//! This module implements the virtual (or abstract) machine that runs //! Tvix bytecode. use std::{cell::RefMut, path::PathBuf, rc::Rc}; use path_clean::PathClean; use crate::{ chunk::Chunk, errors::{Error, ErrorKind, EvalResult}, nix_path::NixPath, observer::RuntimeObserver, opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx}, upvalues::{UpvalueCarrier, Upvalues}, value::{Builtin, Closure, CoercionKind, Lambda, NixAttrs, NixList, Thunk, Value}, warnings::{EvalWarning, WarningKind}, }; struct CallFrame { /// The lambda currently being executed. lambda: Rc<Lambda>, /// Optional captured upvalues of this frame (if a thunk or /// closure if being evaluated). upvalues: Upvalues, /// Instruction pointer to the instruction currently being /// executed. ip: CodeIdx, /// Stack offset, i.e. the frames "view" into the VM's full stack. stack_offset: usize, } impl CallFrame { /// Retrieve an upvalue from this frame at the given index. fn upvalue(&self, idx: UpvalueIdx) -> &Value { &self.upvalues[idx] } } pub struct VM<'o> { frames: Vec<CallFrame>, stack: Vec<Value>, /// Stack indices of attribute sets from which variables should be /// dynamically resolved (`with`). with_stack: Vec<usize>, /// Runtime warnings collected during evaluation. warnings: Vec<EvalWarning>, nix_path: NixPath, observer: &'o mut dyn RuntimeObserver, } /// The result of a VM's runtime evaluation. pub struct RuntimeResult { pub value: Value, pub warnings: Vec<EvalWarning>, } /// This macro wraps a computation that returns an ErrorKind or a /// result, and wraps the ErrorKind in an Error struct if present. /// /// The reason for this macro's existence is that calculating spans is /// potentially expensive, so it should be avoided to the last moment /// (i.e. definite instantiation of a runtime error) if possible. macro_rules! fallible { ( $self:ident, $body:expr) => { match $body { Ok(result) => result, Err(kind) => { return Err(Error { kind, span: $self.current_span(), }) } } }; } #[macro_export] macro_rules! arithmetic_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); let result = fallible!($self, arithmetic_op!(&a, &b, $op)); $self.push(result); }}; ( $a:expr, $b:expr, $op:tt ) => {{ match ($a, $b) { (Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Integer(i1 $op i2)), (Value::Float(f1), Value::Float(f2)) => Ok(Value::Float(f1 $op f2)), (Value::Integer(i1), Value::Float(f2)) => Ok(Value::Float(*i1 as f64 $op f2)), (Value::Float(f1), Value::Integer(i2)) => Ok(Value::Float(f1 $op *i2 as f64)), (v1, v2) => Err(ErrorKind::TypeError { expected: "number (either int or float)", actual: if v1.is_number() { v2.type_of() } else { v1.type_of() }, }), } }}; } #[macro_export] macro_rules! cmp_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); let result = fallible!($self, cmp_op!(&a, &b, $op)); $self.push(result); }}; ( $a:expr, $b:expr, $op:tt ) => { // Comparable (in terms of ordering) values are numbers and // strings. Numbers need to be coerced similarly to arithmetic // ops if mixed types are encountered. match ($a, $b) { // same types (Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Bool(i1 $op i2)), (Value::Float(f1), Value::Float(f2)) => Ok(Value::Bool(f1 $op f2)), (Value::String(s1), Value::String(s2)) => Ok(Value::Bool(s1 $op s2)), // different types (Value::Integer(i1), Value::Float(f2)) => Ok(Value::Bool((*i1 as f64) $op *f2)), (Value::Float(f1), Value::Integer(i2)) => Ok(Value::Bool(*f1 $op (*i2 as f64))), // unsupported types (lhs, rhs) => Err(ErrorKind::Incomparable { lhs: lhs.type_of(), rhs: rhs.type_of(), }), } } } impl<'o> VM<'o> { pub fn new(nix_path: NixPath, observer: &'o mut dyn RuntimeObserver) -> Self { Self { nix_path, observer, frames: vec![], stack: vec![], with_stack: vec![], warnings: vec![], } } fn frame(&self) -> &CallFrame { &self.frames[self.frames.len() - 1] } fn chunk(&self) -> &Chunk { &self.frame().lambda.chunk } fn frame_mut(&mut self) -> &mut CallFrame { let idx = self.frames.len() - 1; &mut self.frames[idx] } fn inc_ip(&mut self) -> OpCode { let op = self.chunk()[self.frame().ip]; self.frame_mut().ip += 1; op } pub fn pop(&mut self) -> Value { self.stack.pop().expect("runtime stack empty") } pub fn push(&mut