//! This module implements a compiler for compiling the rnix AST //! representation to Tvix bytecode. //! //! A note on `unwrap()`: This module contains a lot of calls to //! `unwrap()` or `expect(...)` on data structures returned by `rnix`. //! The reason for this is that rnix uses the same data structures to //! represent broken and correct ASTs, so all typed AST variants have //! the ability to represent an incorrect node. //! //! However, at the time that the AST is passed to the compiler we //! have verified that `rnix` considers the code to be correct, so all //! variants are fulfilled. In cases where the invariant is guaranteed //! by the code in this module, `debug_assert!` has been used to catch //! mistakes early during development. use path_clean::PathClean; use rnix::ast::{self, AstToken, HasEntry}; use rowan::ast::AstNode; use std::path::{Path, PathBuf}; use crate::chunk::Chunk; use crate::errors::{Error, ErrorKind, EvalResult}; use crate::opcode::{CodeIdx, OpCode}; use crate::value::{Lambda, Value}; use crate::warnings::{EvalWarning, WarningKind}; /// Represents the result of compiling a piece of Nix code. If /// compilation was successful, the resulting bytecode can be passed /// to the VM. pub struct CompilationResult { pub lambda: Lambda, pub warnings: Vec<EvalWarning>, pub errors: Vec<Error>, } /// Represents a single local already known to the compiler. struct Local { // Definition name, which can be different kinds of tokens (plain // string or identifier). Nix does not allow dynamic names inside // of `let`-expressions. name: String, // Syntax node at which this local was declared. node: Option<rnix::SyntaxNode>, // Scope depth of this local. depth: usize, // Phantom locals are not actually accessible by users (e.g. // intermediate values used for `with`). phantom: bool, // Is this local known to have been used at all? used: bool, } /// Represents a stack offset containing keys which are currently /// in-scope through a with expression. #[derive(Debug)] struct With { depth: usize, } /// Represents a scope known during compilation, which can be resolved /// directly to stack indices. /// /// TODO(tazjin): `with`-stack /// TODO(tazjin): flag "specials" (e.g. note depth if builtins are /// overridden) #[derive(Default)] struct Scope { locals: Vec<Local>, // How many scopes "deep" are these locals? scope_depth: usize, // Stack indices of attribute sets currently in scope through // `with`. with_stack: Vec<With>, // Certain symbols are considered to be "poisoning" the scope when // defined. This is because users are allowed to override symbols // like 'true' or 'null'. // // To support this efficiently, the depth at which a poisoning // occured is tracked here. poisoned_true: usize, poisoned_false: usize, poisoned_null: usize, } /// Represents the lambda currently being compiled. struct LambdaCtx { lambda: Lambda, scope: Scope, } impl LambdaCtx { fn new() -> Self { LambdaCtx { lambda: Lambda::new_anonymous(), scope: Default::default(), } } } struct Compiler { contexts: Vec<LambdaCtx>, warnings: Vec<EvalWarning>, errors: Vec<Error>, root_dir: PathBuf, } // Helper functions for emitting code and metadata to the internal // structures of the compiler. impl Compiler { fn context(&self) -> &LambdaCtx { &self.contexts[self.contexts.len() - 1] } fn context_mut(&mut self) -> &mut LambdaCtx { let idx = self.contexts.len() - 1; &mut self.contexts[idx] } fn chunk(&mut self) -> &mut Chunk { std::rc::Rc::<Chunk>::get_mut(self.context_mut().lambda.chunk()) .expect("compiler flaw: long-lived chunk reference") } fn scope(&self) -> &Scope { &self.context().scope } fn scope_mut(&mut self) -> &mut Scope { &mut self.context_mut().scope } fn emit_constant(&mut self, value: Value) { let idx = self.chunk().push_constant(value); self.chunk().push_op(OpCode::OpConstant(idx)); } } // Actual code-emitting AST traversal methods. impl Compiler { fn compile(&mut self, expr: ast::Expr) { match expr { ast::Expr::Literal(literal) => self.compile_literal(literal), ast::Expr::Path(path) => self.compile_path(path), ast::Expr::Str(s) => self.compile_str(s), ast::Expr::UnaryOp(op) => self.compile_unary_op(op), ast::Expr::BinOp(op) => self.compile_binop(op), ast::Expr::HasAttr(has_attr) => self.compile_has_attr(has_attr), ast::Expr::List(list) => self.compile_list(list), ast::Expr::AttrSet(attrs) => self.compile_attr_set(attrs), ast::Expr::Select(select) => self.compile_select(select), ast::Expr::Assert(assert) => self.compile_assert(assert), ast::Expr::IfElse(if_else) => self.compile_if_else(if_else), ast::Expr::LetIn(let_in) => self.compile_let_in(let_in), ast::Expr::Ident(ident) => self.compile_ident(ident), ast::Expr::With(with) => self.compile_with(with), ast::Expr::Lambda(lambda) => self.compile_lambda(lambda), ast::Expr::Apply(apply) => self.compile_apply(apply), // Parenthesized expressions are simply unwrapped, leaving // their value on the stack. ast::Expr::Paren(paren) => self.compile(paren.expr().unwrap()), ast::Expr::LegacyLet(_) => todo!("legacy let"), ast::Expr::Root(_) => unreachable!("there cannot be more than one root"), ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"), } } fn compile_literal(&mut self, node: ast::Literal) { match node.kind() { ast::LiteralKind::Float(f) => { self.emit_constant(Value::Float(f.value().unwrap())); } ast::LiteralKind::Integer(i) => { self.emit_constant(Value::Integer(i.value().unwrap())); } ast::LiteralKind::Uri(u) => { self.emit_warning(node.syntax().clone(), WarningKind::DeprecatedLiteralURL); self.emit_constant(Value::String(u.syntax().text().into())); } } } fn compile_path(&mut self, node: ast::Path) { // TODO(tazjin): placeholder implementation while waiting for // https://github.com/nix-community/rnix-parser/pull/96 let raw_path = node.to_string(); let path = if raw_path.starts_with('/') { Path::new(&raw_path).to_owned() } else if raw_path.starts_with('~') { let mut buf = match dirs::home_dir() { Some(buf) => buf, None => { self.emit_error( node.syntax().clone(), ErrorKind::PathResolution("failed to determine home directory".into()), ); return; } }; buf.push(&raw_path); buf } else if raw_path.starts_with('.') { let mut buf = self.root_dir.clone(); buf.push(&raw_path); buf } else { // TODO: decide what to do with findFile todo!("other path types (e.g. <...> lookups) not yet implemented") }; // TODO: Use https://github.com/rust-lang/rfcs/issues/2208 // once it is available let value = Value::Path(path.clean()); self.emit_constant(value); } fn compile_str(&mut self, node: ast::Str) { let mut count = 0; // The string parts are produced in literal order, however // they need to be reversed on the stack in order to // efficiently create the real string in case of // interpolation. for part in node.normalized_parts().into_iter().rev() { count += 1; match part { // Interpolated expressions are compiled as normal and // dealt with by the VM before being assembled into // the final string. ast::InterpolPart::Interpolation(node) => self.compile(node.expr().unwrap()), ast::InterpolPart::Literal(lit) => { self.emit_constant(Value::String(lit.into())); } } } if count != 1 { self.chunk().push_op(OpCode::OpInterpolate(count)); } } fn compile_unary_op(&mut self, op: ast::UnaryOp) { self.compile(op.expr().unwrap()); let opcode = match op.operator().unwrap() { ast::UnaryOpKind::Invert => OpCode::OpInvert, ast::UnaryOpKind::Negate => OpCode::OpNegate, }; self.chunk().push_op(opcode); } fn compile_binop(&mut self, op: ast::BinOp) { use ast::BinOpKind; // Short-circuiting and other strange operators, which are // under the same node type as NODE_BIN_OP, but need to be // handled separately (i.e. before compiling the expressions // used for standard binary operators). match op.operator().unwrap() { BinOpKind::And => return self.compile_and(op), BinOpKind::Or => return self.compile_or(op), BinOpKind::Implication => return self.compile_implication(op), _ => {} }; // For all other operators, the two values