//! This module implements a compiler for compiling the rnix AST //! representation to Tvix bytecode. //! //! A note on `unwrap()`: This module contains a lot of calls to //! `unwrap()` or `expect(...)` on data structures returned by `rnix`. //! The reason for this is that rnix uses the same data structures to //! represent broken and correct ASTs, so all typed AST variants have //! the ability to represent an incorrect node. //! //! However, at the time that the AST is passed to the compiler we //! have verified that `rnix` considers the code to be correct, so all //! variants are fulfilled. In cases where the invariant is guaranteed //! by the code in this module, `debug_assert!` has been used to catch //! mistakes early during development. mod scope; use path_clean::PathClean; use rnix::ast::{self, AstToken, HasEntry}; use rowan::ast::AstNode; use smol_str::SmolStr; use std::collections::HashMap; use std::path::{Path, PathBuf}; use std::rc::Rc; use crate::chunk::Chunk; use crate::errors::{Error, ErrorKind, EvalResult}; use crate::opcode::{CodeIdx, Count, JumpOffset, OpCode, UpvalueIdx}; use crate::value::{Closure, Lambda, Thunk, Value}; use crate::warnings::{EvalWarning, WarningKind}; use self::scope::{LocalIdx, LocalPosition, Scope, Upvalue, UpvalueKind}; /// Represents the result of compiling a piece of Nix code. If /// compilation was successful, the resulting bytecode can be passed /// to the VM. pub struct CompilationOutput { pub lambda: Lambda, pub warnings: Vec<EvalWarning>, pub errors: Vec<Error>, } /// Represents the lambda currently being compiled. struct LambdaCtx { lambda: Lambda, scope: Scope, } impl LambdaCtx { fn new() -> Self { LambdaCtx { lambda: Lambda::new_anonymous(), scope: Default::default(), } } #[allow(clippy::let_and_return)] // due to disassembler fn inherit(&self) -> Self { let ctx = LambdaCtx { lambda: Lambda::new_anonymous(), scope: self.scope.inherit(), }; #[cfg(feature = "disassembler")] #[allow(clippy::redundant_closure_call)] let ctx = (|mut c: Self| { c.lambda.chunk.codemap = self.lambda.chunk.codemap.clone(); c })(ctx); ctx } } /// Alias for the map of globally available functions that should /// implicitly be resolvable in the global scope. type GlobalsMap = HashMap<&'static str, Rc<dyn Fn(&mut Compiler, rnix::ast::Ident)>>; struct Compiler<'code> { contexts: Vec<LambdaCtx>, warnings: Vec<EvalWarning>, errors: Vec<Error>, root_dir: PathBuf, /// Carries all known global tokens; the full set of which is /// created when the compiler is invoked. /// /// Each global has an associated token, which when encountered as /// an identifier is resolved against the scope poisoning logic, /// and a function that should emit code for the token. globals: GlobalsMap, /// File reference in the codemap contains all known source code /// and is used to track the spans from which instructions where /// derived. file: &'code codemap::File, #[cfg(feature = "disassembler")] /// Carry a reference to the codemap around when the disassembler /// is enabled, to allow displaying lines and other source /// information in the disassembler output. codemap: Rc<codemap::CodeMap>, } // Helper functions for emitting code and metadata to the internal // structures of the compiler. impl Compiler<'_> { fn context(&self) -> &LambdaCtx { &self.contexts[self.contexts.len() - 1] } fn context_mut(&mut self) -> &mut LambdaCtx { let idx = self.contexts.len() - 1; &mut self.contexts[idx] } fn chunk(&mut self) -> &mut Chunk { &mut self.context_mut().lambda.chunk } fn scope(&self) -> &Scope { &self.context().scope } fn scope_mut(&mut self) -> &mut Scope { &mut self.context_mut().scope } fn span_for<N: AstNode>(&self, node: &N) -> codemap::Span { let rowan_span = node.syntax().text_range(); self.file.span.subspan( u32::from(rowan_span.start()) as u64, u32::from(rowan_span.end()) as u64, ) } /// Push a single instruction to the current bytecode chunk and /// track the source span from which it was compiled. fn push_op<T: AstNode>(&mut self, data: OpCode, node: &T) -> CodeIdx { let span = self.span_for(node); self.chunk().push_op(data, span) } /// Emit a single constant to the current bytecode chunk and track /// the source span from which it was compiled. fn emit_constant<T: AstNode>(&mut self, value: Value, node: &T) { let idx = self.chunk().push_constant(value); self.push_op(OpCode::OpConstant(idx), node); } } // Actual code-emitting AST traversal methods. impl Compiler<'_> { fn compile(&mut self, slot: LocalIdx, expr: ast::Expr) { match expr { ast::Expr::Literal(literal) => self.compile_literal(literal), ast::Expr::Path(path) => self.compile_path(path), ast::Expr::Str(s) => self.compile_str(slot, s), ast::Expr::UnaryOp(op) => self.compile_unary_op(slot, op), ast::Expr::BinOp(op) => self.compile_binop(slot, op), ast::Expr::HasAttr(has_attr) => self.compile_has_attr(slot, has_attr), ast::Expr::List(list) => self.compile_list(slot, list), ast::Expr::AttrSet(attrs) => self.thunk(slot, &attrs, move |c, a, s| { c.compile_attr_set(s, a.clone()) }), ast::Expr::Select(select) => self.compile_select(slot, select), ast::Expr::Assert(assert) => self.compile_assert(slot, assert), ast::Expr::IfElse(if_else) => self.compile_if_else(slot, if_else), ast::Expr::LetIn(let_in) => self.compile_let_in(slot, let_in), ast::Expr::Ident(ident) => self.compile_ident(slot, ident), ast::Expr::With(with) => self.compile_with(slot, with), ast::Expr::Lambda(lambda) => self.compile_lambda(slot, lambda), ast::Expr::Apply(apply) => self.compile_apply(slot, apply), // Parenthesized expressions are simply unwrapped, leaving // their value on the stack. ast::Expr::Paren(paren) => self.compile(slot, paren.expr().unwrap()), ast::Expr::LegacyLet(_) => todo!