//! This module implements a compiler for compiling the rnix AST //! representation to Tvix bytecode. //! //! A note on `unwrap()`: This module contains a lot of calls to //! `unwrap()` or `expect(...)` on data structures returned by `rnix`. //! The reason for this is that rnix uses the same data structures to //! represent broken and correct ASTs, so all typed AST variants have //! the ability to represent an incorrect node. //! //! However, at the time that the AST is passed to the compiler we //! have verified that `rnix` considers the code to be correct, so all //! variants are fulfilled. In cases where the invariant is guaranteed //! by the code in this module, `debug_assert!` has been used to catch //! mistakes early during development. mod bindings; mod import; mod scope; use codemap::Span; use rnix::ast::{self, AstToken}; use smol_str::SmolStr; use std::collections::HashMap; use std::path::{Path, PathBuf}; use std::rc::{Rc, Weak}; use std::sync::Arc; use crate::chunk::Chunk; use crate::errors::{Error, ErrorKind, EvalResult}; use crate::observer::CompilerObserver; use crate::opcode::{CodeIdx, Count, JumpOffset, OpCode, UpvalueIdx}; use crate::spans::LightSpan; use crate::spans::ToSpan; use crate::value::{Closure, Formals, Lambda, NixAttrs, Thunk, Value}; use crate::warnings::{EvalWarning, WarningKind}; use crate::SourceCode; use self::scope::{LocalIdx, LocalPosition, Scope, Upvalue, UpvalueKind}; /// Represents the result of compiling a piece of Nix code. If /// compilation was successful, the resulting bytecode can be passed /// to the VM. pub struct CompilationOutput { pub lambda: Rc<Lambda>, pub warnings: Vec<EvalWarning>, pub errors: Vec<Error>, // This field must outlive the rc::Weak reference which breaks // the builtins -> import -> builtins reference cycle. // // TODO: ensure through compiler pub globals: Rc<GlobalsMap>, } /// Represents the lambda currently being compiled. struct LambdaCtx { lambda: Lambda, scope: Scope, captures_with_stack: bool, } impl LambdaCtx { fn new() -> Self { LambdaCtx { lambda: Lambda::default(), scope: Default::default(), captures_with_stack: false, } } fn inherit(&self) -> Self { LambdaCtx { lambda: Lambda::default(), scope: self.scope.inherit(), captures_with_stack: false, } } } /// The type of a global as used inside of the compiler. Differs from /// Nix's own notion of "builtins" in that it can emit arbitrary code. /// Nix's builtins are wrapped inside of this type. pub type Global = Rc<dyn Fn(&mut Compiler, Span)>; /// The map of globally available functions that should implicitly /// be resolvable in the global scope. pub(crate) type GlobalsMap = HashMap<&'static str, Rc<dyn Fn(&mut Compiler, Span)>>; /// Set of builtins that (if they exist) should be made available in /// the global scope, meaning that they can be accessed not just /// through `builtins.<name>`, but directly as `<name>`. This is not /// configurable, it is based on what Nix 2.3 exposed. const GLOBAL_BUILTINS: &'static [&'static str] = &[ "abort", "baseNameOf", "derivation", "derivationStrict", "dirOf", "fetchGit", "fetchMercurial", "fetchTarball", "fromTOML", "import", "isNull", "map", "placeholder", "removeAttrs", "scopedImport", "throw", "toString", ]; pub struct Compiler<'observer> { contexts: Vec<LambdaCtx>, warnings: Vec<EvalWarning>, errors: Vec<Error>, root_dir: PathBuf, /// Carries all known global tokens; the full set of which is /// created when the compiler is invoked. /// /// Each global has an associated token, which when encountered as /// an identifier is resolved against the scope poisoning logic, /// and a function that should emit code for the token. globals: Rc<GlobalsMap>, /// File reference in the codemap contains all known source code /// and is used to track the spans from which instructions where /// derived. file: Arc<codemap::File>, /// Carry an observer for the compilation process, which is called /// whenever a chunk is emitted. observer: &'observer mut dyn CompilerObserver, } impl Compiler<'_> { pub(super) fn span_for<S: ToSpan>(&self, to_span: &S) -> Span { to_span.span_for(&self.file) } } /// Compiler construction impl<'observer> Compiler<'observer> { pub(crate) fn new( location: Option<PathBuf>, file: Arc<codemap::File>, globals: Rc<GlobalsMap>, observer: &'observer mut dyn CompilerObserver, ) -> EvalResult<Self> { let mut root_dir = match location { Some(dir) if cfg!(target_arch = "wasm32") || dir.is_absolute() => Ok(dir), _ => { let current_dir = std::env::current_dir().map_err(|e| Error { kind: ErrorKind::RelativePathResolution(format!( "could not determine current directory: {}", e )), span: file.span, })?; if let Some(dir) = location { Ok(current_dir.join(dir)) } else { Ok(current_dir) } } }?; // If the path passed from the caller points to a file, the // filename itself needs to be truncated as this must point to a // directory. if root_dir.is_file() { root_dir.pop(); } #[cfg(not(target_arch = "wasm32"))] debug_assert!