need to be left on // the stack in the correct order before pushing the // instruction for the operation itself. self.compile(op.lhs().unwrap()); self.compile(op.rhs().unwrap()); match op.operator().unwrap() { BinOpKind::Add => self.chunk().push_op(OpCode::OpAdd), BinOpKind::Sub => self.chunk().push_op(OpCode::OpSub), BinOpKind::Mul => self.chunk().push_op(OpCode::OpMul), BinOpKind::Div => self.chunk().push_op(OpCode::OpDiv), BinOpKind::Update => self.chunk().push_op(OpCode::OpAttrsUpdate), BinOpKind::Equal => self.chunk().push_op(OpCode::OpEqual), BinOpKind::Less => self.chunk().push_op(OpCode::OpLess), BinOpKind::LessOrEq => self.chunk().push_op(OpCode::OpLessOrEq), BinOpKind::More => self.chunk().push_op(OpCode::OpMore), BinOpKind::MoreOrEq => self.chunk().push_op(OpCode::OpMoreOrEq), BinOpKind::Concat => self.chunk().push_op(OpCode::OpConcat), BinOpKind::NotEqual => { self.chunk().push_op(OpCode::OpEqual); self.chunk().push_op(OpCode::OpInvert) } // Handled by separate branch above. BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => { unreachable!() } }; } fn compile_and(&mut self, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::And)), "compile_and called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack. self.compile(node.lhs().unwrap()); // If this value is false, jump over the right-hand side - the // whole expression is false. let end_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0)); // Otherwise, remove the previous value and leave the // right-hand side on the stack. Its result is now the value // of the whole expression. self.chunk().push_op(OpCode::OpPop); self.compile(node.rhs().unwrap()); self.patch_jump(end_idx); self.chunk().push_op(OpCode::OpAssertBool); } fn compile_or(&mut self, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Or)), "compile_or called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack self.compile(node.lhs().unwrap()); // Opposite of above: If this value is **true**, we can // short-circuit the right-hand side. let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0)); self.chunk().push_op(OpCode::OpPop); self.compile(node.rhs().unwrap()); self.patch_jump(end_idx); self.chunk().push_op(OpCode::OpAssertBool); } fn compile_implication(&mut self, node: ast::BinOp) { debug_assert!( matches!(node.operator(), Some(ast::BinOpKind::Implication)), "compile_implication called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack and invert it. self.compile(node.lhs().unwrap()); self.chunk().push_op(OpCode::OpInvert); // Exactly as `||` (because `a -> b` = `!a || b`). let end_idx = self.chunk().push_op(OpCode::OpJumpIfTrue(0)); self.chunk().push_op(OpCode::OpPop); self.compile(node.rhs().unwrap()); self.patch_jump(end_idx); self.chunk().push_op(OpCode::OpAssertBool); } fn compile_has_attr(&mut self, node: ast::HasAttr) { // Put the attribute set on the stack. self.compile(node.expr().unwrap()); let mut count = 0; // Push all path fragments with an operation for fetching the // next nested element, for all fragments except the last one. for fragment in node.attrpath().unwrap().attrs() { if count > 0 { self.chunk().push_op(OpCode::OpAttrOrNotFound); } count += 1; self.compile_attr(fragment); } // After the last fragment, emit the actual instruction that // leaves a boolean on the stack. self.chunk().push_op(OpCode::OpAttrsIsSet); } fn compile_attr(&mut self, node: ast::Attr) { match node { ast::Attr::Dynamic(dynamic) => self.compile(dynamic.expr().unwrap()), ast::Attr::Str(s) => self.compile_str(s), ast::Attr::Ident(ident) => self.emit_literal_ident(&ident), } } // Compile list literals into equivalent bytecode. List // construction is fairly simple, consisting of pushing code for // each literal element and an instruction with the element count. // // The VM, after evaluating the code for each element, simply // constructs the list from the given number of elements. fn compile_list(&mut self, node: ast::List) { let mut count = 0; for item in node.items() { count += 1; self.compile(item); } self.chunk().push_op(OpCode::OpList(count)); } // Compile attribute set literals into equivalent bytecode. // // This is complicated by a number of features specific to Nix // attribute sets, most importantly: // // 1. Keys can be dynamically constructed through interpolation. // 2. Keys can refer to nested attribute sets. // 3. Attribute sets can (optionally) be recursive. fn compile_attr_set(&mut self, node: ast::AttrSet) { if node.rec_token().is_some() { todo!