("legacy let"), ast::Expr::Root(_) => unreachable!("there cannot be more than one root"), ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"), } } fn compile_literal(&mut self, node: ast::Literal) { match node.kind() { ast::LiteralKind::Float(f) => { self.emit_constant(Value::Float(f.value().unwrap()), &node); } ast::LiteralKind::Integer(i) => { self.emit_constant(Value::Integer(i.value().unwrap()), &node); } ast::LiteralKind::Uri(u) => { self.emit_warning(self.span_for(&node), WarningKind::DeprecatedLiteralURL); self.emit_constant(Value::String(u.syntax().text().into()), &node); } } } fn compile_path(&mut self, node: ast::Path) { // TODO(tazjin): placeholder implementation while waiting for // https://github.com/nix-community/rnix-parser/pull/96 let raw_path = node.to_string(); let path = if raw_path.starts_with('/') { Path::new(&raw_path).to_owned() } else if raw_path.starts_with('~') { let mut buf = match dirs::home_dir() { Some(buf) => buf, None => { self.emit_error( self.span_for(&node), ErrorKind::PathResolution("failed to determine home directory".into()), ); return; } }; buf.push(&raw_path); buf } else if raw_path.starts_with('.') { let mut buf = self.root_dir.clone(); buf.push(&raw_path); buf } else { // TODO: decide what to do with findFile todo!("other path types (e.g. <...> lookups) not yet implemented") }; // TODO: Use https://github.com/rust-lang/rfcs/issues/2208 // once it is available let value = Value::Path(path.clean()); self.emit_constant(value, &node); } fn compile_str(&mut self, slot: LocalIdx, node: ast::Str) { let mut count = 0; // The string parts are produced in literal order, however // they need to be reversed on the stack in order to // efficiently create the real string in case of // interpolation. for part in node.normalized_parts().into_iter().rev() { count += 1; match part { // Interpolated expressions are compiled as normal and // dealt with by the VM before being assembled into // the final string. ast::InterpolPart::Interpolation(node) => self.compile(slot, node.expr().unwrap()), ast::InterpolPart::Literal(lit) => { self.emit_constant(Value::String(lit.into()), &node); } } } if count != 1 { self.push_op(OpCode::OpInterpolate(Count(count)), &node); } } fn compile_unary_op(&mut self, slot: LocalIdx, op: ast::UnaryOp) { self.compile(slot, op.expr().unwrap()); self.emit_force(&op); let opcode = match op.operator().unwrap() { ast::UnaryOpKind::Invert => OpCode::OpInvert, ast::UnaryOpKind::Negate => OpCode::OpNegate, }; self.push_op(opcode, &op); } fn compile_binop(&mut self, slot: LocalIdx, op: ast::BinOp) { use ast::BinOpKind; // Short-circuiting and other strange operators, which are // under the same node type as NODE_BIN_OP, but need to be // handled separately (i.e. before compiling the expressions // used for standard binary operators). match op.operator().unwrap() { BinOpKind::And => return self.compile_and(slot, op), BinOpKind::Or => return self.compile_or(slot, op), BinOpKind::Implication => return self.compile_implication(slot, op), _ => {} }; // For all other operators, the two values need to be left on // the stack in the correct order before pushing the // instruction for the operation itself. self.compile(slot, op.lhs().unwrap()); self.emit_force(&op.lhs().unwrap()); self.compile(slot, op.rhs().unwrap()); self.emit_force(&op.rhs().unwrap()); match op.operator().unwrap() { BinOpKind::Add => self.push_op(OpCode::OpAdd, &op), BinOpKind::Sub => self.push_op(OpCode::OpSub, &op), BinOpKind::Mul => self.push_op(OpCode::OpMul, &op), BinOpKind::Div => self.push_op(OpCode::OpDiv, &op), BinOpKind::Update => self.push_op(OpCode::OpAttrsUpdate, &op), BinOpKind::Equal => self.push_op(OpCode::OpEqual, &op), BinOpKind::Less => self.push_op(OpCode::OpLess, &op), BinOpKind::LessOrEq => self.push_op(OpCode::OpLessOrEq, &op), BinOpKind::More => self.push_op(OpCode::OpMore, &op), BinOpKind::MoreOrEq => self.push_op(OpCode::OpMoreOrEq, &op), BinOpKind::Concat => self.push_op(OpCode::OpConcat, &op), BinOpKind::NotEqual => { self.push_op(OpCode::OpEqual, &op); self.push_op(OpCode::OpInvert, &op) } // Handled by separate branch above. BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => { unreachable!