(root_dir.is_absolute()); Ok(Self { root_dir, file, observer, globals, contexts: vec![LambdaCtx::new()], warnings: vec![], errors: vec![], }) } } // Helper functions for emitting code and metadata to the internal // structures of the compiler. impl Compiler<'_> { fn context(&self) -> &LambdaCtx { &self.contexts[self.contexts.len() - 1] } fn context_mut(&mut self) -> &mut LambdaCtx { let idx = self.contexts.len() - 1; &mut self.contexts[idx] } fn chunk(&mut self) -> &mut Chunk { &mut self.context_mut().lambda.chunk } fn scope(&self) -> &Scope { &self.context().scope } fn scope_mut(&mut self) -> &mut Scope { &mut self.context_mut().scope } /// Push a single instruction to the current bytecode chunk and /// track the source span from which it was compiled. fn push_op<T: ToSpan>(&mut self, data: OpCode, node: &T) -> CodeIdx { let span = self.span_for(node); self.chunk().push_op(data, span) } /// Emit a single constant to the current bytecode chunk and track /// the source span from which it was compiled. pub(super) fn emit_constant<T: ToSpan>(&mut self, value: Value, node: &T) { let idx = self.chunk().push_constant(value); self.push_op(OpCode::OpConstant(idx), node); } } // Actual code-emitting AST traversal methods. impl Compiler<'_> { fn compile(&mut self, slot: LocalIdx, expr: &ast::Expr) { match expr { ast::Expr::Literal(literal) => self.compile_literal(literal), ast::Expr::Path(path) => self.compile_path(slot, path), ast::Expr::Str(s) => self.compile_str(slot, s), ast::Expr::UnaryOp(op) => self.compile_unary_op(slot, op), ast::Expr::BinOp(binop) => { self.thunk(slot, binop, move |c, s| c.compile_binop(s, binop)) } ast::Expr::HasAttr(has_attr) => self.compile_has_attr(slot, has_attr), ast::Expr::List(list) => self.thunk(slot, list, move |c, s| c.compile_list(s, list)), ast::Expr::AttrSet(attrs) => { self.thunk(slot, attrs, move |c, s| c.compile_attr_set(s, attrs)) } ast::Expr::Select(select) => { self.thunk(slot, select, move |c, s| c.compile_select(s, select)) } ast::Expr::Assert(assert) => { self.thunk(slot, assert, move |c, s| c.compile_assert(s, assert)) } ast::Expr::IfElse(if_else) => { self.thunk(slot, if_else, move |c, s| c.compile_if_else(s, if_else)) } ast::Expr::LetIn(let_in) => { self.thunk(slot, let_in, move |c, s| c.compile_let_in(s, let_in)) } ast::Expr::Ident(ident) => self.compile_ident(slot, ident), ast::Expr::With(with) => self.thunk(slot, with, |c, s| c.compile_with(s, with)), ast::Expr::Lambda(lambda) => { self.compile_lambda_or_thunk(false, slot, lambda, |c, s| { c.compile_lambda(s, lambda) }) } ast::Expr::Apply(apply) => { self.thunk(slot, apply, move |c, s| c.compile_apply(s, apply)) } // Parenthesized expressions are simply unwrapped, leaving // their value on the stack. ast::Expr::Paren(paren) => self.compile(slot, &paren.expr().unwrap()), ast::Expr::LegacyLet(legacy_let) => self.compile_legacy_let(slot, legacy_let), ast::Expr::Root(_) => unreachable!("there cannot be more than one root"), ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"), } } fn compile_literal(&mut self, node: &ast::Literal) { let value = match node.kind() { ast::LiteralKind::Float(f) => Value::Float(f.value().unwrap()), ast::LiteralKind::Integer(i) => match i.value() { Ok(v) => Value::Integer(v), Err(err) => return self.emit_error(node, err.into()), }, ast::LiteralKind::Uri(u) => { self.emit_warning(node, WarningKind::DeprecatedLiteralURL); Value::String(u.syntax().text().into()) } }; self.emit_constant(value, node); } fn compile_path(&mut self, slot: LocalIdx, node: &ast::Path) { // TODO(tazjin): placeholder implementation while waiting for // https://github.com/nix-community/rnix-parser/pull/96 let raw_path = node.to_string(); let path = if raw_path.starts_with('/') { Path::new(&raw_path).to_owned() } else if raw_path.starts_with('~') { return self.thunk(slot, node, move |c, _| { // We assume that paths that home paths start with ~/ or fail to parse // TODO: this should be checked using a parse-fail test. debug_assert!(raw_path.len() > 2 && raw_path.starts_with("~/")); let home_relative_path = &raw_path[2..(raw_path.len())]; c.emit_constant(Value::UnresolvedPath(home_relative_path.into()), node); c.push_op(OpCode::OpResolveHomePath, node); }); } else if raw_path.starts_with('.') { let mut buf = self.root_dir.clone(); buf.push(&raw_path); buf } else if raw_path.starts_with('<') { // TODO: decide what to do with findFile if raw_path.len() == 2 { return self.emit_error( node, ErrorKind::NixPathResolution("Empty <> path not allowed".into()), ); } let path = &raw_path[1..