actually other => Err(self.error(ErrorKind::NotCallable(other.type_of()))), } } /// Call the given `callable` value with the given list of `args` /// /// # Panics /// /// Panics if the passed list of `args` is empty #[track_caller] pub fn call_with<I>(&mut self, callable: &Value, args: I) -> EvalResult<Value> where I: IntoIterator<Item = Value>, I::IntoIter: DoubleEndedIterator, { let mut num_args = 0_usize; for arg in args.into_iter().rev() { num_args += 1; self.push(arg); } if num_args == 0 { panic!("call_with called with an empty list of args"); } self.call_value(callable)?; let mut res = self.pop(); for _ in 0..(num_args - 1) { res.force(self).map_err(|e| self.error(e))?; self.call_value(&res)?; res = self.pop(); } Ok(res) } fn tail_call_value(&mut self, callable: Value) -> EvalResult<()> { match callable { Value::Builtin(builtin) => self.call_builtin(builtin), Value::Thunk(thunk) => self.tail_call_value(thunk.value().clone()), Value::Closure(closure) => { let lambda = closure.lambda(); self.observer.observe_tail_call(self.frames.len(), &lambda); // Replace the current call frames internals with // that of the tail-called closure. let mut frame = self.frame_mut(); frame.lambda = lambda; frame.upvalues = closure.upvalues(); frame.ip = CodeIdx(0); // reset instruction pointer to beginning Ok(()) } // Attribute sets with a __functor attribute are callable. Value::Attrs(ref attrs) => match attrs.select("__functor") { None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))), Some(functor) => { // The functor receives the set itself as its first argument // and needs to be called with it. However, this call is // synthetic (i.e. there is no corresponding OpCall for the // first call in the bytecode.) self.push(callable.clone()); self.call_value(functor)?; let primed = self.pop(); self.tail_call_value(primed) } }, _ => Err(self.error(ErrorKind::NotCallable(callable.type_of()))), } } /// Execute the given lambda in this VM's context, leaving the /// computed value on its stack after the frame completes. pub fn enter_frame( &mut self, lambda: Rc<Lambda>, upvalues: Rc<Upvalues>, arg_count: usize, ) -> EvalResult<()> { self.observer .observe_enter_frame(arg_count, &lambda, self.frames.len() + 1); let frame = CallFrame { lambda, upvalues, ip: CodeIdx(0), stack_offset: self.stack.len() - arg_count, continuation: None, }; let starting_frames_depth = self.frames.len(); self.frames.push(frame); let result = loop { let op = self.inc_ip(); self.observer .observe_execute_op(self.frame().ip, &op, &self.stack); let res = self.run_op(op); let mut retrampoline: Option<Continuation> = None; // we need to pop the frame before checking `res` for an // error in order to implement `tryEval` correctly. if self.frame().ip.0 == self.chunk().code.len() { let frame = self.frames.pop(); retrampoline = frame.and_then(|frame| frame.continuation); } self.trampoline_loop(res?, retrampoline)?; if self.frames.len() == starting_frames_depth { break Ok(()); } }; self.observer .observe_exit_frame(self.frames.len() + 1, &self.stack); result } fn trampoline_loop( &mut self, mut trampoline: Trampoline, mut retrampoline: Option<Continuation>, ) -> EvalResult<()> { loop { if let Some(TrampolineAction::EnterFrame { lambda, upvalues, arg_count, light_span: _, }) = trampoline.action { let frame = CallFrame { lambda, upvalues, ip: CodeIdx(0), stack_offset: self.stack.len() - arg_count, continuation: match retrampoline { None => trampoline.continuation, Some(retrampoline) => match trampoline.continuation { None => None, Some(cont) => Some(Box::new(|vm| { Ok(cont(vm)?.append_to_continuation(retrampoline)) })), }, }, }; self.frames.push(frame); break; } match trampoline.continuation { None => { if let Some(cont) = retrampoline.take() { trampoline = cont(self)?; } else { break; } } Some(cont) => { trampoline = cont(self)?; continue; } } } Ok(()) } pub(crate) fn nix_eq( &mut self, v1: Value, v2: Value, allow_top_level_pointer_equality_on_functions_and_thunks: bool, ) -> EvalResult<bool> { self.push(v1); self.push(v2); let res = self.nix_op_eq(allow_top_level_pointer_equality_on_functions_and_thunks); self.trampoline_loop(res?, None)?; match self.pop() { Value::Bool(b) => Ok(b), v => panic!