self, value: Value) { self.stack.push(value) } fn peek(&self, offset: usize) -> &Value { &self.stack[self.stack.len() - 1 - offset] } /// Returns the source span of the instruction currently being /// executed. pub(crate) fn current_span(&self) -> codemap::Span { self.chunk().get_span(self.frame().ip - 1) } /// Construct an error from the given ErrorKind and the source /// span of the current instruction. pub fn error(&self, kind: ErrorKind) -> Error { Error { kind, span: self.current_span(), } } /// Push an already constructed warning. pub fn push_warning(&mut self, warning: EvalWarning) { self.warnings.push(warning); } /// Emit a warning with the given WarningKind and the source span /// of the current instruction. pub fn emit_warning(&mut self, kind: WarningKind) { self.push_warning(EvalWarning { kind, span: self.current_span(), }); } /// Execute the given value in this VM's context, if it is a /// callable. /// /// The stack of the VM must be prepared with all required /// arguments before calling this and the value must have already /// been forced. pub fn call_value(&mut self, callable: &Value) -> EvalResult<()> { match callable { Value::Closure(c) => self.enter_frame(c.lambda(), c.upvalues().clone(), 1), Value::Builtin(b) => self.call_builtin(b.clone()), Value::Thunk(t) => self.call_value(&t.value()), // TODO: this isn't guaranteed to be a useful span, actually other => Err(self.error(ErrorKind::NotCallable(other.type_of()))), } } /// Call the given `callable` value with the given list of `args` /// /// # Panics /// /// Panics if the passed list of `args` is empty #[track_caller] pub fn call_with<I>(&mut self, callable: &Value, args: I) -> EvalResult<Value> where I: IntoIterator<Item = Value>, { let mut num_args = 0_usize; for arg in args { num_args += 1; self.push(arg); } if num_args == 0 { panic!("call_with called with an empty list of args"); } self.call_value(callable)?; let mut res = self.pop(); for _ in 0..(num_args - 1) { self.call_value(&res)?; res = self.pop(); } Ok(res) } fn tail_call_value(&mut self, callable: Value) -> EvalResult<()> { match callable { Value::Builtin(builtin) => self.call_builtin(builtin), Value::Thunk(thunk) => self.tail_call_value(thunk.value().clone()), Value::Closure(closure) => { let lambda = closure.lambda(); self.observer.observe_tail_call(self.frames.len(), &lambda); // Replace the current call frames internals with // that of the tail-called closure. let mut frame = self.frame_mut(); frame.lambda = lambda; frame.upvalues = closure.upvalues().clone(); frame.ip = CodeIdx(0); // reset instruction pointer to beginning Ok(()) } // Attribute sets with a __functor attribute are callable. Value::Attrs(ref attrs) => match attrs.select("__functor") { None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))), Some(functor) => { // The functor receives the set itself as its first argument // and needs to be called with it. However, this call is // synthetic (i.e. there is no corresponding OpCall for the // first call in the bytecode.) self.push(callable.clone()); self.call_value(functor)?; let primed = self.pop(); self.tail_call_value(primed) } }, _ => Err(self.error(ErrorKind::NotCallable(callable.type_of()))), } } /// Execute the given lambda in this VM's context, returning its /// value after its stack frame completes. pub fn enter_frame( &mut self, lambda: Rc<Lambda>, upvalues: Upvalues, arg_count: usize, ) -> EvalResult<()> { self.observer .observe_enter_frame(arg_count, &lambda, self.frames.len() + 1); let frame = CallFrame { lambda, upvalues, ip: CodeIdx(0), stack_offset: self.stack.len() - arg_count, }; self.frames.push(frame); let result = self.run(); self.observer.observe_exit_frame(self.frames.len() + 1); result } /// Run the VM's current call frame to completion. /// /// On successful return, the top of the stack is the value that /// the frame evaluated to. The frame itself is popped off. It is /// up to the caller to consume the value. fn run(&mut self) -> EvalResult<()> { loop { // Break the loop if this call frame has already run to // completion, pop it off, and return the value to the // caller. if self.frame().ip.0 == self.chunk().code.len() { self.frames.pop(); return Ok(()); } let op = self.inc_ip(); self.observer .observe_execute_op(self.frame().ip, &op, &self.stack); match op { OpCode::OpConstant(idx) => { let c = self.chunk()[idx].clone(); self.push(c); } OpCode::OpPop => { self.pop(); } OpCode::OpAdd => { let b = self.pop(); let a = self.pop(); let result = match (&a, &b) { (Value::String(s1), Value::String(s2)) => Value::String(s1.concat(s2)), (Value::Path(p), v) => { let mut path = p.to_string_lossy().into_owned(); path.push_str( &v.coerce_to_string(CoercionKind::Weak, self) .map_err(|ek| self.error(ek))?, ); PathBuf::from(path).clean().into() } _ => fallible!