(raw_path.len() - 1)]; // Make a thunk to resolve the path (without using `findFile`, at least for now?) return self.thunk(slot, node, move |c, _| { c.emit_constant(Value::UnresolvedPath(path.into()), node); c.push_op(OpCode::OpFindFile, node); }); } else { self.emit_error( node, ErrorKind::NotImplemented("other path types not yet implemented"), ); return; }; // TODO: Use https://github.com/rust-lang/rfcs/issues/2208 // once it is available let value = Value::Path(crate::value::canon_path(path)); self.emit_constant(value, node); } /// Helper that compiles the given string parts strictly. The caller /// (`compile_str`) needs to figure out if the result of compiling this /// needs to be thunked or not. fn compile_str_parts( &mut self, slot: LocalIdx, parent_node: &ast::Str, parts: Vec<ast::InterpolPart<String>>, ) { // The string parts are produced in literal order, however // they need to be reversed on the stack in order to // efficiently create the real string in case of // interpolation. for part in parts.iter().rev() { match part { // Interpolated expressions are compiled as normal and // dealt with by the VM before being assembled into // the final string. We need to coerce them here, // so OpInterpolate definitely has a string to consume. ast::InterpolPart::Interpolation(ipol) => { self.compile(slot, &ipol.expr().unwrap()); // implicitly forces as well self.push_op(OpCode::OpCoerceToString, ipol); } ast::InterpolPart::Literal(lit) => { self.emit_constant(Value::String(lit.as_str().into()), parent_node); } } } if parts.len() != 1 { self.push_op(OpCode::OpInterpolate(Count(parts.len())), parent_node); } } fn compile_str(&mut self, slot: LocalIdx, node: &ast::Str) { let parts = node.normalized_parts(); // We need to thunk string expressions if they are the result of // interpolation. A string that only consists of a single part (`"${foo}"`) // can't desugar to the enclosed expression (`foo`) because we need to // coerce the result to a string value. This would require forcing the // value of the inner expression, so we need to wrap it in another thunk. if parts.len() != 1 || matches!(&parts[0], ast::InterpolPart::Interpolation(_)) { self.thunk(slot, node, move |c, s| { c.compile_str_parts(s, node, parts); }); } else { self.compile_str_parts(slot, node, parts); } } fn compile_unary_op(&mut self, slot: LocalIdx, op: &ast::UnaryOp) { self.compile(slot, &op.expr().unwrap()); self.emit_force(op); let opcode = match op.operator().unwrap() { ast::UnaryOpKind::Invert => OpCode::OpInvert, ast::UnaryOpKind::Negate => OpCode::OpNegate, }; self.push_op(opcode, op); } fn compile_binop(&mut self, slot: LocalIdx, op: &ast::BinOp) { use ast::BinOpKind; // Short-circuiting and other strange operators, which are // under the same node type as NODE_BIN_OP, but need to be // handled separately (i.e. before compiling the expressions // used for standard binary operators). match op.operator().unwrap() { BinOpKind::And => return self.compile_and(slot, op), BinOpKind::Or => return self.compile_or(slot, op), BinOpKind::Implication => return self.compile_implication(slot, op), _ => {} }; // For all other operators, the two values need to be left on // the stack in the correct order before pushing the // instruction for the operation itself. self.compile(slot, &op.lhs().unwrap()); self.emit_force(&op.lhs().unwrap()); self.compile(slot, &op.rhs().unwrap()); self.emit_force(&op.rhs().unwrap()); match op.operator().unwrap() { BinOpKind::Add => self.push_op(OpCode::OpAdd, op), BinOpKind::Sub => self.push_op(OpCode::OpSub, op), BinOpKind::Mul => self.push_op(OpCode::OpMul, op), BinOpKind::Div => self.push_op(OpCode::OpDiv, op), BinOpKind::Update => self.push_op(OpCode::OpAttrsUpdate, op), BinOpKind::Equal => self.push_op(OpCode::OpEqual, op), BinOpKind::Less => self.push_op(OpCode::OpLess, op), BinOpKind::LessOrEq => self.push_op(OpCode::OpLessOrEq, op), BinOpKind::More => self.push_op(OpCode::OpMore, op), BinOpKind::MoreOrEq => self.push_op(OpCode::OpMoreOrEq, op), BinOpKind::Concat => self.push_op(OpCode::OpConcat, op), BinOpKind::NotEqual => { self.push_op(OpCode::OpEqual, op); self.push_op(OpCode::OpInvert, op) } // Handled by separate branch above. BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => { unreachable!