("run_op(OpEqual) left a non-boolean on the stack: {v:#?}"), } } pub(crate) fn nix_op_eq( &mut self, allow_top_level_pointer_equality_on_functions_and_thunks: bool, ) -> EvalResult<Trampoline> { // This bit gets set to `true` (if it isn't already) as soon // as we start comparing the contents of two // {lists,attrsets} -- but *not* the contents of two thunks. // See tvix/docs/value-pointer-equality.md for details. let mut allow_pointer_equality_on_functions_and_thunks = allow_top_level_pointer_equality_on_functions_and_thunks; let mut numpairs: usize = 1; let res = 'outer: loop { if numpairs == 0 { break true; } else { numpairs -= 1; } let v2 = self.pop(); let v1 = self.pop(); let v2 = match v2 { Value::Thunk(thunk) => { if allow_top_level_pointer_equality_on_functions_and_thunks { if let Value::Thunk(t1) = &v1 { if t1.ptr_eq(&thunk) { continue; } } } fallible!(self, thunk.force(self)); thunk.value().clone() } v => v, }; let v1 = match v1 { Value::Thunk(thunk) => { fallible!(self, thunk.force(self)); thunk.value().clone() } v => v, }; match (v1, v2) { (Value::List(l1), Value::List(l2)) => { allow_pointer_equality_on_functions_and_thunks = true; if l1.ptr_eq(&l2) { continue; } if l1.len() != l2.len() { break false; } for (vi1, vi2) in l1.into_iter().zip(l2.into_iter()) { self.stack.push(vi1); self.stack.push(vi2); numpairs += 1; } } (_, Value::List(_)) => break false, (Value::List(_), _) => break false, (Value::Attrs(a1), Value::Attrs(a2)) => { if allow_pointer_equality_on_functions_and_thunks && Rc::ptr_eq(&a1, &a2) { continue; } allow_pointer_equality_on_functions_and_thunks = true; match (a1.select("type"), a2.select("type")) { (Some(v1), Some(v2)) if "derivation" == fallible!( self, v1.coerce_to_string(CoercionKind::ThunksOnly, self) ) .as_str() && "derivation" == fallible!( self, v2.coerce_to_string(CoercionKind::ThunksOnly, self) ) .as_str() => { if fallible!( self, a1.select("outPath") .expect("encountered a derivation with no `outPath` attribute!") .coerce_to_string(CoercionKind::ThunksOnly, self) ) == fallible!( self, a2.select("outPath") .expect("encountered a derivation with no `outPath` attribute!") .coerce_to_string(CoercionKind::ThunksOnly, self) ) { continue; } break false; } _ => {} } let iter1 = unwrap_or_clone_rc(a1).into_iter_sorted(); let iter2 = unwrap_or_clone_rc(a2).into_iter_sorted(); if iter1.len() != iter2.len() { break false; } for ((k1, v1), (k2, v2)) in iter1.zip(iter2) { if k1 != k2 { break 'outer false; } self.stack.push(v1); self.stack.push(v2); numpairs += 1; } } (Value::Attrs(_), _) => break false, (_, Value::Attrs(_)) => break false, (v1, v2) => { if allow_pointer_equality_on_functions_and_thunks { if let (Value::Closure(c1), Value::Closure(c2)) = (&v1, &v2) { if Rc::ptr_eq(c1, c2) { continue; } } } if !fallible!(self, v1.nix_eq(&v2, self)) { break false; } } } }; self.pop_then_drop(numpairs * 2); self.push(Value::Bool(res)); Ok(Trampoline::default()) } pub(crate) fn run_op(&mut self, op: OpCode) -> EvalResult<Trampoline> { match op { OpCode::OpConstant(idx) => { let c = self.chunk()[idx].clone(); self.push(c); } OpCode::OpPop => { self.pop(); } OpCode::OpAdd => { let b = self.pop(); let a = self.pop(); let result = match (&a, &b) { (Value::Path(p), v) => { let mut path = p.to_string_lossy().into_owned(); path.push_str( &v.coerce_to_string(CoercionKind::Weak, self) .map_err(|ek| self.error(ek))?, ); crate::value::canon_path(PathBuf::from(path)).into() } (Value::String(s1), Value::String(s2)) => Value::String(s1.concat(s2)), (Value::String(s1), v) => Value::String( s1.concat( &v.coerce_to_string(CoercionKind::Weak, self) .map_err(|ek| self.error(ek))?, ), ), (v, Value::String(s2)) => Value::String( v.coerce_to_string(CoercionKind::Weak, self) .map_err(|ek| self.error(ek))? .concat(s2), ), _ => fallible!(self, arithmetic_op!(&a, &b, +)), }; self.push(result) } OpCode::OpSub => arithmetic_op!(self, -), OpCode::OpMul => arithmetic_op!