() } }; } fn compile_and(&mut self, slot: LocalIdx, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::And)), "compile_and called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack. self.compile(slot, node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); // If this value is false, jump over the right-hand side - the // whole expression is false. let end_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), &node); // Otherwise, remove the previous value and leave the // right-hand side on the stack. Its result is now the value // of the whole expression. self.push_op(OpCode::OpPop, &node); self.compile(slot, node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, &node); } fn compile_or(&mut self, slot: LocalIdx, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Or)), "compile_or called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack self.compile(slot, node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); // Opposite of above: If this value is **true**, we can // short-circuit the right-hand side. let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), &node); self.push_op(OpCode::OpPop, &node); self.compile(slot, node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, &node); } fn compile_implication(&mut self, slot: LocalIdx, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Implication)), "compile_implication called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack and invert it. self.compile(slot, node.lhs().unwrap()); self.emit_force(&node.lhs().unwrap()); self.push_op(OpCode::OpInvert, &node); // Exactly as `||` (because `a -> b` = `!a || b`). let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), &node); self.push_op(OpCode::OpPop, &node); self.compile(slot, node.rhs().unwrap()); self.emit_force(&node.rhs().unwrap()); self.patch_jump(end_idx); self.push_op(OpCode::OpAssertBool, &node); } fn compile_has_attr(&mut self, slot: LocalIdx, node: ast::HasAttr) { // Put the attribute set on the stack. self.compile(slot, node.expr().unwrap()); // Push all path fragments with an operation for fetching the // next nested element, for all fragments except the last one. for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() { if count > 0 { self.push_op(OpCode::OpAttrsTrySelect, &fragment); } self.compile_attr(slot, fragment); } // After the last fragment, emit the actual instruction that // leaves a boolean on the stack. self.push_op(OpCode::OpAttrsIsSet, &node); } fn compile_attr(&mut self, slot: LocalIdx, node: ast::Attr) { match node { ast::Attr::Dynamic(dynamic) => { self.compile(slot, dynamic.expr().unwrap()); self.emit_force(&dynamic.expr().unwrap()); } ast::Attr::Str(s) => { self.compile_str(slot, s.clone()); self.emit_force(&s); } ast::Attr::Ident(ident) => self.emit_literal_ident(&ident), } } // Compile list literals into equivalent bytecode. List // construction is fairly simple, consisting of pushing code for // each literal element and an instruction with the element count. // // The VM, after evaluating the code for each element, simply // constructs the list from the given number of elements. fn compile_list(&mut self, slot: LocalIdx, node: ast::List) { let mut count = 0; for item in node.items() { count += 1; self.compile(slot, item); } self.push_op(OpCode::OpList(Count(count)), &node); } // Compile attribute set literals into equivalent bytecode. // // This is complicated by a number of features specific to Nix // attribute sets, most importantly: // // 1. Keys can be dynamically constructed through interpolation. // 2. Keys can refer to nested attribute sets. // 3. Attribute sets can (optionally) be recursive. fn compile_attr_set(&mut self, slot: LocalIdx, node: ast::AttrSet) { if node.rec_token().is_some() { todo!("recursive attribute sets are not yet implemented") } let mut count = 0; // Inherits have to be evaluated before entering the scope of // a potentially recursive attribute sets (i.e. we always // inherit "from the outside"). for inherit in node.inherits() { match inherit.from() { Some(from) => { for ident in inherit.idents() { count += 1; // First emit the identifier itself (this // becomes the new key). self.emit_literal_ident(&ident); // Then emit the node that we're inheriting // from. // // TODO: Likely significant optimisation // potential in having a multi-select // instruction followed by a merge, rather // than pushing/popping the same attrs // potentially a lot of times. self.compile(slot, from.expr().unwrap()); self.emit_force(&from.expr().unwrap()); self.emit_literal_ident(&ident); self.push_op(OpCode::OpAttrsSelect, &ident); } } None => { for ident in inherit.idents() { count += 1; // Emit the key to use for OpAttrs self.emit_literal_ident(&ident); // Emit the value. self.compile_ident(slot, ident); } } } } for kv in node.attrpath_values() { count += 1; // Because attribute set literals can contain nested keys, // there is potentially more than one key fragment. If // this is the case, a special operation to construct a // runtime value representing the attribute path is // emitted. let mut key_count = 0; for fragment in kv.attrpath().unwrap().attrs() { key_count += 