() } }; } fn compile_and(&mut self, slot: LocalIdx, node: &ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::And)), "compile_and called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack. self.compile(slot, &node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); // If this value is false, jump over the right-hand side - the // whole expression is false. let end_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node); // Otherwise, remove the previous value and leave the // right-hand side on the stack. Its result is now the value // of the whole expression. self.push_op(OpCode::OpPop, node); self.compile(slot, &node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, node); } fn compile_or(&mut self, slot: LocalIdx, node: &ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Or)), "compile_or called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack self.compile(slot, &node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); // Opposite of above: If this value is **true**, we can // short-circuit the right-hand side. let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node); self.push_op(OpCode::OpPop, node); self.compile(slot, &node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, node); } fn compile_implication(&mut self, slot: LocalIdx, node: &ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Implication)), "compile_implication called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack and invert it. self.compile(slot, &node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); self.push_op(OpCode::OpInvert, node); // Exactly as `||` (because `a -> b` = `!a || b`). let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node); self.push_op(OpCode::OpPop, node); self.compile(slot, &node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, node); } /// Compile list literals into equivalent bytecode. List /// construction is fairly simple, consisting of pushing code for /// each literal element and an instruction with the element /// count. /// /// The VM, after evaluating the code for each element, simply /// constructs the list from the given number of elements. fn compile_list(&mut self, slot: LocalIdx, node: &ast::List) { let mut count = 0; // Open a temporary scope to correctly account for stack items // that exist during the construction. self.scope_mut().begin_scope(); for item in node.items() { // Start tracing new stack slots from the second list // element onwards. The first list element is located in // the stack slot of the list itself. let item_slot = match count { 0 => slot, _ => { let item_span = self.span_for(&item); self.scope_mut().declare_phantom(item_span, false) } }; count += 1; self.compile(item_slot, &item); self.scope_mut().mark_initialised(item_slot); } self.push_op(OpCode::OpList(Count(count)), node); self.scope_mut().end_scope(); } fn compile_attr(&mut self, slot: LocalIdx, node: &ast::Attr) { match node { ast::Attr::Dynamic(dynamic) => { self.compile(slot, &dynamic.expr().unwrap()); self.emit_force(&dynamic.expr().unwrap()); } ast::Attr::Str(s) => { self.compile_str(slot, s); self.emit_force(s); } ast::Attr::Ident(ident) => self.emit_literal_ident(ident), } } fn compile_has_attr(&mut self, slot: LocalIdx, node: &ast::HasAttr) { // Put the attribute set on the stack. self.compile(slot, &node.expr().unwrap()); self.emit_force(node); // Push all path fragments with an operation for fetching the // next nested element, for all fragments except the last one. for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() { if count > 0 { self.push_op(OpCode::OpAttrsTrySelect, &fragment); self.emit_force(&fragment); } self.compile_attr(slot, &fragment); } // After the last fragment, emit the actual instruction that // leaves a boolean on the stack. self.push_op(OpCode::OpHasAttr, node); } fn compile_select(&mut self, slot: LocalIdx, node: &ast::Select) { let set = node.expr().unwrap(); let path = node.attrpath().unwrap(); if node.or_token().is_some() { self.compile_select_or(slot, set, path, node.default_expr().unwrap()); return; } // Push the set onto the stack self.compile(slot, &set); // Compile each key fragment and emit access instructions. // // TODO: multi-select instruction to avoid re-pushing attrs on // nested selects. for fragment in path.attrs() { // Force the current set value. self.emit_force(&fragment); self.compile_attr(slot, &fragment); self.push_op(OpCode::OpAttrsSelect, &fragment); } } /// Compile an `or` expression into a chunk of conditional jumps. /// /// If at any point during attribute set traversal a key is /// missing, the `OpAttrOrNotFound` instruction will leave a /// special sentinel value on the stack. /// /// After each access, a conditional jump evaluates the top of the /// stack and short-circuits to the default value if it sees the /// sentinel. /// /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and /// runtime stack: /// /// ```notrust /// Bytecode Runtime stack /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// โ ... โ โ ... โ /// โ 5 OP_ATTRS(1) โ โ โ 5 [ { a.b = 1; } ] โ /// โ 6 OP_CONSTANT("a") โ โ โ 6 [ { a.b = 1; } "a" ] โ /// โ 7 OP_ATTR_OR_NOT_FOUND โ โ โ 7 [ { b = 1; } ] โ /// โ 8 JUMP_IF_NOT_FOUND(13) โ โ โ 8 [ { b = 1; } ] โ /// โ 9 OP_CONSTANT("C") โ โ โ 9 [ { b = 1; } "c" ] โ /// โ 10 OP_ATTR_OR_NOT_FOUND โ โ โ 10 [ NOT_FOUND ] โ /// โ 11 JUMP_IF_NOT_FOUND(13) โ โ โ 11 [ ] โ /// โ 12 JUMP(14) โ โ .. jumped over โ /// โ 13 CONSTANT(42) โ โ โ 12 [ 42 ] โ /// โ 14 ... โ โ .. .... โ /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// ``` fn compile_select_or( &mut self, slot: LocalIdx, set: ast::Expr, path: ast::Attrpath, default: ast::Expr, ) { self.compile(slot, &set); let mut jumps = vec![]; for fragment in path.attrs() { self.emit_force(&fragment); self.compile_attr(slot, &fragment.clone()); self.push_op(OpCode::OpAttrsTrySelect, &fragment); jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment)); } let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path); for jump in jumps { self.patch_jump(jump); } // Compile the default value expression and patch the final // jump to point *beyond* it. self.compile(slot, &default); self.patch_jump(final_jump); } /// Compile `assert` expressions using jumping instructions in the VM. /// /// ```notrust /// โโโโโโโโโโโโโโโโโโโโโโโ /// โ 0 [ conditional ] โ /// โ 1 JUMP_IF_FALSE โโผโโ /// โ 2 [ main body ] โ โ Jump to else body if /// โโผโ3โโ JUMP โ โ condition is false. /// Jump over else body โโ 4 OP_ASSERT_FAIL โโผโโ /// if condition is true.โโผโ5โโ ... โ /// โโโโโโโโโโโโโโโโโโโโโโโ /// ``` fn compile_assert(&mut self, slot: LocalIdx, node: &ast::Assert) { // Compile the assertion condition to leave its value on the stack. self.compile(slot, &node.condition().unwrap()); self.emit_force(&node.condition().unwrap()); let then_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node); self.push_op(OpCode::OpPop, node); self.compile(slot, &node.body().unwrap()); let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node); self.patch_jump(then_idx); self.push_op(OpCode::OpPop, node); self.push_op(OpCode::OpAssertFail, &node.condition().unwrap()); self.patch_jump(else_idx); } /// Compile conditional expressions using jumping instructions in the VM. /// /// ```notrust /// โโโโโโโโโโโโโโโโโโโโโโ /// โ 0 [ conditional ] โ /// โ 1 JUMP_IF_FALSE โโผโโ /// โ 2 [ main body ] โ โ Jump to else body if /// โโผโ3โโ JUMP โ โ condition is false. /// Jump over else body โโ 4 [ else body ]โโผโโ /// if condition is true.โโผโ5โโ ... โ /// โโโโโโโโโโโโโโโโโโโโโโ /// ``` fn compile_if_else(&mut self, slot: LocalIdx, node: &ast::IfElse) { self.compile(slot, &node.condition().unwrap()); self.emit_force(&node.condition().unwrap()); let then_idx = self.push_op( OpCode::OpJumpIfFalse(JumpOffset(0)), &node.condition().unwrap(), ); self.push_op(OpCode::OpPop, node); // discard condition value self.compile(slot, &node.body().unwrap()); let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node); self.patch_jump(then_idx); // patch jump *to* else_body self.push_op(OpCode::OpPop, node); // discard condition value self.compile(slot, &node.else_body().unwrap()); self.patch_jump(else_idx); // patch jump *over* else body } /// Compile `with` expressions by emitting instructions that /// pop/remove the indices of attribute sets that are implicitly /// in scope through `with` on the "with-stack". fn compile_with(&mut self, slot: LocalIdx, node: &ast::With) { self.scope_mut().begin_scope(); // TODO: Detect if the namespace is just an identifier, and // resolve that directly (thus avoiding duplication on the // stack). self.compile(slot, &node.namespace().unwrap()); let span = self.span_for(&node.namespace().unwrap()); // The attribute set from which `with` inherits values // occupies a slot on the stack, but this stack slot is not // directly accessible. As it must be accounted for to // calculate correct offsets, what we call a "phantom" local // is declared here. let local_idx = self.scope_mut().declare_phantom(span, true); let with_idx = self.scope().stack_index(local_idx); self.scope_mut().push_with(); self.push_op(OpCode::OpPushWith(with_idx), &node.namespace().unwrap()); self.compile(slot, &node.body().unwrap()); self.push_op(OpCode::OpPopWith, node); self.scope_mut().pop_with(); self.cleanup_scope(node); } /// Compiles pattern function arguments, such as `{ a, b }: ...`. /// /// These patterns are treated as a special case of locals binding /// where the attribute set itself is placed on the first stack /// slot of the call frame (either as a phantom, or named in case /// of an `@` binding), and the function call sets up the rest of /// the stack as if the parameters were rewritten into a `let` /// binding. /// /// For example: /// /// ```nix /// ({ a, b ? 