//! This module implements Nix attribute sets. They have flexible //! backing implementations, as they are used in very versatile //! use-cases that are all exposed the same way in the language //! surface. //! //! Due to this, construction and management of attribute sets has //! some peculiarities that are encapsulated within this module. use std::iter::FromIterator; use imbl::{ordmap, OrdMap}; use serde::de::{Deserializer, Error, Visitor}; use serde::ser::SerializeMap; use serde::{Deserialize, Serialize}; use crate::errors::ErrorKind; use crate::vm::VM; use super::string::NixString; use super::thunk::ThunkSet; use super::TotalDisplay; use super::Value; #[cfg(test)] mod tests; #[derive(Clone, Debug, Deserialize)] enum AttrsRep { Empty, Im(OrdMap<NixString, Value>), /// Warning: this represents a **two**-attribute attrset, with /// attribute names "name" and "value", like `{name="foo"; /// value="bar";}`, *not* `{foo="bar";}`! KV { name: Value, value: Value, }, } impl Default for AttrsRep { fn default() -> Self { AttrsRep::Empty } } impl AttrsRep { /// Retrieve reference to a mutable map inside of an attrs, /// optionally changing the representation if required. fn map_mut(&mut self) -> &mut OrdMap<NixString, Value> { match self { AttrsRep::Im(m) => m, AttrsRep::Empty => { *self = AttrsRep::Im(OrdMap::new()); self.map_mut() } AttrsRep::KV { name, value } => { *self = AttrsRep::Im(ordmap! { NixString::NAME => name.clone(), NixString::VALUE => value.clone() }); self.map_mut() } } } fn select(&self, key: &str) -> Option<&Value> { match self { AttrsRep::Empty => None, AttrsRep::KV { name, value } => match key { "name" => Some(name), "value" => Some(value), _ => None, }, AttrsRep::Im(map) => map.get(&key.into()), } } fn contains(&self, key: &str) -> bool { match self { AttrsRep::Empty => false, AttrsRep::KV { .. } => key == "name" || key == "value", AttrsRep::Im(map) => map.contains_key(&key.into()), } } } #[repr(transparent)] #[derive(Clone, Debug, Default)] pub struct NixAttrs(AttrsRep); impl<K, V> FromIterator<(K, V)> for NixAttrs where NixString: From<K>, Value: From<V>, { fn from_iter<T>(iter: T) -> NixAttrs where T: IntoIterator<Item = (K, V)>, { NixAttrs(AttrsRep::Im( iter.into_iter() .map(|(k, v)| (k.into(), v.into())) .collect(), )) } } impl TotalDisplay for NixAttrs { fn total_fmt(&self, f: &mut std::fmt::Formatter<'_>, set: &mut ThunkSet) -> std::fmt::Result { f.write_str("{ ")?; match &self.0 { AttrsRep::KV { name, value } => { f.write_str("name = ")?; name.total_fmt(f, set)?; f.write_str("; ")?; f.write_str("value = ")?; value.total_fmt(f, set)?; f.write_str("; ")?; } AttrsRep::Im(map) => { for (name, value) in map { write!(f, "{} = ", name.ident_str())?; value.total_fmt(f, set)?; f.write_str("; ")?; } } AttrsRep::Empty => { /* no values to print! */ } } f.write_str("}") } } impl Serialize for NixAttrs { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer, { match &self.0 { AttrsRep::Empty => serializer.serialize_map(Some(0))?.end(), AttrsRep::KV { name, value } => { let mut map = serializer.serialize_map(Some(2))?; map.serialize_entry("name", name)?; map.serialize_entry("value", value)?; map.end() } AttrsRep::Im(map) => map.serialize(serializer), } } } impl<'de> Deserialize<'de> for NixAttrs { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { struct MapVisitor; impl<'de> Visitor<'de> for MapVisitor { type Value = NixAttrs; fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result { formatter.write_str("a valid Nix attribute set") } fn visit_map<A>(self, mut map: A) -> Result<Self::Value, A::Error> where A: serde::de::MapAccess<'de>, { let mut stack_array = Vec::with_capacity(map.size_hint().unwrap_or(0) * 2); while let Some((key, value)) = map.next_entry()? { stack_array.push(key); stack_array.push(value); } NixAttrs::construct(stack_array.len() / 