(self, *), OpCode::OpDiv => { let b = self.peek(0); match b { Value::Integer(0) => return Err(self.error(ErrorKind::DivisionByZero)), Value::Float(b) => { if *b == 0.0_f64 { return Err(self.error(ErrorKind::DivisionByZero)); } arithmetic_op!(self, /) } _ => arithmetic_op!(self, /), }; } OpCode::OpInvert => { let v = fallible!(self, self.pop().as_bool()); self.push(Value::Bool(!v)); } OpCode::OpNegate => match self.pop() { Value::Integer(i) => self.push(Value::Integer(-i)), Value::Float(f) => self.push(Value::Float(-f)), v => { return Err(self.error(ErrorKind::TypeError { expected: "number (either int or float)", actual: v.type_of(), })); } }, OpCode::OpEqual => return self.nix_op_eq(false), OpCode::OpLess => cmp_op!(self, <), OpCode::OpLessOrEq => cmp_op!(self, <=), OpCode::OpMore => cmp_op!(self, >), OpCode::OpMoreOrEq => cmp_op!(self, >=), OpCode::OpNull => self.push(Value::Null), OpCode::OpTrue => self.push(Value::Bool(true)), OpCode::OpFalse => self.push(Value::Bool(false)), OpCode::OpAttrs(Count(count)) => self.run_attrset(count)?, OpCode::OpAttrsUpdate => { let rhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs())); let lhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs())); self.push(Value::attrs(lhs.update(rhs))) } OpCode::OpAttrsSelect => { let key = fallible!(self, self.pop().to_str()); let attrs = fallible!(self, self.pop().to_attrs()); match attrs.select(key.as_str()) { Some(value) => self.push(value.clone()), None => { return Err(self.error(ErrorKind::AttributeNotFound { name: key.as_str().to_string(), })) } } } OpCode::OpAttrsTrySelect => { let key = fallible!(self, self.pop().to_str()); let value = match self.pop() { Value::Attrs(attrs) => match attrs.select(key.as_str()) { Some(value) => value.clone(), None => Value::AttrNotFound, }, _ => Value::AttrNotFound, }; self.push(value); } OpCode::OpHasAttr => { let key = fallible!(self, self.pop().to_str()); let result = match self.pop() { Value::Attrs(attrs) => attrs.contains(key.as_str()), // Nix allows use of `?` on non-set types, but // always returns false in those cases. _ => false, }; self.push(Value::Bool(result)); } OpCode::OpValidateClosedFormals => { let formals = self.frame().lambda.formals.as_ref().expect( "OpValidateClosedFormals called within the frame of a lambda without formals", ); let args = self.peek(0).to_attrs().map_err(|err| self.error(err))?; for arg in args.keys() { if !formals.contains(arg) { return Err(self.error(ErrorKind::UnexpectedArgument { arg: arg.clone(), formals_span: formals.span, })); } } } OpCode::OpList(Count(count)) => { let list = NixList::construct(count, self.stack.split_off(self.stack.len() - count)); self.push(Value::List(list)); } OpCode::OpConcat => { let rhs = fallible!(self, self.pop().to_list()).into_inner(); let lhs = fallible!(self, self.pop().to_list()).into_inner(); self.push(Value::List(NixList::from(lhs + rhs))) } OpCode::OpInterpolate(Count(count)) => self.run_interpolate(count)?, OpCode::OpCoerceToString => { // TODO: handle string context, copying to store let string = fallible!( self, // note that coerce_to_string also forces self.pop().coerce_to_string(CoercionKind::Weak, self) ); self.push(Value::String(string)); } OpCode::OpFindFile => match self.pop() { Value::UnresolvedPath(path) => { let resolved = self .nix_search_path .resolve(path) .map_err(|e| self.error(e))?; self.push(resolved.into()); } _ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"), }, OpCode::OpResolveHomePath => match self.pop() { Value::UnresolvedPath(path) => { match dirs::home_dir() { None => { return Err(self.error(ErrorKind::RelativePathResolution( "failed to determine home directory".into(), ))); } Some(mut buf) => { buf.push(path); self.push(buf.into()); } }; } _ => { panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath") } }, OpCode::OpJump(JumpOffset(offset)) => { debug_assert!(offset != 0); self.frame_mut().ip += offset; } OpCode::OpJumpIfTrue(JumpOffset(offset)) => { debug_assert!(offset != 0); if fallible!(self, self.peek(0).as_bool()) { self.frame_mut().ip += offset; } } OpCode::OpJumpIfFalse(JumpOffset(offset)) => { debug_assert!(offset != 0); if !fallible!