1; self.compile_attr(slot, fragment); } // We're done with the key if there was only one fragment, // otherwise we need to emit an instruction to construct // the attribute path. if key_count > 1 { self.push_op( OpCode::OpAttrPath(Count(key_count)), &kv.attrpath().unwrap(), ); } // The value is just compiled as normal so that its // resulting value is on the stack when the attribute set // is constructed at runtime. self.compile(slot, kv.value().unwrap()); } self.push_op(OpCode::OpAttrs(Count(count)), &node); } fn compile_select(&mut self, slot: LocalIdx, node: ast::Select) { let set = node.expr().unwrap(); let path = node.attrpath().unwrap(); if node.or_token().is_some() { self.compile_select_or(slot, set, path, node.default_expr().unwrap()); return; } // Push the set onto the stack self.compile(slot, set.clone()); self.emit_force(&set); // Compile each key fragment and emit access instructions. // // TODO: multi-select instruction to avoid re-pushing attrs on // nested selects. for fragment in path.attrs() { self.compile_attr(slot, fragment); self.push_op(OpCode::OpAttrsSelect, &node); } } /// Compile an `or` expression into a chunk of conditional jumps. /// /// If at any point during attribute set traversal a key is /// missing, the `OpAttrOrNotFound` instruction will leave a /// special sentinel value on the stack. /// /// After each access, a conditional jump evaluates the top of the /// stack and short-circuits to the default value if it sees the /// sentinel. /// /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and /// runtime stack: /// /// ```notrust /// Bytecode Runtime stack /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// โ ... โ โ ... โ /// โ 5 OP_ATTRS(1) โ โ โ 5 [ { a.b = 1; } ] โ /// โ 6 OP_CONSTANT("a") โ โ โ 6 [ { a.b = 1; } "a" ] โ /// โ 7 OP_ATTR_OR_NOT_FOUND โ โ โ 7 [ { b = 1; } ] โ /// โ 8 JUMP_IF_NOT_FOUND(13) โ โ โ 8 [ { b = 1; } ] โ /// โ 9 OP_CONSTANT("C") โ โ โ 9 [ { b = 1; } "c" ] โ /// โ 10 OP_ATTR_OR_NOT_FOUND โ โ โ 10 [ NOT_FOUND ] โ /// โ 11 JUMP_IF_NOT_FOUND(13) โ โ โ 11 [ ] โ /// โ 12 JUMP(14) โ โ .. jumped over โ /// โ 13 CONSTANT(42) โ โ โ 12 [ 42 ] โ /// โ 14 ... โ โ .. .... โ /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// ``` fn compile_select_or( &mut self, slot: LocalIdx, set: ast::Expr, path: ast::Attrpath, default: ast::Expr, ) { self.compile(slot, set.clone()); self.emit_force(&set); let mut jumps = vec![]; for fragment in path.attrs() { self.compile_attr(slot, fragment.clone()); self.push_op(OpCode::OpAttrsTrySelect, &fragment); jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment)); } let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path); for jump in jumps { self.patch_jump(jump); } // Compile the default value expression and patch the final // jump to point *beyond* it. self.compile(slot, default); self.patch_jump(final_jump); } fn compile_assert(&mut self, slot: LocalIdx, node: ast::Assert) { // Compile the assertion condition to leave its value on the stack. self.compile(slot, node.condition().unwrap()); self.push_op(OpCode::OpAssert, &node); // The runtime will abort evaluation at this point if the // assertion failed, if not the body simply continues on like // normal. self.compile(slot, node.body().unwrap()); } // Compile conditional expressions using jumping instructions in the VM. // // โโโโโโโโโโโโโโโโโโโโโโ // โ 0 [ conditional ] โ // โ 1 JUMP_IF_FALSE โโผโโ // โ 2 [ main body ] โ โ Jump to else body if // โโผโ3โโ JUMP โ โ condition is false. // Jump over else body โโ 4 [ else body ]โโผโโ // if condition is true.โโผโ5โโ ... โ // โโโโโโโโโโโโโโโโโโโโโโ fn compile_if_else(&mut self, slot: LocalIdx, node: ast::IfElse) { self.compile(slot, node.condition().unwrap()); let then_idx = self.push_op( OpCode::OpJumpIfFalse(JumpOffset(0)), &node.condition().unwrap(), ); self.push_op(OpCode::OpPop, &node); // discard condition value self.compile(slot, node.body().unwrap()); let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), &node); self.patch_jump(then_idx); // patch jump *to* else_body self.push_op(OpCode::OpPop, &node); // discard condition value self.compile(slot, node.else_body().unwrap()); self.patch_jump(else_idx); // patch jump *over* else body } // Compile an `inherit` node of a `let`-expression. fn compile_let_inherit<I: Iterator<Item = ast::Inherit>>( &mut self, slot: LocalIdx, inherits: I, ) { for inherit in inherits { match inherit.from() { // Within a `let` binding, inheriting from the outer // scope is a no-op *if* the identifier can be // statically resolved. None if !self.scope().has_with() => { self.emit_warning(self.span_for(&inherit), WarningKind::UselessInherit); continue; } None => { for ident in inherit.idents() { // If the identifier resolves statically, it // has precedence over dynamic bindings, and // the inherit is useless. if matches!