("recursive attribute sets are not yet implemented") } let mut count = 0; // Inherits have to be evaluated before entering the scope of // a potentially recursive attribute sets (i.e. we always // inherit "from the outside"). for inherit in node.inherits() { match inherit.from() { Some(from) => { for ident in inherit.idents() { count += 1; // First emit the identifier itself self.emit_literal_ident(&ident); // Then emit the node that we're inheriting // from. // // TODO: Likely significant optimisation // potential in having a multi-select // instruction followed by a merge, rather // than pushing/popping the same attrs // potentially a lot of times. self.compile(from.expr().unwrap()); self.emit_literal_ident(&ident); self.chunk().push_op(OpCode::OpAttrsSelect); } } None => { for ident in inherit.idents() { count += 1; self.emit_literal_ident(&ident); match self.resolve_local(ident.ident_token().unwrap().text()) { Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)), None => { self.emit_error( ident.syntax().clone(), ErrorKind::UnknownStaticVariable, ); continue; } }; } } } } for kv in node.attrpath_values() { count += 1; // Because attribute set literals can contain nested keys, // there is potentially more than one key fragment. If // this is the case, a special operation to construct a // runtime value representing the attribute path is // emitted. let mut key_count = 0; for fragment in kv.attrpath().unwrap().attrs() { key_count += 1; self.compile_attr(fragment); } // We're done with the key if there was only one fragment, // otherwise we need to emit an instruction to construct // the attribute path. if key_count > 1 { self.chunk().push_op(OpCode::OpAttrPath(key_count)); } // The value is just compiled as normal so that its // resulting value is on the stack when the attribute set // is constructed at runtime. self.compile(kv.value().unwrap()); } self.chunk().push_op(OpCode::OpAttrs(count)); } fn compile_select(&mut self, node: ast::Select) { let set = node.expr().unwrap(); let path = node.attrpath().unwrap(); if node.or_token().is_some() { self.compile_select_or(set, path, node.default_expr().unwrap()); return; } // Push the set onto the stack self.compile(set); // Compile each key fragment and emit access instructions. // // TODO: multi-select instruction to avoid re-pushing attrs on // nested selects. for fragment in path.attrs() { self.compile_attr(fragment); self.chunk().push_op(OpCode::OpAttrsSelect); } } /// Compile an `or` expression into a chunk of conditional jumps. /// /// If at any point during attribute set traversal a key is /// missing, the `OpAttrOrNotFound` instruction will leave a /// special sentinel value on the stack. /// /// After each access, a conditional jump evaluates the top of the /// stack and short-circuits to the default value if it sees the /// sentinel. /// /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and /// runtime stack: /// /// ```notrust /// Bytecode Runtime stack /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// โ ... โ โ ... โ /// โ 5 OP_ATTRS(1) โ โ โ 5 [ { a.b = 1; } ] โ /// โ 6 OP_CONSTANT("a") โ โ โ 6 [ { a.b = 1; } "a" ] โ /// โ 7 OP_ATTR_OR_NOT_FOUND โ โ โ 7 [ { b = 1; } ] โ /// โ 8 JUMP_IF_NOT_FOUND(13) โ โ โ 8 [ { b = 1; } ] โ /// โ 9 OP_CONSTANT("C") โ โ โ 9 [ { b = 1; } "c" ] โ /// โ 10 OP_ATTR_OR_NOT_FOUND โ โ โ 10 [ NOT_FOUND ] โ /// โ 11 JUMP_IF_NOT_FOUND(13) โ โ โ 11 [ ] โ /// โ 12 JUMP(14) โ โ .. jumped over โ /// โ 13 CONSTANT(42) โ โ โ 