(self, self.peek(0).as_bool()) { self.frame_mut().ip += offset; } } OpCode::OpJumpIfNotFound(JumpOffset(offset)) => { debug_assert!(offset != 0); if matches!(self.peek(0), Value::AttrNotFound) { self.pop(); self.frame_mut().ip += offset; } } // These assertion operations error out if the stack // top is not of the expected type. This is necessary // to implement some specific behaviours of Nix // exactly. OpCode::OpAssertBool => { let val = self.peek(0); if !val.is_bool() { return Err(self.error(ErrorKind::TypeError { expected: "bool", actual: val.type_of(), })); } } // Remove the given number of elements from the stack, // but retain the top value. OpCode::OpCloseScope(Count(count)) => { // Immediately move the top value into the right // position. let target_idx = self.stack.len() - 1 - count; self.stack[target_idx] = self.pop(); // Then drop the remaining values. for _ in 0..(count - 1) { self.pop(); } } OpCode::OpGetLocal(StackIdx(local_idx)) => { let idx = self.frame().stack_offset + local_idx; self.push(self.stack[idx].clone()); } OpCode::OpPushWith(StackIdx(idx)) => { self.with_stack.push(self.frame().stack_offset + idx) } OpCode::OpPopWith => { self.with_stack.pop(); } OpCode::OpResolveWith => { let ident = fallible!(self, self.pop().to_str()); let value = self.resolve_with(ident.as_str())?; self.push(value) } OpCode::OpAssertFail => { return Err(self.error(ErrorKind::AssertionFailed)); } OpCode::OpCall => { let callable = self.pop(); self.call_value(&callable)?; } OpCode::OpTailCall => { let callable = self.pop(); self.tail_call_value(callable)?; } OpCode::OpGetUpvalue(upv_idx) => { let value = self.frame().upvalue(upv_idx).clone(); self.push(value); } OpCode::OpClosure(idx) => { let blueprint = match &self.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; debug_assert!( upvalue_count > 0, "OpClosure should not be called for plain lambdas" ); let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count); self.populate_upvalues(upvalue_count, &mut upvalues)?; self.push(Value::Closure(Rc::new(Closure::new_with_upvalues( Rc::new(upvalues), blueprint, )))); } OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => { let blueprint = match &self.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; let thunk = if matches!(op, OpCode::OpThunkClosure(_)) { debug_assert!( upvalue_count > 0, "OpThunkClosure should not be called for plain lambdas" ); Thunk::new_closure(blueprint) } else { Thunk::new_suspended(blueprint, self.current_light_span()) }; let upvalues = thunk.upvalues_mut(); self.push(Value::Thunk(thunk.clone())); // From this point on we internally mutate the // upvalues. The closure (if `is_closure`) is // already in its stack slot, which means that it // can capture itself as an upvalue for // self-recursion. self.populate_upvalues(upvalue_count, upvalues)?; } OpCode::OpForce => { let value = self.pop(); if let Value::Thunk(thunk) = value { self.push(Value::Thunk(thunk)); let trampoline = fallible!(self, Thunk::force_trampoline(self)); return Ok(trampoline); } else { self.push(value); } } OpCode::OpFinalise(StackIdx(idx)) => { match &self.stack[self.frame().stack_offset + idx] { Value::Closure(_) => panic!("attempted to finalise a closure"), Value::Thunk(thunk) => thunk.finalise(&self.stack[self.frame().stack_offset..]), // In functions with "formals" attributes, it is // possible for `OpFinalise` to be called on a // non-capturing value, in which case it is a no-op. // // TODO: detect this in some phase and skip the finalise; fail here _ => { /* TODO: panic here again to catch bugs */ } } } // Data-carrying operands should never be executed, // that is a critical error in the VM. OpCode::DataStackIdx(_) | OpCode::DataDeferredLocal(_) | OpCode::DataUpvalueIdx(_) | OpCode::DataCaptureWith => { panic!("VM bug: attempted to execute data-carrying operand") } } Ok(Trampoline::default()) } fn run_attrset(&mut self, count: usize) -> EvalResult<()> { let attrs = fallible!