( self.scope_mut() .resolve_local(ident.ident_token().unwrap().text()), LocalPosition::Known(_) ) { self.emit_warning(self.span_for(&ident), WarningKind::UselessInherit); continue; } self.compile_ident(slot, ident.clone()); let idx = self.declare_local(&ident, ident.ident_token().unwrap().text()); self.scope_mut().mark_initialised(idx); } } Some(from) => { for ident in inherit.idents() { self.compile(slot, from.expr().unwrap()); self.emit_force(&from.expr().unwrap()); self.emit_literal_ident(&ident); self.push_op(OpCode::OpAttrsSelect, &ident); let idx = self.declare_local(&ident, ident.ident_token().unwrap().text()); self.scope_mut().mark_initialised(idx); } } } } } // Compile a standard `let ...; in ...` statement. // // Unless in a non-standard scope, the encountered values are // simply pushed on the stack and their indices noted in the // entries vector. fn compile_let_in(&mut self, slot: LocalIdx, node: ast::LetIn) { self.begin_scope(); self.compile_let_inherit(slot, node.inherits()); // First pass to ensure that all identifiers are known; // required for resolving recursion. let mut entries: Vec<(LocalIdx, ast::Expr)> = vec![]; for entry in node.attrpath_values() { let mut path = match self.normalise_ident_path(entry.attrpath().unwrap().attrs()) { Ok(p) => p, Err(err) => { self.errors.push(err); continue; } }; if path.len() != 1 { todo!("nested bindings in let expressions :(") } let idx = self.declare_local(&entry.attrpath().unwrap(), path.pop().unwrap()); entries.push((idx, entry.value().unwrap())); } // Second pass to place the values in the correct stack slots. let indices: Vec<LocalIdx> = entries.iter().map(|(idx, _)| *idx).collect(); for (idx, value) in entries.into_iter() { self.compile(idx, value); // Any code after this point will observe the value in the // right stack slot, so mark it as initialised. self.scope_mut().mark_initialised(idx); } // Third pass to emit finaliser instructions if necessary. for idx in indices { if self.scope()[idx].needs_finaliser { let stack_idx = self.scope().stack_index(idx); self.push_op(OpCode::OpFinalise(stack_idx), &node); } } // Deal with the body, then clean up the locals afterwards. self.compile(slot, node.body().unwrap()); self.end_scope(&node); } fn compile_ident(&mut self, slot: LocalIdx, node: ast::Ident) { let ident = node.ident_token().unwrap(); // If the identifier is a global, and it is not poisoned, emit // the global directly. if let Some(global) = self.globals.get(ident.text()) { if !self.scope().is_poisoned(ident.text()) { global.clone()(self, node.clone()); return; } } match self.scope_mut().resolve_local(ident.text()) { LocalPosition::Unknown => { // Are we possibly dealing with an upvalue? if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident.text(), &node) { self.push_op(OpCode::OpGetUpvalue(idx), &node); return; } // Even worse - are we dealing with a dynamic upvalue? if let Some(idx) = self.resolve_dynamic_upvalue(self.contexts.len() - 1, ident.text(), &node) { // Edge case: Current scope *also* has a non-empty // `with`-stack. This means we need to resolve // both in this scope, and in the upvalues. if self.scope().has_with() { self.emit_literal_ident(&node); self.push_op(OpCode::OpResolveWithOrUpvalue(idx), &node); return; } self.push_op(OpCode::OpGetUpvalue(idx), &node); return; } if !self.scope().has_with() { self.emit_error(self.span_for(&node), ErrorKind::UnknownStaticVariable); return; } // Variable needs to be dynamically resolved at // runtime. self.emit_literal_ident(&node); self.push_op(OpCode::OpResolveWith, &node); } LocalPosition::Known(idx) => { let stack_idx = self.scope().stack_index(idx); self.push_op(OpCode::OpGetLocal(stack_idx), &node); } // This identifier is referring to a value from the same // scope which is not yet defined. This identifier access // must be thunked. LocalPosition::Recursive(idx) => self.thunk(slot, &node, move |compiler, node, _| { let upvalue_idx = compiler.add_upvalue( compiler.contexts.len() - 1, node, UpvalueKind::Local(idx), ); compiler.push_op(OpCode::OpGetUpvalue(upvalue_idx), node); }), }; } // Compile `with` expressions by emitting instructions that // pop/remove the indices of attribute sets that are implicitly in // scope through `with` on the "with-stack". fn compile_with(&mut self, slot: LocalIdx, node: ast::With) { self.begin_scope(); // TODO: Detect if the namespace is just an identifier, and // resolve that directly (thus avoiding duplication on the // stack). self.compile(slot, node.namespace().unwrap()); self.emit_force(&node.namespace().unwrap()); let span = self.span_for(&node.namespace().unwrap()); // The attribute set from which `with` inherits values // occupies a slot on the stack, but this stack slot is not // directly accessible. As it must be accounted for to // calculate correct offsets, what we call a "phantom" local // is declared here. let local_idx = self.scope_mut().declare_phantom(span); self.scope_mut().mark_initialised(local_idx); let with_idx = self.scope().stack_index(local_idx); self.scope_mut().push_with(); self.push_op(OpCode::OpPushWith(with_idx), &node); self.compile(slot, node.body().unwrap()); self.push_op(OpCode::OpPopWith, &node); self.scope_mut().pop_with(); self.end_scope(&node); } fn compile_lambda(&mut self, outer_slot: LocalIdx, node: ast::Lambda) { self.new_context(); let span = self.span_for(&node); let slot = self.scope_mut().declare_phantom(span); self.begin_scope(); // Compile the function itself match node.param().unwrap() { ast::Param::Pattern(_) => todo!