12 [ 42 ] โ /// โ 14 ... โ โ .. .... โ /// โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโ /// ``` fn compile_select_or(&mut self, set: ast::Expr, path: ast::Attrpath, default: ast::Expr) { self.compile(set); let mut jumps = vec![]; for fragment in path.attrs() { self.compile_attr(fragment); self.chunk().push_op(OpCode::OpAttrOrNotFound); jumps.push(self.chunk().push_op(OpCode::OpJumpIfNotFound(0))); } let final_jump = self.chunk().push_op(OpCode::OpJump(0)); for jump in jumps { self.patch_jump(jump); } // Compile the default value expression and patch the final // jump to point *beyond* it. self.compile(default); self.patch_jump(final_jump); } fn compile_assert(&mut self, node: ast::Assert) { // Compile the assertion condition to leave its value on the stack. self.compile(node.condition().unwrap()); self.chunk().push_op(OpCode::OpAssert); // The runtime will abort evaluation at this point if the // assertion failed, if not the body simply continues on like // normal. self.compile(node.body().unwrap()); } // Compile conditional expressions using jumping instructions in the VM. // // โโโโโโโโโโโโโโโโโโโโโโ // โ 0 [ conditional ] โ // โ 1 JUMP_IF_FALSE โโผโโ // โ 2 [ main body ] โ โ Jump to else body if // โโผโ3โโ JUMP โ โ condition is false. // Jump over else body โโ 4 [ else body ]โโผโโ // if condition is true.โโผโ5โโ ... โ // โโโโโโโโโโโโโโโโโโโโโโ fn compile_if_else(&mut self, node: ast::IfElse) { self.compile(node.condition().unwrap()); let then_idx = self.chunk().push_op(OpCode::OpJumpIfFalse(0)); self.chunk().push_op(OpCode::OpPop); // discard condition value self.compile(node.body().unwrap()); let else_idx = self.chunk().push_op(OpCode::OpJump(0)); self.patch_jump(then_idx); // patch jump *to* else_body self.chunk().push_op(OpCode::OpPop); // discard condition value self.compile(node.else_body().unwrap()); self.patch_jump(else_idx); // patch jump *over* else body } // Compile a standard `let ...; in ...` statement. // // Unless in a non-standard scope, the encountered values are // simply pushed on the stack and their indices noted in the // entries vector. fn compile_let_in(&mut self, node: ast::LetIn) { self.begin_scope(); for inherit in node.inherits() { match inherit.from() { // Within a `let` binding, inheriting from the outer // scope is practically a no-op. None => { self.emit_warning(inherit.syntax().clone(), WarningKind::UselessInherit); continue; } Some(from) => { for ident in inherit.idents() { self.compile(from.expr().unwrap()); self.emit_literal_ident(&ident); self.chunk().push_op(OpCode::OpAttrsSelect); self.declare_local( ident.syntax().clone(), ident.ident_token().unwrap().text(), ); } } } } for entry in node.attrpath_values() { let mut path = match normalise_ident_path(entry.attrpath().unwrap().attrs()) { Ok(p) => p, Err(err) => { self.errors.push(err); continue; } }; if path.len() != 1 { todo!("nested bindings in let expressions :(") } self.compile(entry.value().unwrap()); self.declare_local( entry.attrpath().unwrap().syntax().clone(), path.pop().unwrap(), ); } // Deal with the body, then clean up the locals afterwards. self.compile(node.body().unwrap()); self.end_scope(); } fn compile_ident(&mut self, node: ast::Ident) { match node.ident_token().unwrap().text() { // TODO(tazjin): Nix technically allows code like // // let null = 1; in null // => 1 // // which we do *not* want to check at runtime. Once // scoping is introduced, the compiler should carry some // optimised information about any "weird" stuff that's // happened to the scope (such as overrides of these // literals, or builtins). "true" if self.scope().poisoned_true == 0 => self.chunk().push_op(OpCode::OpTrue), "false" if self.scope().poisoned_false == 0 => self.chunk().push_op(OpCode::OpFalse), "null" if self.scope().poisoned_null == 0 => self.chunk().push_op(OpCode::OpNull), name => { // Note: `with` and some other special scoping // features are not yet implemented. match