(self, arithmetic_op!(&a, &b, +)), }; self.push(result) } OpCode::OpSub => arithmetic_op!(self, -), OpCode::OpMul => arithmetic_op!(self, *), OpCode::OpDiv => arithmetic_op!(self, /), OpCode::OpInvert => { let v = fallible!(self, self.pop().as_bool()); self.push(Value::Bool(!v)); } OpCode::OpNegate => match self.pop() { Value::Integer(i) => self.push(Value::Integer(-i)), Value::Float(f) => self.push(Value::Float(-f)), v => { return Err(self.error(ErrorKind::TypeError { expected: "number (either int or float)", actual: v.type_of(), })); } }, OpCode::OpEqual => { let v2 = self.pop(); let v1 = self.pop(); let res = fallible!(self, v1.nix_eq(&v2, self)); self.push(Value::Bool(res)) } OpCode::OpLess => cmp_op!(self, <), OpCode::OpLessOrEq => cmp_op!(self, <=), OpCode::OpMore => cmp_op!(self, >), OpCode::OpMoreOrEq => cmp_op!(self, >=), OpCode::OpNull => self.push(Value::Null), OpCode::OpTrue => self.push(Value::Bool(true)), OpCode::OpFalse => self.push(Value::Bool(false)), OpCode::OpAttrs(Count(count)) => self.run_attrset(count)?, OpCode::OpAttrsUpdate => { let rhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs())); let lhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs())); self.push(Value::attrs(lhs.update(rhs))) } OpCode::OpAttrsSelect => { let key = fallible!(self, self.pop().to_str()); let attrs = fallible!(self, self.pop().to_attrs()); match attrs.select(key.as_str()) { Some(value) => self.push(value.clone()), None => { return Err(self.error(ErrorKind::AttributeNotFound { name: key.as_str().to_string(), })) } } } OpCode::OpAttrsTrySelect => { let key = fallible!(self, self.pop().to_str()); let value = match self.pop() { Value::Attrs(attrs) => match attrs.select(key.as_str()) { Some(value) => value.clone(), None => Value::AttrNotFound, }, _ => Value::AttrNotFound, }; self.push(value); } OpCode::OpHasAttr => { let key = fallible!(self, self.pop().to_str()); let result = match self.pop() { Value::Attrs(attrs) => attrs.contains(key.as_str()), // Nix allows use of `?` on non-set types, but // always returns false in those cases. _ => false, }; self.push(Value::Bool(result)); } OpCode::OpList(Count(count)) => { let list = NixList::construct(count, self.stack.split_off(self.stack.len() - count)); self.push(Value::List(list)); } OpCode::OpConcat => { let rhs = fallible!(self, self.pop().to_list()); let lhs = fallible!(self, self.pop().to_list()); self.push(Value::List(lhs.concat(&rhs))) } OpCode::OpInterpolate(Count(count)) => self.run_interpolate(count)?, OpCode::OpCoerceToString => { // TODO: handle string context, copying to store let string = fallible!( self, // note that coerce_to_string also forces self.pop().coerce_to_string(CoercionKind::Weak, self) ); self.push(Value::String(string)); } OpCode::OpFindFile => { let path = self.pop().to_str().map_err(|e| self.error(e))?; let resolved = self.nix_path.resolve(path).map_err(|e| self.error(e))?; self.push(resolved.into()); } OpCode::OpJump(JumpOffset(offset)) => { debug_assert!(offset != 0); self.frame_mut().ip += offset; } OpCode::OpJumpIfTrue(JumpOffset(offset)) => { debug_assert!(offset != 0); if fallible!(self, self.peek(0).as_bool()) { self.frame_mut().ip += offset; } } OpCode::OpJumpIfFalse(JumpOffset(offset)) => { debug_assert!(offset != 0); if !fallible!(self, self.peek(0).as_bool()) { self.frame_mut().ip += offset; } } OpCode::OpJumpIfNotFound(JumpOffset(offset)) => { debug_assert!(offset != 0); if matches!