2, stack_array).map_err(A::Error::custom) } } deserializer.deserialize_map(MapVisitor) } } #[cfg(feature = "arbitrary")] mod arbitrary { use super::*; use std::collections::BTreeMap; use proptest::prelude::*; use proptest::prop_oneof; use proptest::strategy::{BoxedStrategy, Just, Strategy}; impl Arbitrary for NixAttrs { type Parameters = <BTreeMap<NixString, Value> as Arbitrary>::Parameters; type Strategy = BoxedStrategy<Self>; fn arbitrary_with(args: Self::Parameters) -> Self::Strategy { prop_oneof![ Just(Self(AttrsRep::Empty)), ( any_with::<Value>(args.2.clone()), any_with::<Value>(args.2.clone()) ) .prop_map(|(name, value)| Self(AttrsRep::KV { name, value })), any_with::<BTreeMap<NixString, Value>>(args) .prop_map(|map| Self::from_iter(map.into_iter())) ] .boxed() } } } impl NixAttrs { pub fn empty() -> Self { Self(AttrsRep::Empty) } /// Compare two attribute sets by pointer equality. Only makes /// sense for some attribute set reprsentations, i.e. returning /// `false` does not mean that the two attribute sets do not have /// equal *content*. pub fn ptr_eq(&self, other: &Self) -> bool { match (&self.0, &other.0) { (AttrsRep::Im(lhs), AttrsRep::Im(rhs)) => lhs.ptr_eq(rhs), _ => false, } } /// Return an attribute set containing the merge of the two /// provided sets. Keys from the `other` set have precedence. pub fn update(self, other: Self) -> Self { // Short-circuit on some optimal cases: match (&self.0, &other.0) { (AttrsRep::Empty, AttrsRep::Empty) => return self, (AttrsRep::Empty, _) => return other, (_, AttrsRep::Empty) => return self, (AttrsRep::KV { .. }, AttrsRep::KV { .. }) => return other, // Explicitly handle all branches instead of falling // through, to ensure that we get at least some compiler // errors if variants are modified. (AttrsRep::Im(_), AttrsRep::Im(_)) | (AttrsRep::Im(_), AttrsRep::KV { .. }) | (AttrsRep::KV { .. }, AttrsRep::Im(_)) => {} }; // Slightly more advanced, but still optimised updates match (self.0, other.0) { (AttrsRep::Im(mut m), AttrsRep::KV { name, value }) => { m.insert(NixString::NAME, name); m.insert(NixString::VALUE, value); NixAttrs(AttrsRep::Im(m)) } (AttrsRep::KV { name, value }, AttrsRep::Im(mut m)) => { match m.entry(NixString::NAME) { imbl::ordmap::Entry::Vacant(e) => { e.insert(name); } imbl::ordmap::Entry::Occupied(_) => { /* name from `m` has precedence */ } }; match m.entry(NixString::VALUE) { imbl::ordmap::Entry::Vacant(e) => { e.insert(value); } imbl::ordmap::Entry::Occupied(_) => { /* value from `m` has precedence */ } }; NixAttrs(AttrsRep::Im(m)) } // Plain merge of maps. (AttrsRep::Im(m1), AttrsRep::Im(m2)) => NixAttrs(AttrsRep::Im(m2.union(m1))), // Cases handled above by the borrowing match: _ => unreachable!(), } } /// Return the number of key-value entries in an attrset. pub fn len(&self) -> usize { match &self.0 { AttrsRep::Im(map) => map.len(), AttrsRep::Empty => 0, AttrsRep::KV { .. } => 2, } } pub fn is_empty(&self) -> bool { match &self.0 { AttrsRep::Im(map) => map.is_empty(), AttrsRep::Empty => true, AttrsRep::KV { .. } => false, } } /// Select a value from an attribute set by key. pub fn select(&self, key: &str) -> Option<&Value> { self.0.select(key) } /// Select a required value from an attribute set by key, return /// an `AttributeNotFound` error if it is missing. pub fn select_required(&self, key: &str) -> Result<&Value, ErrorKind> { self.select(key) .ok_or_else(|| ErrorKind::AttributeNotFound { name: key.into() }) } pub fn contains(&self, key: &str) -> bool { self.0.contains(key) } /// Construct an iterator over all the key-value pairs in the attribute set. #[allow(clippy::needless_lifetimes)] pub fn iter<'a>(&'a self) -> Iter<KeyValue<'a>> { Iter(match &self.0 { AttrsRep::Im(map) => KeyValue::Im(map.iter()), AttrsRep::Empty => KeyValue::Empty, AttrsRep::KV { ref name, ref value, } => KeyValue::KV { name, value, at: IterKV::default(), }, }) } pub fn into_iter(self) -> IntoIter { match self.0 { AttrsRep::Empty => IntoIter(IntoIterRepr::Empty), AttrsRep::KV { name, value } => IntoIter(IntoIterRepr::Finite( vec![ (NixString::NAME_REF.clone(), name), (NixString::VALUE_REF.clone(), value), ] .into_iter(), )), AttrsRep::Im(map) => IntoIter(IntoIterRepr::Im(map.into_iter())), } } /// Same as into_iter(), but marks call sites which rely on the /// iteration being lexicographic. pub fn into_iter_sorted(self) -> IntoIter { self.into_iter() } /// Construct an iterator over all the keys of the attribute set pub fn keys(&self) -> Keys { Keys(match &self.0 { AttrsRep::Empty => KeysInner::Empty, AttrsRep::Im(m) => KeysInner::Im(m.keys()), AttrsRep::KV { .. } => KeysInner::KV(IterKV::default()), }) } /// Implement construction logic of an attribute set, to encapsulate /// logic about attribute set optimisations inside of this module. pub fn construct(count: usize, mut stack_slice: Vec<Value>) -> Result<Self, ErrorKind> { debug_assert!( stack_slice.len() == count * 2, "construct_attrs called with count == {}, but slice.len() == {}", count, stack_slice.len(), ); // Optimisation: Empty attribute set if count == 0 { return Ok(NixAttrs(AttrsRep::Empty)); } // Optimisation: KV pattern if count == 2 { if let Some(kv) = attempt_optimise_kv(&mut stack_slice) { return Ok(kv); } } let mut attrs = NixAttrs(AttrsRep::Im(OrdMap::new())); for _ in 0..count { let value = stack_slice.pop().unwrap(); let key = stack_slice.pop().unwrap(); match key { Value::String(ks) => set_attr(&mut attrs, ks, value)?, Value::Null => { // This is in fact valid, but leads to the value // being ignored and nothing being set, i.e. `{ // ${null} = 1; } => { }`. continue; } other => return Err(ErrorKind::InvalidAttributeName(other)), } } Ok(attrs) } /// Construct an optimized "KV"-style attribute set given the value for the /// `"name"` key, and the value for the `"value"` key pub(crate) fn from_kv(name: Value, value: Value) -> Self { NixAttrs(AttrsRep::KV { name, value }) } /// Compare `self` against `other` for equality using Nix equality semantics pub fn nix_eq(&self, other: &Self, vm: &mut VM) -> Result<bool, ErrorKind> { match (&self.0, &other.0) { (AttrsRep::Empty, AttrsRep::Empty) => Ok(true), // It is possible to create an empty attribute set that // has Map representation like so: ` { ${null} = 1; }`. // // Preventing this would incur a cost on all attribute set // construction (we'd have to check the actual number of // elements after key construction). In practice this // probably does not happen, so it's better to just bite // the bullet and implement this branch. (AttrsRep::Empty, AttrsRep::Im(map)) | (AttrsRep::Im(map), AttrsRep::Empty) => { Ok(map.is_empty()) } // Other specialised representations (KV ...) definitely // do not match `Empty`. (AttrsRep::Empty, _) | (_, AttrsRep::Empty) => Ok(false), ( AttrsRep::KV { name: n1, value: v1, }, AttrsRep::KV { name: n2, value: v2, }, ) => Ok(n1.nix_eq(n2, vm)? && v1.nix_eq(v2, vm)?), (AttrsRep::Im(map), AttrsRep::KV { name, value }) | (AttrsRep::KV { name, value }, AttrsRep::Im(map)) => { if map.len() != 2 { return Ok(false); } if let (Some(m_name), Some(m_value)) = (map.get(&NixString::NAME), map.get(&NixString::VALUE)) { return Ok(name.nix_eq(m_name, vm)? && value.nix_eq(m_value, vm)?); } Ok(false) } (AttrsRep::Im(m1), AttrsRep::Im(m2)) => { if m1.len() != m2.len() { return Ok(false); } for (k, v1) in m1 { if let Some(v2) = m2.get(k) { if !v1.nix_eq(v2, vm)? { return Ok(false); } } else { return Ok(false); } } Ok(true) } } } } /// In Nix, name/value attribute pairs are frequently constructed from /// literals. This particular case should avoid allocation of a map, /// additional heap values etc. and use the optimised `KV` variant /// instead. /// /// ```norust /// `slice` is the top of the stack from which the attrset is being /// constructed, e.g. /// /// slice: [ "value" 