2, c ? a * b, ... }@args: <body>) { a = 10; } /// ``` /// /// would be compiled similarly to a binding such as /// /// ```nix /// let args = { a = 10; }; /// in let a = args.a; /// b = args.a or 2; /// c = args.c or a * b; /// in <body> /// ``` /// /// The only tricky bit being that bindings have to fail if too /// many arguments are provided. This is done by emitting a /// special instruction that checks the set of keys from a /// constant containing the expected keys. fn compile_param_pattern(&mut self, pattern: &ast::Pattern) -> Formals { let span = self.span_for(pattern); let set_idx = match pattern.pat_bind() { Some(name) => self.declare_local(&name, name.ident().unwrap().to_string()), None => self.scope_mut().declare_phantom(span, true), }; // At call time, the attribute set is already at the top of // the stack. self.scope_mut().mark_initialised(set_idx); self.emit_force(pattern); let ellipsis = pattern.ellipsis_token().is_some(); if !ellipsis { self.push_op(OpCode::OpValidateClosedFormals, pattern); } // Similar to `let ... in ...`, we now do multiple passes over // the bindings to first declare them, then populate them, and // then finalise any necessary recursion into the scope. let mut entries: Vec<(LocalIdx, ast::PatEntry)> = vec![]; let mut indices: Vec<LocalIdx> = vec![]; let mut arguments = HashMap::default(); for entry in pattern.pat_entries() { let ident = entry.ident().unwrap(); let idx = self.declare_local(&ident, ident.to_string()); let has_default = entry.default().is_some(); entries.push((idx, entry)); indices.push(idx); arguments.insert(ident.into(), has_default); } // For each of the bindings, push the set on the stack and // attempt to select from it. let stack_idx = self.scope().stack_index(set_idx); for (idx, entry) in entries.into_iter() { self.push_op(OpCode::OpGetLocal(stack_idx), pattern); self.emit_literal_ident(&entry.ident().unwrap()); // Use the same mechanism as `compile_select_or` if a // default value was provided, or simply select otherwise. if let Some(default_expr) = entry.default() { self.push_op(OpCode::OpAttrsTrySelect, &entry.ident().unwrap()); let jump_to_default = self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &default_expr); let jump_over_default = self.push_op(OpCode::OpJump(JumpOffset(0)), &default_expr); self.patch_jump(jump_to_default); self.compile(idx, &default_expr); self.patch_jump(jump_over_default); } else { self.push_op(OpCode::OpAttrsSelect, &entry.ident().unwrap()); } self.scope_mut().mark_initialised(idx); } for idx in indices { if self.scope()[idx].needs_finaliser { let stack_idx = self.scope().stack_index(idx); self.push_op(OpCode::OpFinalise(stack_idx), pattern); } } Formals { arguments, ellipsis, span, } } fn compile_lambda(&mut self, slot: LocalIdx, node: &ast::Lambda) { // Compile the function itself, recording its formal arguments (if any) // for later use let formals = match node.param().unwrap() { ast::Param::Pattern(pat) => Some(self.compile_param_pattern(&pat)), ast::Param::IdentParam(param) => { let name = param .ident() .unwrap() .ident_token() .unwrap() .text() .to_string(); let idx = self.declare_local(¶m, &name); self.scope_mut().mark_initialised(idx); None } }; self.compile(slot, &node.body().unwrap()); self.context_mut().lambda.formals = formals; } fn thunk<N, F>(&mut self, outer_slot: LocalIdx, node: &N, content: F) where N: ToSpan, F: FnOnce(&mut Compiler, LocalIdx), { self.compile_lambda_or_thunk(true, outer_slot, node, content) } /// Compile an expression into a runtime cloure or thunk fn compile_lambda_or_thunk<N, F>( &mut self, is_suspended_thunk: bool, outer_slot: LocalIdx, node: &N, content: F, ) where N: ToSpan, F: FnOnce(&mut Compiler, LocalIdx), { let name = self.scope()[outer_slot].name(); self.new_context(); // Set the (optional) name of the current slot on the lambda that is // being compiled. self.context_mut().lambda.name = name; let span = self.span_for(node); let slot = self.scope_mut().declare_phantom(span, false); self.scope_mut().begin_scope(); content(self, slot); self.cleanup_scope(node); // TODO: determine and insert enclosing name, if available. // Pop the lambda context back off, and emit the finished // lambda as a constant. let mut compiled = self.contexts.pop().unwrap(); // Check if tail-call optimisation is possible and perform it. optimise_tail_call(&mut compiled.lambda.chunk); // Capturing the with stack counts as an upvalue, as it is // emitted as an upvalue data instruction. if compiled.captures_with_stack { compiled.lambda.upvalue_count += 1; } let lambda = Rc::new(compiled.lambda); if is_suspended_thunk { self.observer.observe_compiled_thunk(&lambda); } else { self.observer.observe_compiled_lambda(&lambda); } // If no upvalues are captured, emit directly and move on. if lambda.upvalue_count == 0 { self.emit_constant( if is_suspended_thunk { Value::Thunk(Thunk::new_suspended(lambda, LightSpan::new_actual(span))) } else { Value::Closure(Rc::new(Closure::new(lambda))) }, node, ); return; } // Otherwise, we need to emit the variable number of // operands that allow the runtime to close over the // upvalues and leave a blueprint in the constant index from // which the result can be constructed. let blueprint_idx = self.chunk().push_constant(Value::Blueprint(lambda)); let code_idx = self.push_op( if is_suspended_thunk { OpCode::OpThunkSuspended(blueprint_idx) } else { OpCode::OpThunkClosure(blueprint_idx) }, node, ); self.emit_upvalue_data( outer_slot, node, compiled.scope.upvalues, compiled.captures_with_stack, ); if !is_suspended_thunk && !self.scope()[outer_slot].needs_finaliser { if !self.scope()[outer_slot].must_thunk { // The closure has upvalues, but is not recursive. Therefore no thunk is required, // which saves us the overhead of Rc<RefCell<>> self.chunk()[code_idx] = OpCode::OpClosure(blueprint_idx); } else { // This case occurs when a closure has upvalue-references to itself but does not need a // finaliser. Since no OpFinalise will be emitted later on we synthesize one here. // It is needed here only to set [`Closure::is_finalised`] which is used for sanity checks. #[cfg(debug_assertions)] self.push_op( OpCode::OpFinalise(self.scope().stack_index(outer_slot)), &self.span_for(node), ); } } } fn compile_apply(&mut self, slot: LocalIdx, node: &ast::Apply) { // To call a function, we leave its arguments on the stack, // followed by the function expression itself, and then emit a // call instruction. This way, the stack is perfectly laid out // to enter the function call straight away. self.compile(slot, &node.argument().unwrap()); self.compile(slot, &node.lambda().unwrap()); self.emit_force(&node.lambda().unwrap()); self.push_op(OpCode::OpCall, node); } /// Emit the data instructions that the runtime needs to correctly /// assemble the upvalues struct. fn emit_upvalue_data<T: ToSpan>( &mut self, slot: LocalIdx, node: &T, upvalues: Vec<Upvalue>, capture_with: bool, ) { for upvalue in upvalues { match upvalue.kind { UpvalueKind::Local(idx) => { let target = &self.scope()[idx]; let stack_idx = self.scope().stack_index(idx); // If the target is not yet initialised, we need to defer // the local access if !target.initialised { self.push_op(OpCode::DataDeferredLocal(stack_idx), &upvalue.span); self.scope_mut().mark_needs_finaliser(slot); } else { // a self-reference if slot == idx { self.scope_mut().mark_must_thunk(slot); } self.push_op(OpCode::DataStackIdx(stack_idx), &upvalue.span); } } UpvalueKind::Upvalue(idx) => { self.push_op(OpCode::DataUpvalueIdx(idx), &upvalue.span); } }; } if capture_with { // TODO(tazjin): probably better to emit span for the ident that caused this self.push_op(OpCode::DataCaptureWith, node); } } /// Emit the literal string value of an identifier. Required for /// several operations related to attribute sets, where /// identifiers are used as string keys. fn emit_literal_ident(&mut self, ident: &ast::Ident) { self.emit_constant(Value::String(ident.clone().into()), ident); } /// Patch the jump instruction at the given index, setting its /// jump offset from the placeholder to the current code position. /// /// This is required because the actual target offset of jumps is /// not known at the time when the jump operation itself is /// emitted. fn patch_jump(&mut self, idx: CodeIdx) { let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0); match &mut self.chunk().code[idx.0] { OpCode::OpJump(n) | OpCode::OpJumpIfFalse(n) | OpCode::OpJumpIfTrue(n) | OpCode::OpJumpIfNotFound(n) => { *n = offset; } op => panic!("attempted to patch unsupported op: {:?}", op), } } /// Decrease scope depth of the current function and emit /// instructions to clean up the stack at runtime. fn cleanup_scope<N: ToSpan>(&mut self, node: &N) { // When ending a scope, all corresponding locals need to be // removed, but the value of the body needs to remain on the // stack. This is implemented by a separate instruction. let (popcount, unused_spans) = self.scope_mut().end_scope(); for span in &unused_spans { self.emit_warning(span, WarningKind::UnusedBinding); } if popcount > 0 { self.push_op(OpCode::OpCloseScope(Count(popcount)), node); } } /// Open a new lambda context within which to compile a function, /// closure or thunk. fn new_context(&mut self) { // This must inherit the scope-poisoning status of the parent // in order for upvalue resolution to work correctly with // poisoned identifiers. self.contexts.push(self.context().inherit()); } /// Declare a local variable known in the scope that is being /// compiled by pushing it to the locals. This is used to /// determine the stack offset of variables. fn declare_local<S: Into<String>, N: ToSpan>(&mut self, node: &N, name: S) -> LocalIdx { let name = name.into(); let depth = self.scope().scope_depth(); // Do this little dance to get ahold of the *static* key and // use it for poisoning if required. let key: Option<&'static str> = match self.globals.get_key_value(name.as_str()) { Some((key, _)) => Some(*key), None => None, }; if let Some(global_ident) = key { self.emit_warning(node, WarningKind::ShadowedGlobal(global_ident)); self.scope_mut().poison(global_ident, depth); } let span = self.span_for(node); let (idx, shadowed) = self.scope_mut().declare_local(name, span); if let Some(shadow_idx) = shadowed { let other = &self.scope()[shadow_idx]; if other.depth == depth { self.emit_error(node, ErrorKind::VariableAlreadyDefined(other.span)); } } idx } /// Determine whether the current lambda context has any ancestors /// that use dynamic scope resolution, and mark contexts as /// needing to capture their enclosing `with`-stack in their /// upvalues. fn has_dynamic_ancestor(&mut self) -> bool { let mut ancestor_has_with = false; for ctx in self.contexts.iter_mut() { if ancestor_has_with { // If the ancestor has an active with stack, mark this // lambda context as needing to capture it. ctx.captures_with_stack = true; } else { // otherwise, check this context and move on ancestor_has_with = ctx.scope.has_with(); } } ancestor_has_with } fn emit_force<N: ToSpan>(&mut self, node: &N) { self.push_op(OpCode::OpForce, node); } fn emit_warning<N: ToSpan>(&mut self, node: &N, kind: WarningKind) { let span = self.span_for(node); self.warnings.push(EvalWarning { kind, span }) } fn emit_error<N: ToSpan>(&mut self, node: &N, kind: ErrorKind) { let span = self.span_for(node); self.errors.push(Error { kind, span }) } } /// Perform tail-call optimisation if the last call within a /// compiled chunk is another call. fn optimise_tail_call(chunk: &mut Chunk) { let last_op = chunk .code .last_mut() .expect("compiler bug: chunk should never be empty"); if matches!(last_op, OpCode::OpCall) { *last_op = OpCode::OpTailCall; } } /// Prepare the full set of globals available in evaluated code. These /// are constructed from the set of builtins supplied by the caller, /// which are made available globally under the `builtins` identifier. /// /// A subset of builtins (specified by [`GLOBAL_BUILTINS`]) is /// available globally *iff* they are set. /// /// Optionally adds the `import` feature if desired by the caller. pub fn prepare_globals( builtins: Vec<(&'static str, Value)>, source: SourceCode, enable_import: bool, ) -> Rc<GlobalsMap> { Rc::new_cyclic(Box::new(move |weak: &Weak<GlobalsMap>| { // First step is to construct the builtins themselves as // `NixAttrs`. let mut builtins_under_construction: HashMap<&'static str, Value> = HashMap::from_iter(builtins.into_iter()); // At this point, optionally insert `import` if enabled. To // "tie the knot" of `import` needing the full set of globals // to instantiate its compiler, the `Weak` reference is passed // here. if enable_import { let import = Value::Builtin(import::builtins_import(weak, source)); builtins_under_construction.insert("import", import); } // Next, the actual map of globals is constructed and // populated with (copies) of the values that should be // available in the global scope (see [`GLOBAL_BUILTINS`]). let mut globals: GlobalsMap = HashMap::new(); for global in GLOBAL_BUILTINS { if let Some(builtin) = builtins_under_construction.get(global).cloned() { let global_builtin: Global = Rc::new(move |c, s| c.emit_constant(builtin.clone(), &s)); globals.insert(global, global_builtin); } } // This is followed by the actual `builtins` attribute set // being constructed and inserted in the global scope. let builtins_set = Value::attrs(NixAttrs::from_iter(builtins_under_construction.into_iter())); globals.insert( "builtins", Rc::new(move |c, s| c.emit_constant(builtins_set.clone(), &s)), ); // Finally insert the compiler-internal "magic" builtins for top-level values. globals.insert( "true", Rc::new(|compiler, span| { compiler.push_op(OpCode::OpTrue, &span); }), ); globals.insert( "false", Rc::new(|compiler, span| { compiler.push_op(OpCode::OpFalse, &span); }), ); globals.insert( "null", Rc::new(|compiler, span| { compiler.push_op(OpCode::OpNull, &span); }), ); globals })) } pub fn compile( expr: &ast::Expr, location: Option<PathBuf>, file: Arc<codemap::File>, globals: Rc<GlobalsMap>, observer: &mut dyn CompilerObserver, ) -> EvalResult<CompilationOutput> { let mut c = Compiler::new(location, file, globals.clone(), observer)?; let root_span = c.span_for(expr); let root_slot = c.scope_mut().declare_phantom(root_span, false); c.compile(root_slot, expr); // The final operation of any top-level Nix program must always be // `OpForce`. A thunk should not be returned to the user in an // unevaluated state (though in practice, a value *containing* a // thunk might be returned). c.emit_force(expr); let lambda = Rc::new(c.contexts.pop().unwrap().lambda); c.observer.observe_compiled_toplevel(&lambda); Ok(CompilationOutput { lambda, warnings: c.warnings, errors: c.errors, globals, }) }