(self.peek(0), Value::AttrNotFound) { self.pop(); self.frame_mut().ip += offset; } } // These assertion operations error out if the stack // top is not of the expected type. This is necessary // to implement some specific behaviours of Nix // exactly. OpCode::OpAssertBool => { let val = self.peek(0); if !val.is_bool() { return Err(self.error(ErrorKind::TypeError { expected: "bool", actual: val.type_of(), })); } } // Remove the given number of elements from the stack, // but retain the top value. OpCode::OpCloseScope(Count(count)) => { // Immediately move the top value into the right // position. let target_idx = self.stack.len() - 1 - count; self.stack[target_idx] = self.pop(); // Then drop the remaining values. for _ in 0..(count - 1) { self.pop(); } } OpCode::OpGetLocal(StackIdx(local_idx)) => { let idx = self.frame().stack_offset + local_idx; self.push(self.stack[idx].clone()); } OpCode::OpPushWith(StackIdx(idx)) => { self.with_stack.push(self.frame().stack_offset + idx) } OpCode::OpPopWith => { self.with_stack.pop(); } OpCode::OpResolveWith => { let ident = fallible!(self, self.pop().to_str()); let value = self.resolve_with(ident.as_str())?; self.push(value) } OpCode::OpResolveWithOrUpvalue(idx) => { let ident = fallible!(self, self.pop().to_str()); match self.resolve_with(ident.as_str()) { // Variable found in local `with`-stack. Ok(value) => self.push(value), // Variable not found => check upvalues. Err(Error { kind: ErrorKind::UnknownDynamicVariable(_), .. }) => { let value = self.frame().upvalue(idx).clone(); self.push(value); } Err(err) => return Err(err), } } OpCode::OpAssertFail => { return Err(self.error(ErrorKind::AssertionFailed)); } OpCode::OpCall => { let callable = self.pop(); self.call_value(&callable)?; } OpCode::OpTailCall => { let callable = self.pop(); self.tail_call_value(callable)?; } OpCode::OpGetUpvalue(upv_idx) => { let value = self.frame().upvalue(upv_idx).clone(); self.push(value); } OpCode::OpClosure(idx) => { let blueprint = match &self.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; debug_assert!( upvalue_count > 0, "OpClosure should not be called for plain lambdas" ); let closure = Closure::new(blueprint); let upvalues = closure.upvalues_mut(); self.push(Value::Closure(closure.clone())); // From this point on we internally mutate the // closure object's upvalues. The closure is // already in its stack slot, which means that it // can capture itself as an upvalue for // self-recursion. self.populate_upvalues(upvalue_count, upvalues)?; } OpCode::OpThunk(idx) => { let blueprint = match &self.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; let thunk = Thunk::new(blueprint, self.current_span()); let upvalues = thunk.upvalues_mut(); self.push(Value::Thunk(thunk.clone())); self.populate_upvalues(upvalue_count, upvalues)?; } OpCode::OpForce => { let mut value = self.pop(); if let Value::Thunk(thunk) = value { fallible!(self, thunk.force(self)); value = thunk.value().clone(); } self.push(value); } OpCode::OpFinalise(StackIdx(idx)) => { match &self.stack[self.frame().stack_offset + idx] { Value::Closure(closure) => closure .resolve_deferred_upvalues(&self.stack[self.frame().stack_offset..]), Value::Thunk(thunk) => thunk .resolve_deferred_upvalues(&self.stack[self.frame().stack_offset..]), // In functions with "formals" attributes, it is // possible for `OpFinalise` to be called on a // non-capturing value, in which case it is a no-op. // // TODO: detect this in some phase and skip the finalise; fail here _ => { /* TODO: panic here again to catch bugs */ } } } // Data-carrying operands should never be executed, // that is a critical error in the VM. OpCode::DataLocalIdx(_) | OpCode::DataDeferredLocal(_) | OpCode::DataUpvalueIdx(_) | OpCode::DataCaptureWith => { panic!("VM bug: attempted to execute data-carrying operand") } } } } fn run_attrset(&mut self, count: usize) -> EvalResult<()> { let attrs = fallible!( self, NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2)) ); self.push(Value::attrs(attrs)); Ok(()) } /// Interpolate string fragments by popping the specified number of /// fragments of the stack, evaluating them to strings, and pushing /// the concatenated result string back on the stack. fn run_interpolate(&mut self, count: usize) -> EvalResult<()> { let mut out = String::new(); for _ in 0..count { out.push_str(fallible!