5 "name" "foo" ] /// index: 0 1 2 3 /// stack: 3 2 1 0 /// ``` fn attempt_optimise_kv(slice: &mut [Value]) -> Option<NixAttrs> { let (name_idx, value_idx) = { match (&slice[2], &slice[0]) { (Value::String(s1), Value::String(s2)) if (*s1 == NixString::NAME && *s2 == NixString::VALUE) => { (3, 1) } (Value::String(s1), Value::String(s2)) if (*s1 == NixString::VALUE && *s2 == NixString::NAME) => { (1, 3) } // Technically this branch lets type errors pass, // but they will be caught during normal attribute // set construction instead. _ => return None, } }; Some(NixAttrs::from_kv( slice[name_idx].clone(), slice[value_idx].clone(), )) } /// Set an attribute on an in-construction attribute set, while /// checking against duplicate keys. fn set_attr(attrs: &mut NixAttrs, key: NixString, value: Value) -> Result<(), ErrorKind> { match attrs.0.map_mut().entry(key) { imbl::ordmap::Entry::Occupied(entry) => Err(ErrorKind::DuplicateAttrsKey { key: entry.key().as_str().to_string(), }), imbl::ordmap::Entry::Vacant(entry) => { entry.insert(value); Ok(()) } } } /// Internal helper type to track the iteration status of an iterator /// over the name/value representation. #[derive(Debug, Default)] pub enum IterKV { #[default] Name, Value, Done, } impl IterKV { fn next(&mut self) { match *self { Self::Name => *self = Self::Value, Self::Value => *self = Self::Done, Self::Done => {} } } } /// Iterator representation over the keys *and* values of an attribute /// set. pub enum KeyValue<'a> { Empty, KV { name: &'a Value, value: &'a Value, at: IterKV, }, Im(imbl::ordmap::Iter<'a, NixString, Value>), } /// Iterator over a Nix attribute set. // This wrapper type exists to make the inner "raw" iterator // inaccessible. #[repr(transparent)] pub struct Iter<T>(T); impl<'a> Iterator for Iter<KeyValue<'a>> { type Item = (&'a NixString, &'a Value); fn next(&mut self) -> Option<Self::Item> { match &mut self.0 { KeyValue::Im(inner) => inner.next(), KeyValue::Empty => None, KeyValue::KV { name, value, at } => match at { IterKV::Name => { at.next(); Some((NixString::NAME_REF, name)) } IterKV::Value => { at.next(); Some((NixString::VALUE_REF, value)) } IterKV::Done => None, }, } } } impl<'a> ExactSizeIterator for Iter<KeyValue<'a>> { fn len(&self) -> usize { match &self.0 { KeyValue::Empty => 0, KeyValue::KV { .. } => 2, KeyValue::Im(inner) => inner.len(), } } } enum KeysInner<'a> { Empty, KV(IterKV), Im(imbl::ordmap::Keys<'a, NixString, Value>), } pub struct Keys<'a>(KeysInner<'a>); impl<'a> Iterator for Keys<'a> { type Item = &'a NixString; fn next(&mut self) -> Option<Self::Item> { match &mut self.0 { KeysInner::Empty => None, KeysInner::KV(at @ IterKV::Name) => { at.next(); Some(NixString::NAME_REF) } KeysInner::KV(at @ IterKV::Value) => { at.next(); Some(NixString::VALUE_REF) } KeysInner::KV(IterKV::Done) => None, KeysInner::Im(m) => m.next(), } } } impl<'a> IntoIterator for &'a NixAttrs { type Item = (&'a NixString, &'a Value); type IntoIter = Iter<KeyValue<'a>>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a> ExactSizeIterator for Keys<'a> { fn len(&self) -> usize { match &self.0 { KeysInner::Empty => 0, KeysInner::KV(_) => 2, KeysInner::Im(m) => m.len(), } } } /// Internal representation of an owning attrset iterator pub enum IntoIterRepr { Empty, Finite(std::vec::IntoIter<(NixString, Value)>), Im(imbl::ordmap::ConsumingIter<(NixString, Value)>), } #[repr(transparent)] pub struct IntoIter(IntoIterRepr); impl Iterator for IntoIter { type Item = (NixString, Value); fn next(&mut self) -> Option<Self::Item> { match &mut self.0 { IntoIterRepr::Empty => None, IntoIterRepr::Finite(inner) => inner.next(), IntoIterRepr::Im(inner) => inner.next(), } } } impl ExactSizeIterator for IntoIter { fn len(&self) -> usize { match &self.0 { IntoIterRepr::Empty => 0, IntoIterRepr::Finite(inner) => inner.len(), IntoIterRepr::Im(inner) => inner.len(), } } }