( self, NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2)) ); self.push(Value::attrs(attrs)); Ok(()) } /// Interpolate string fragments by popping the specified number of /// fragments of the stack, evaluating them to strings, and pushing /// the concatenated result string back on the stack. fn run_interpolate(&mut self, count: usize) -> EvalResult<()> { let mut out = String::new(); for _ in 0..count { out.push_str(fallible!(self, self.pop().to_str()).as_str()); } self.push(Value::String(out.into())); Ok(()) } /// Resolve a dynamic identifier through the with-stack at runtime. fn resolve_with(&mut self, ident: &str) -> EvalResult<Value> { // Iterate over the with_stack manually to avoid borrowing // self, which is required for forcing the set. for with_stack_idx in (0..self.with_stack.len()).rev() { let with = self.stack[self.with_stack[with_stack_idx]].clone(); if let Value::Thunk(thunk) = &with { fallible!(self, thunk.force(self)); } match fallible!(self, with.to_attrs()).select(ident) { None => continue, Some(val) => return Ok(val.clone()), } } // Iterate over the captured with stack if one exists. This is // extra tricky to do without a lot of cloning. for idx in (0..self.frame().upvalues.with_stack_len()).rev() { // This will not panic because having an index here guarantees // that the stack is present. let with = self.frame().upvalues.with_stack().unwrap()[idx].clone(); if let Value::Thunk(thunk) = &with { fallible!(self, thunk.force(self)); } match fallible!(self, with.to_attrs()).select(ident) { None => continue, Some(val) => return Ok(val.clone()), } } Err(self.error(ErrorKind::UnknownDynamicVariable(ident.to_string()))) } /// Populate the upvalue fields of a thunk or closure under construction. fn populate_upvalues( &mut self, count: usize, mut upvalues: impl DerefMut<Target = Upvalues>, ) -> EvalResult<()> { for _ in 0..count { match self.inc_ip() { OpCode::DataStackIdx(StackIdx(stack_idx)) => { let idx = self.frame().stack_offset + stack_idx; let val = match self.stack.get(idx) { Some(val) => val.clone(), None => { return Err(self.error(ErrorKind::TvixBug { msg: "upvalue to be captured was missing on stack", metadata: Some(Rc::new(json!({ "ip": format!("{:#x}", self.frame().ip.0 - 1), "stack_idx(relative)": stack_idx, "stack_idx(absolute)": idx, }))), })) } }; upvalues.deref_mut().push(val); } OpCode::DataUpvalueIdx(upv_idx) => { upvalues .deref_mut() .push(self.frame().upvalue(upv_idx).clone()); } OpCode::DataDeferredLocal(idx) => { upvalues.deref_mut().push(Value::DeferredUpvalue(idx)); } OpCode::DataCaptureWith => { // Start the captured with_stack off of the // current call frame's captured with_stack, ... let mut captured_with_stack = self .frame() .upvalues .with_stack() .map(Clone::clone) // ... or make an empty one if there isn't one already. .unwrap_or_else(|| Vec::with_capacity(self.with_stack.len())); for idx in &self.with_stack { captured_with_stack.push(self.stack[*idx].clone()); } upvalues.deref_mut().set_with_stack(captured_with_stack); } _ => panic!("compiler error: missing closure operand"), } } Ok(()) } pub fn call_builtin(&mut self, builtin: Builtin) -> EvalResult<()> { let builtin_name = builtin.name(); self.observer.observe_enter_builtin(builtin_name); let arg = self.pop(); let result = fallible!(self, builtin.apply(self, arg)); self.observer .observe_exit_builtin(builtin_name, &self.stack); self.push(result); Ok(()) } } pub fn run_lambda( nix_search_path: NixSearchPath, io_handle: Box<dyn EvalIO>, observer: &mut dyn RuntimeObserver, lambda: Rc<Lambda>, ) -> EvalResult<RuntimeResult> { let mut vm = VM::new(nix_search_path, io_handle, observer); // Retain the top-level span of the expression in this lambda, as // synthetic "calls" in deep_force will otherwise not have a span // to fall back to. // // We exploit the fact that the compiler emits a final instruction // with the span of the entire file for top-level expressions. let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1)); vm.enter_frame(lambda, Rc::new(Upvalues::with_capacity(0)), 0)?; let value = vm.pop(); value .deep_force(&mut vm, &mut Default::default()) .map_err(|kind| Error { kind, span: root_span, })?; Ok(RuntimeResult { value, warnings: vm.warnings, }) }