("formals function definitions"), ast::Param::IdentParam(param) => { let name = param .ident() .unwrap() .ident_token() .unwrap() .text() .to_string(); let idx = self.declare_local(¶m, &name); self.scope_mut().mark_initialised(idx); } } self.compile(slot, node.body().unwrap()); self.end_scope(&node); // TODO: determine and insert enclosing name, if available. // Pop the lambda context back off, and emit the finished // lambda as a constant. let compiled = self.contexts.pop().unwrap(); #[cfg(feature = "disassembler")] { crate::disassembler::disassemble_chunk(&compiled.lambda.chunk); } // If the function is not a closure, just emit it directly and // move on. if compiled.lambda.upvalue_count == 0 { self.emit_constant( Value::Closure(Closure::new(Rc::new(compiled.lambda))), &node, ); return; } // If the function is a closure, we need to emit the variable // number of operands that allow the runtime to close over the // upvalues and leave a blueprint in the constant index from // which the runtime closure can be constructed. let blueprint_idx = self .chunk() .push_constant(Value::Blueprint(Rc::new(compiled.lambda))); self.push_op(OpCode::OpClosure(blueprint_idx), &node); self.emit_upvalue_data(outer_slot, compiled.scope.upvalues); } fn compile_apply(&mut self, slot: LocalIdx, node: ast::Apply) { // To call a function, we leave its arguments on the stack, // followed by the function expression itself, and then emit a // call instruction. This way, the stack is perfectly laid out // to enter the function call straight away. self.compile(slot, node.argument().unwrap()); self.compile(slot, node.lambda().unwrap()); self.push_op(OpCode::OpCall, &node); } /// Compile an expression into a runtime thunk which should be /// lazily evaluated when accessed. // TODO: almost the same as Compiler::compile_lambda; unify? fn thunk<N, F>(&mut self, outer_slot: LocalIdx, node: &N, content: F) where N: AstNode + Clone, F: FnOnce(&mut Compiler, &N, LocalIdx), { self.new_context(); let span = self.span_for(node); let slot = self.scope_mut().declare_phantom(span); self.begin_scope(); content(self, node, slot); self.end_scope(node); let thunk = self.contexts.pop().unwrap(); #[cfg(feature = "disassembler")] { crate::disassembler::disassemble_chunk(&thunk.lambda.chunk); } // Emit the thunk directly if it does not close over the // environment. if thunk.lambda.upvalue_count == 0 { self.emit_constant(Value::Thunk(Thunk::new(Rc::new(thunk.lambda))), node); return; } // Otherwise prepare for runtime construction of the thunk. let blueprint_idx = self .chunk() .push_constant(Value::Blueprint(Rc::new(thunk.lambda))); self.push_op(OpCode::OpThunk(blueprint_idx), node); self.emit_upvalue_data(outer_slot, thunk.scope.upvalues); } /// Emit the data instructions that the runtime needs to correctly /// assemble the provided upvalues array. fn emit_upvalue_data(&mut self, slot: LocalIdx, upvalues: Vec<Upvalue>) { let this_depth = self.scope()[slot].depth; let this_stack_slot = self.scope().stack_index(slot); for upvalue in upvalues { match upvalue.kind { UpvalueKind::Local(idx) => { let target_depth = self.scope()[idx].depth; let stack_idx = self.scope().stack_index(idx); // If the upvalue slot is located at the same // depth, but *after* the closure, the upvalue // resolution must be deferred until the scope is // fully initialised and can be finalised. if this_depth == target_depth && this_stack_slot < stack_idx { self.push_op(OpCode::DataDeferredLocal(stack_idx), &upvalue.node); self.scope_mut().mark_needs_finaliser(slot); } else { self.push_op(OpCode::DataLocalIdx(stack_idx), &upvalue.node); } } UpvalueKind::Upvalue(idx) => { self.push_op(OpCode::DataUpvalueIdx(idx), &upvalue.node); } UpvalueKind::Dynamic { name, up } => { let idx = self.chunk().push_constant(Value::String(name.into())); self.push_op(OpCode::DataDynamicIdx(idx), &upvalue.node); if let Some(up) = up { self.push_op(OpCode::DataDynamicAncestor(up), &upvalue.node); } } }; } } /// Emit the literal string value of an identifier. Required for /// several operations related to attribute sets, where /// identifiers are used as string keys. fn emit_literal_ident(&mut self, ident: &ast::Ident) { self.emit_constant( Value::String(ident.ident_token().unwrap().text().into()), ident, ); } /// Patch the jump instruction at the given index, setting its /// jump offset from the placeholder to the current code position. /// /// This is required because the actual target offset of jumps is /// not known at the time when the jump operation itself is /// emitted. fn patch_jump(&mut self, idx: CodeIdx) { let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0); match &mut self.chunk().code[idx.0] { OpCode::OpJump(n) | OpCode::OpJumpIfFalse(n) | OpCode::OpJumpIfTrue(n) | OpCode::OpJumpIfNotFound(n) => { *n = offset; } op => panic!