self.resolve_local(name) { Some(idx) => self.chunk().push_op(OpCode::OpGetLocal(idx)), None => { if self.scope().with_stack.is_empty() { self.emit_error( node.syntax().clone(), ErrorKind::UnknownStaticVariable, ); return; } // Variable needs to be dynamically resolved // at runtime. self.emit_constant(Value::String(name.into())); self.chunk().push_op(OpCode::OpResolveWith) } } } }; } // Compile `with` expressions by emitting instructions that // pop/remove the indices of attribute sets that are implicitly in // scope through `with` on the "with-stack". fn compile_with(&mut self, node: ast::With) { // TODO: Detect if the namespace is just an identifier, and // resolve that directly (thus avoiding duplication on the // stack). self.compile(node.namespace().unwrap()); self.declare_phantom(); let depth = self.scope().scope_depth; self.scope_mut().with_stack.push(With { depth }); let with_idx = self.scope().locals.len() - 1; self.chunk().push_op(OpCode::OpPushWith(with_idx)); self.compile(node.body().unwrap()); } fn compile_lambda(&mut self, node: ast::Lambda) { // Open new lambda context in compiler, which has its own // scope etc. self.contexts.push(LambdaCtx::new()); self.begin_scope(); // Compile the function itself match node.param().unwrap() { ast::Param::Pattern(_) => todo!("formals function definitions"), ast::Param::IdentParam(param) => { let name = param .ident() .unwrap() .ident_token() .unwrap() .text() .to_string(); self.declare_local(param.syntax().clone(), name); } } self.compile(node.body().unwrap()); self.end_scope(); // TODO: determine and insert enclosing name, if available. // Pop the lambda context back off, and emit the finished // lambda as a constant. let compiled = self.contexts.pop().unwrap(); #[cfg(feature = "disassembler")] { crate::disassembler::disassemble_chunk(&compiled.lambda.chunk); } self.emit_constant(Value::Lambda(compiled.lambda)); } fn compile_apply(&mut self, node: ast::Apply) { // To call a function, we leave its arguments on the stack, // followed by the function expression itself, and then emit a // call instruction. This way, the stack is perfectly laid out // to enter the function call straight away. self.compile(node.argument().unwrap()); self.compile(node.lambda().unwrap()); self.chunk().push_op(OpCode::OpCall); } /// Emit the literal string value of an identifier. Required for /// several operations related to attribute sets, where /// identifiers are used as string keys. fn emit_literal_ident(&mut self, ident: &ast::Ident) { self.emit_constant(Value::String(ident.ident_token().unwrap().text().into())); } fn patch_jump(&mut self, idx: CodeIdx) { let offset = self.chunk().code.len() - 1 - idx.0; match &mut self.chunk().code[idx.0] { OpCode::OpJump(n) | OpCode::OpJumpIfFalse(n) | OpCode::OpJumpIfTrue(n) | OpCode::OpJumpIfNotFound(n) => { *n = offset; } op => panic!("attempted to patch unsupported op: {:?}", op), } } fn begin_scope(&mut self) { self.scope_mut().scope_depth += 1; } fn end_scope(&mut self) { debug_assert!(self.scope().scope_depth != 0, "can not end top scope"); // If this scope poisoned any builtins or special identifiers, // they need to be reset. if self.scope().poisoned_true == self.scope().scope_depth { self.scope_mut().poisoned_true = 0; } if self.scope().poisoned_false == self.scope().scope_depth { self.scope_mut().poisoned_false = 0; } if self.scope().poisoned_null == self.scope().scope_depth { self.scope_mut().poisoned_null = 0; } self.scope_mut().scope_depth -= 1; // When ending a scope, all corresponding locals need to be // removed, but the value of the body needs to remain on the // stack. This is implemented by a separate instruction. let mut pops = 0; // TL;DR - iterate from the back while things belonging to the // ended scope still exist. while !self.scope().locals.is_empty() && self.scope().locals[self.scope().locals.len() - 1].depth > self.scope().scope_depth { pops += 1; // While removing the local, analyse whether it has been // accessed while it existed and emit a warning to the // user otherwise. if let Some(Local { node: Some(node), used, .. }) = self.scope_mut().locals.pop() { if !used { self.emit_warning(node, WarningKind::UnusedBinding); } } } if pops > 0 { self.chunk().push_op(OpCode::OpCloseScope(pops)); } while !self.scope().with_stack.is_empty() && self.scope().with_stack[self.scope().with_stack.len() - 1].depth > self.scope().scope_depth { self.chunk().push_op(OpCode::OpPopWith); self.scope_mut().with_stack.pop(); } } /// Declare a local variable known in the scope that is being /// compiled by pushing it to the locals. This is used to /// determine the stack offset of variables. fn declare_local<S: Into<String>>(&mut self, node: rnix::SyntaxNode, name: S) { // Set up scope poisoning if required. let name = name.into(); let mut scope = self.scope_mut(); match name.as_str() { "true" if scope.poisoned_true == 0 => scope.poisoned_true = scope.scope_depth, "false" if scope.poisoned_false == 0 => scope.poisoned_false = scope.scope_depth, "null" if scope.poisoned_null == 0 => scope.poisoned_null = scope.scope_depth, _ => {} }; scope.locals.push(Local { name: name.into(), node: Some(node), depth: scope.scope_depth, phantom: false, used: false, }); } fn declare_phantom(&mut self) { let depth = self.scope().scope_depth; self.scope_mut().locals.push(Local { depth, name: "".into(), node: None, phantom: true, used: true, }); } fn resolve_local(&mut self, name: &str) -> Option<usize> { let scope = self.scope_mut(); for (idx, local) in scope.locals.iter_mut().enumerate().rev() { if !local.phantom && local.name == name { local.used = true; return Some(idx); } } None } fn emit_warning(&mut self, node: rnix::SyntaxNode, kind: WarningKind) { self.warnings.push(EvalWarning { node, kind }) } fn emit_error(&mut self, node: rnix::SyntaxNode, kind: ErrorKind) { self.errors.push(Error { node: Some(node), kind, }) } } /// Convert a non-dynamic string expression to a string if possible, /// or raise an error. fn expr_str_to_string(expr: ast::Str) -> EvalResult<String> { if expr.normalized_parts().len() == 1 { if let ast::InterpolPart::Literal(s) = expr.normalized_parts().pop().unwrap() { return Ok(s); } } return Err(Error { node: Some(expr.syntax().clone()), kind: ErrorKind::DynamicKeyInLet(expr.syntax().clone()), }); } /// Convert a single identifier path fragment to a string if possible, /// or raise an error about the node being dynamic. fn attr_to_string(node: ast::Attr) -> EvalResult<String> { match node { ast::Attr::Ident(ident) => Ok(ident.ident_token().unwrap().text().into()), ast::Attr::Str(s) => expr_str_to_string(s), // The dynamic node type is just a wrapper. C++ Nix does not // care about the dynamic wrapper when determining whether the // node itself is dynamic, it depends solely on the expression // inside (i.e. `let ${"a"} = 1; in a` is valid). ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() { ast::Expr::Str(s) => expr_str_to_string(s), _ => Err(ErrorKind::DynamicKeyInLet(node.syntax().clone()).into()), }, } } // Normalises identifier fragments into a single string vector for // `let`-expressions; fails if fragments requiring dynamic computation // are encountered. fn normalise_ident_path<I: Iterator<Item = ast::Attr>>(path: I) -> EvalResult<Vec<String>> { path.map(attr_to_string).collect() } pub fn compile(expr: ast::Expr, location: Option<PathBuf>) -> EvalResult<CompilationResult> { let mut root_dir = match location { Some(dir) => Ok(dir), None => std::env::current_dir().map_err(|e| { ErrorKind::PathResolution(format!("could not determine current directory: {}", e)) }), }?; // If the path passed from the caller points to a file, the // filename itself needs to be truncated as this must point to a // directory. if root_dir.is_file() { root_dir.pop(); } let mut c = Compiler { root_dir, contexts: vec![LambdaCtx::new()], warnings: vec![], errors: vec![], }; c.compile(expr); Ok(CompilationResult { lambda: c.contexts.pop().unwrap().lambda, warnings: c.warnings, errors: c.errors, }) }