/// This module implements Nix attribute sets. They have flexible /// backing implementations, as they are used in very versatile /// use-cases that are all exposed the same way in the language /// surface. /// /// Due to this, construction and management of attribute sets has /// some peculiarities that are encapsulated within this module. use std::collections::BTreeMap; use std::fmt::Display; use std::rc::Rc; use crate::errors::{Error, EvalResult}; use super::string::NixString; use super::Value; #[cfg(test)] mod tests; #[derive(Clone, Debug)] pub enum NixAttrs { Empty, Map(BTreeMap<NixString, Value>), KV { name: Value, value: Value }, } impl Display for NixAttrs { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.write_str("{ ")?; match self { NixAttrs::KV { name, value } => { f.write_fmt(format_args!("name = {}; ", name))?; f.write_fmt(format_args!("value = {}; ", value))?; } NixAttrs::Map(map) => { for (name, value) in map { f.write_fmt(format_args!("{} = {}; ", name.ident_str(), value))?; } } NixAttrs::Empty => { /* no values to print! */ } } f.write_str("}") } } impl PartialEq for NixAttrs { fn eq(&self, _other: &Self) -> bool { todo!("attrset equality") } } impl NixAttrs { /// Retrieve reference to a mutable map inside of an attrs, /// optionally changing the representation if required. fn map_mut(&mut self) -> &mut BTreeMap<NixString, Value> { match self { NixAttrs::Map(m) => m, NixAttrs::Empty => { *self = NixAttrs::Map(BTreeMap::new()); self.map_mut() } NixAttrs::KV { name, value } => { *self = NixAttrs::Map(BTreeMap::from([ ("name".into(), std::mem::replace(name, Value::Blackhole)), ("value".into(), std::mem::replace(value, Value::Blackhole)), ])); self.map_mut() } } } /// Implement construction logic of an attribute set, to encapsulate /// logic about attribute set optimisations inside of this module. pub fn construct(count: usize, mut stack_slice: Vec<Value>) -> EvalResult<Self> { debug_assert!( stack_slice.len() == count * 2, "construct_attrs called with count == {}, but slice.len() == {}", count, stack_slice.len(), ); // Optimisation: Empty attribute set if count == 0 { return Ok(NixAttrs::Empty); } // Optimisation: KV pattern if count == 2 { if let Some(kv) = attempt_optimise_kv(&mut stack_slice) { return Ok(kv); } } // TODO(tazjin): extend_reserve(count) (rust#72631) let mut attrs = NixAttrs::Map(BTreeMap::new()); for _ in 0..count { let value = stack_slice.pop().unwrap(); // It is at this point that nested attribute sets need to // be constructed (if they exist). // let key = stack_slice.pop().unwrap(); match key { Value::String(ks) => set_attr(&mut attrs, ks, value)?, Value::AttrPath(mut path) => { set_nested_attr( &mut attrs, path.pop().expect("AttrPath is never empty"), path, value, )?; } other => { return Err(Error::InvalidKeyType { given: other.type_of(), }) } } } Ok(attrs) } } // In Nix, name/value attribute pairs are frequently constructed from // literals. This particular case should avoid allocation of a map, // additional heap values etc. and use the optimised `KV` variant // instead. // // `slice` is the top of the stack from which the attrset is being // constructed, e.g. // // slice: [ "value" 5 "name" "foo" ] // index: 0 1 2 3 // stack: 3 2 1 0 fn attempt_optimise_kv(slice: &mut [Value]) -> Option<NixAttrs> { let (name_idx, value_idx) = { match (&slice[2], &slice[0]) { (Value::String(s1), Value::String(s2)) if (*s1 == NixString::NAME && *s2 == NixString::VALUE) => { (3, 1) } (Value::String(s1), Value::String(s2)) if (*s1 == NixString::VALUE && *s2 == NixString::NAME) => { (1, 3) } // Technically this branch lets type errors pass, // but they will be caught during normal attribute // set construction instead. _ => return None, } }; Some(NixAttrs::KV { name: std::mem::replace(&mut slice[name_idx], Value::Blackhole), value: std::mem::replace(&mut slice[value_idx], Value::Blackhole), }) } // Set an attribute on an in-construction attribute set, while // checking against duplicate keys. fn set_attr(attrs: &mut NixAttrs, key: NixString, value: Value) -> EvalResult<()> { let attrs = attrs.map_mut(); let entry = attrs.entry(key); match entry { std::collections::btree_map::Entry::Occupied(entry) => { return Err(Error::DuplicateAttrsKey { key: entry.key().as_str().to_string(), }) } std::collections::btree_map::Entry::Vacant(entry) => { entry.insert(value); return Ok(()); } }; } // Set a nested attribute inside of an attribute set, throwing a // duplicate key error if a non-hashmap entry already exists on the // path. // // There is some optimisation potential for this simple implementation // if it becomes a problem. fn set_nested_attr( attrs: &mut NixAttrs, key: NixString, mut path: Vec<NixString>, value: Value, ) -> EvalResult<()> { // If there is no next key we are at the point where we // should insert the value itself. if path.is_empty() { return set_attr(attrs, key, value); } let attrs = attrs.map_mut(); let entry = attrs.entry(key); // If there is not we go one step further down, in which case we // need to ensure that there either is no entry, or the existing // entry is a hashmap into which to insert the next value. // // If a value of a different type exists, the user specified a // duplicate key. match entry { // Vacant entry -> new attribute set is needed. std::collections::btree_map::Entry::Vacant(entry) => { let mut map = NixAttrs::Map(BTreeMap::new()); // TODO(tazjin): technically recursing further is not // required, we can create the whole hierarchy here, but // it's noisy. set_nested_attr(&mut map, path.pop().expect("next key exists"), path, value)?; entry.insert(Value::Attrs(Rc::new(map))); } // Occupied entry: Either error out if there is something // other than attrs, or insert the next value. std::collections::btree_map::Entry::Occupied(mut entry) => match entry.get_mut() { Value::Attrs(attrs) => { set_nested_attr( Rc::make_mut(attrs), path.pop().expect("next key exists"), path, value, )?; } _ => { return Err(Error::DuplicateAttrsKey { key: entry.key().as_str().to_string(), }) } }, } Ok(()) }