("attempted to patch unsupported op: {:?}", op), } } /// Increase the scope depth of the current function (e.g. within /// a new bindings block, or `with`-scope). fn begin_scope(&mut self) { self.scope_mut().scope_depth += 1; } /// Decrease scope depth of the current function and emit /// instructions to clean up the stack at runtime. fn end_scope<N: AstNode>(&mut self, node: &N) { debug_assert!(self.scope().scope_depth != 0, "can not end top scope"); // If this scope poisoned any builtins or special identifiers, // they need to be reset. let depth = self.scope().scope_depth; self.scope_mut().unpoison(depth); // When ending a scope, all corresponding locals need to be // removed, but the value of the body needs to remain on the // stack. This is implemented by a separate instruction. let mut pops = 0; // TL;DR - iterate from the back while things belonging to the // ended scope still exist. while self.scope().locals.last().unwrap().depth == depth { if let Some(local) = self.scope_mut().locals.pop() { // pop the local from the stack if it was actually // initialised if local.initialised { pops += 1; } // analyse whether the local was accessed during its // lifetime, and emit a warning otherwise (unless the // user explicitly chose to ignore it by prefixing the // identifier with `_`) if !local.used && !local.is_ignored() { self.emit_warning(local.span, WarningKind::UnusedBinding); } } } if pops > 0 { self.push_op(OpCode::OpCloseScope(Count(pops)), node); } self.scope_mut().scope_depth -= 1; } /// Open a new lambda context within which to compile a function, /// closure or thunk. fn new_context(&mut self) { // This must inherit the scope-poisoning status of the parent // in order for upvalue resolution to work correctly with // poisoned identifiers. self.contexts.push(self.context().inherit()); } /// Declare a local variable known in the scope that is being /// compiled by pushing it to the locals. This is used to /// determine the stack offset of variables. fn declare_local<S: Into<String>, N: AstNode>(&mut self, node: &N, name: S) -> LocalIdx { let name = name.into(); let depth = self.scope().scope_depth; // Do this little dance to get ahold of the *static* key and // use it for poisoning if required. let key: Option<&'static str> = match self.globals.get_key_value(name.as_str()) { Some((key, _)) => Some(*key), None => None, }; if let Some(global_ident) = key { self.emit_warning( self.span_for(node), WarningKind::ShadowedGlobal(global_ident), ); self.scope_mut().poison(global_ident, depth); } let mut shadowed = false; for other in self.scope().locals.iter().rev() { if other.has_name(&name) && other.depth == depth { shadowed = true; break; } } if shadowed { self.emit_error( self.span_for(node), ErrorKind::VariableAlreadyDefined(name.clone()), ); } let span = self.span_for(node); self.scope_mut().declare_local(name, span) } fn resolve_upvalue( &mut self, ctx_idx: usize, name: &str, node: &rnix::ast::Ident, ) -> Option<UpvalueIdx> { if ctx_idx == 0 { // There can not be any upvalue at the outermost context. return None; } // Determine whether the upvalue is a local in the enclosing context. match self.contexts[ctx_idx - 1].scope.resolve_local(name) { // recursive upvalues are dealt with the same way as // standard known ones, as thunks and closures are // guaranteed to be placed on the stack (i.e. in the right // position) *during* their runtime construction LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => { return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Local(idx))) } LocalPosition::Unknown => { /* continue below */ } }; // If the upvalue comes from even further up, we need to // recurse to make sure that the upvalues are created at each // level. if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name, node) { return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Upvalue(idx))); } None } /// If no static resolution for a potential upvalue was found, /// finds the lowest lambda context that has a `with`-stack and /// thread dynamic upvalues all the way through. /// /// At runtime, as closures are being constructed they either /// capture a dynamically available upvalue, take an upvalue from /// their "ancestor" or leave a sentinel value on the stack. /// /// As such an upvalue is actually accessed, an error is produced /// when the sentinel is found. See the runtime's handling of /// dynamic upvalues for details. fn resolve_dynamic_upvalue( &mut self, at: usize, name: &str, node: &rnix::ast::Ident, ) -> Option<UpvalueIdx> { if at == 0 { // There can not be any upvalue at the outermost context. return None; } if let Some((lowest_idx, _)) = self .contexts .iter() .enumerate() .find(|(_, c)| c.scope.has_with()) { // An enclosing lambda context has dynamic values. Each // context in the chain from that point on now needs to // capture dynamic upvalues because we can not statically // know at which level the correct one is located. let name = SmolStr::new(name); let mut upvalue_idx = None; for idx in lowest_idx..