(self, self.pop().to_str()).as_str()); } self.push(Value::String(out.into())); Ok(()) } /// Resolve a dynamic identifier through the with-stack at runtime. fn resolve_with(&mut self, ident: &str) -> EvalResult<Value> { // Iterate over the with_stack manually to avoid borrowing // self, which is required for forcing the set. for with_stack_idx in (0..self.with_stack.len()).rev() { let with = self.stack[self.with_stack[with_stack_idx]].clone(); if let Value::Thunk(thunk) = &with { fallible!(self, thunk.force(self)); } match fallible!(self, with.to_attrs()).select(ident) { None => continue, Some(val) => return Ok(val.clone()), } } // Iterate over the captured with stack if one exists. This is // extra tricky to do without a lot of cloning. for idx in (0..self.frame().upvalues.with_stack_len()).rev() { // This is safe because having an index here guarantees // that the stack is present. let with = unsafe { self.frame().upvalues.with_stack().unwrap_unchecked()[idx].clone() }; if let Value::Thunk(thunk) = &with { fallible!(self, thunk.force(self)); } match fallible!(self, with.to_attrs()).select(ident) { None => continue, Some(val) => return Ok(val.clone()), } } Err(self.error(ErrorKind::UnknownDynamicVariable(ident.to_string()))) } /// Populate the upvalue fields of a thunk or closure under construction. fn populate_upvalues( &mut self, count: usize, mut upvalues: RefMut<'_, Upvalues>, ) -> EvalResult<()> { for _ in 0..count { match self.inc_ip() { OpCode::DataLocalIdx(StackIdx(local_idx)) => { let idx = self.frame().stack_offset + local_idx; upvalues.push(self.stack[idx].clone()); } OpCode::DataUpvalueIdx(upv_idx) => { upvalues.push(self.frame().upvalue(upv_idx).clone()); } OpCode::DataDeferredLocal(idx) => { upvalues.push(Value::DeferredUpvalue(idx)); } OpCode::DataCaptureWith => { // Start the captured with_stack off of the // current call frame's captured with_stack, ... let mut captured_with_stack = self .frame() .upvalues .with_stack() .map(Clone::clone) // ... or make an empty one if there isn't one already. .unwrap_or_else(|| Vec::with_capacity(self.with_stack.len())); for idx in &self.with_stack { captured_with_stack.push(self.stack[*idx].clone()); } upvalues.set_with_stack(captured_with_stack); } _ => panic!("compiler error: missing closure operand"), } } Ok(()) } /// Strictly evaluate the supplied value for outputting it. This /// will ensure that lists and attribute sets do not contain /// chunks which, for users, are displayed in a strange and often /// unexpected way. fn force_for_output(&mut self, value: &Value) -> EvalResult<()> { match value { Value::Attrs(attrs) => { for (_, value) in attrs.iter() { self.force_for_output(value)?; } Ok(()) } Value::List(list) => list.iter().try_for_each(|elem| self.force_for_output(elem)), Value::Thunk(thunk) => { fallible!(self, thunk.force(self)); let value = thunk.value().clone(); self.force_for_output(&value) } // If any of these internal values are encountered here a // critical error has happened (likely a compiler bug). Value::AttrNotFound | Value::DynamicUpvalueMissing(_) | Value::Blueprint(_) | Value::DeferredUpvalue(_) => { panic!("tvix bug: internal value left on stack: {:?}", value) } Value::Null | Value::Bool(_) | Value::Integer(_) | Value::Float(_) | Value::String(_) | Value::Path(_) | Value::Closure(_) | Value::Builtin(_) => Ok(()), } } pub fn call_builtin(&mut self, builtin: Builtin) -> EvalResult<()> { let builtin_name = builtin.name(); self.observer.observe_enter_builtin(builtin_name); let arg = self.pop(); let result = fallible!(self, builtin.apply(self, arg)); self.observer.observe_exit_builtin(builtin_name); self.push(result); Ok(()) } } // TODO: use Rc::unwrap_or_clone once it is stabilised. // https://doc.rust-lang.org/std/rc/struct.Rc.html#method.unwrap_or_clone fn unwrap_or_clone_rc<T: Clone>(rc: Rc<T>) -> T { Rc::try_unwrap(rc).unwrap_or_else(|rc| (*rc).clone()) } pub fn run_lambda( nix_path: NixPath, observer: &mut dyn RuntimeObserver, lambda: Rc<Lambda>, ) -> EvalResult<RuntimeResult> { let mut vm = VM::new(nix_path, observer); vm.enter_frame(lambda, Upvalues::with_capacity(0), 0)?; let value = vm.pop(); vm.force_for_output(&value)?; Ok(RuntimeResult { value, warnings: vm.warnings, }) }