=at { upvalue_idx = Some(self.add_upvalue( idx, node, UpvalueKind::Dynamic { name: name.clone(), up: upvalue_idx, }, )); } // Return the outermost upvalue index (i.e. the one of the // current context). return upvalue_idx; } None } fn add_upvalue( &mut self, ctx_idx: usize, node: &rnix::ast::Ident, kind: UpvalueKind, ) -> UpvalueIdx { // If there is already an upvalue closing over the specified // index, retrieve that instead. for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() { if existing.kind == kind { return UpvalueIdx(idx); } } self.contexts[ctx_idx].scope.upvalues.push(Upvalue { kind, node: node.clone(), }); let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count); self.contexts[ctx_idx].lambda.upvalue_count += 1; idx } fn emit_force<N: AstNode>(&mut self, node: &N) { self.push_op(OpCode::OpForce, node); } fn emit_warning(&mut self, span: codemap::Span, kind: WarningKind) { self.warnings.push(EvalWarning { kind, span }) } fn emit_error(&mut self, span: codemap::Span, kind: ErrorKind) { self.errors.push(Error { kind, span }) } /// Convert a non-dynamic string expression to a string if possible, /// or raise an error. fn expr_str_to_string(&self, expr: ast::Str) -> EvalResult<String> { if expr.normalized_parts().len() == 1 { if let ast::InterpolPart::Literal(s) = expr.normalized_parts().pop().unwrap() { return Ok(s); } } return Err(Error { kind: ErrorKind::DynamicKeyInLet(expr.syntax().clone()), span: self.span_for(&expr), }); } /// Convert a single identifier path fragment to a string if possible, /// or raise an error about the node being dynamic. fn attr_to_string(&self, node: ast::Attr) -> EvalResult<String> { match node { ast::Attr::Ident(ident) => Ok(ident.ident_token().unwrap().text().into()), ast::Attr::Str(s) => self.expr_str_to_string(s), // The dynamic node type is just a wrapper. C++ Nix does not // care about the dynamic wrapper when determining whether the // node itself is dynamic, it depends solely on the expression // inside (i.e. `let ${"a"} = 1; in a` is valid). ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() { ast::Expr::Str(s) => self.expr_str_to_string(s), _ => Err(Error { kind: ErrorKind::DynamicKeyInLet(node.syntax().clone()), span: self.span_for(&node), }), }, } } // Normalises identifier fragments into a single string vector for // `let`-expressions; fails if fragments requiring dynamic computation // are encountered. fn normalise_ident_path<I: Iterator<Item = ast::Attr>>( &self, path: I, ) -> EvalResult<Vec<String>> { path.map(|node| self.attr_to_string(node)).collect() } } /// Prepare the full set of globals from additional globals supplied /// by the caller of the compiler, as well as the built-in globals /// that are always part of the language. /// /// Note that all builtin functions are *not* considered part of the /// language in this sense and MUST be supplied as additional global /// values, including the `builtins` set itself. fn prepare_globals(additional: HashMap<&'static str, Value>) -> GlobalsMap { let mut globals: GlobalsMap = HashMap::new(); globals.insert( "true", Rc::new(|compiler, node| { compiler.push_op(OpCode::OpTrue, &node); }), ); globals.insert( "false", Rc::new(|compiler, node| { compiler.push_op(OpCode::OpFalse, &node); }), ); globals.insert( "null", Rc::new(|compiler, node| { compiler.push_op(OpCode::OpNull, &node); }), ); for (ident, value) in additional.into_iter() { globals.insert( ident, Rc::new(move |compiler, node| compiler.emit_constant(value.clone(), &node)), ); } globals } pub fn compile( expr: ast::Expr, location: Option<PathBuf>, file: &codemap::File, globals: HashMap<&'static str, Value>, #[cfg(feature = "disassembler")] codemap: Rc<codemap::CodeMap>, ) -> EvalResult<CompilationOutput> { let mut root_dir = match location { Some(dir) => Ok(dir), None => std::env::current_dir().map_err(|e| Error { kind: ErrorKind::PathResolution(format!( "could not determine current directory: {}", e )), span: file.span, }), }?; // If the path passed from the caller points to a file, the // filename itself needs to be truncated as this must point to a // directory. if root_dir.is_file() { root_dir.pop(); } let mut c = Compiler { root_dir, file, #[cfg(feature = "disassembler")] codemap, globals: prepare_globals(globals), contexts: vec![LambdaCtx::new()], warnings: vec![], errors: vec![], }; #[cfg(feature = "disassembler")] { c.context_mut().lambda.chunk.codemap = c.codemap.clone(); } let root_span = c.span_for(&expr); let root_slot = c.scope_mut().declare_phantom(root_span); c.compile(root_slot, expr.clone()); // The final operation of any top-level Nix program must always be // `OpForce`. A thunk should not be returned to the user in an // unevaluated state (though in practice, a value *containing* a // thunk might be returned). c.emit_force(&expr); Ok(CompilationOutput { lambda: c.contexts.pop().unwrap().lambda, warnings: c.warnings, errors: c.errors, }) }