//! This module implements a compiler for compiling the rnix AST //! representation to Tvix bytecode. //! //! A note on `unwrap()`: This module contains a lot of calls to //! `unwrap()` or `expect(...)` on data structures returned by `rnix`. //! The reason for this is that rnix uses the same data structures to //! represent broken and correct ASTs, so all typed AST variants have //! the ability to represent an incorrect node. //! //! However, at the time that the AST is passed to the compiler we //! have verified that `rnix` considers the code to be correct, so all //! variants are fulfilled. In cases where the invariant is guaranteed //! by the code in this module, `debug_assert!` has been used to catch //! mistakes early during development. use path_clean::PathClean; use rnix::types::{BinOpKind, EntryHolder, TokenWrapper, TypedNode, Wrapper}; use std::path::{Path, PathBuf}; use crate::chunk::Chunk; use crate::errors::{Error, EvalResult}; use crate::opcode::{CodeIdx, OpCode}; use crate::value::Value; use crate::warnings::{EvalWarning, WarningKind}; /// Represents the result of compiling a piece of Nix code. If /// compilation was successful, the resulting bytecode can be passed /// to the VM. pub struct CompilationResult { pub chunk: Chunk, pub warnings: Vec<EvalWarning>, } // Represents a single local already known to the compiler. struct Local { // Definition name, which can be different kinds of tokens (plain // string or identifier). Nix does not allow dynamic names inside // of `let`-expressions. name: String, // Scope depth of this local. depth: usize, // Phantom locals are not actually accessible by users (e.g. // intermediate values used for `with`). phantom: bool, } /// Represents a stack offset containing keys which are currently /// in-scope through a with expression. #[derive(Debug)] struct With { depth: usize, } /// Represents a scope known during compilation, which can be resolved /// directly to stack indices. /// /// TODO(tazjin): `with`-stack /// TODO(tazjin): flag "specials" (e.g. note depth if builtins are /// overridden) #[derive(Default)] struct Scope { locals: Vec<Local>, // How many scopes "deep" are these locals? scope_depth: usize, // Stack indices of attribute sets currently in scope through // `with`. with_stack: Vec<With>, // Certain symbols are considered to be "poisoning" the scope when // defined. This is because users are allowed to override symbols // like 'true' or 'null'. // // To support this efficiently, the depth at which a poisoning // occured is tracked here. poisoned_true: usize, poisoned_false: usize, poisoned_null: usize, } struct Compiler { chunk: Chunk, scope: Scope, warnings: Vec<EvalWarning>, root_dir: PathBuf, } impl Compiler { fn compile(&mut self, node: rnix::SyntaxNode) -> EvalResult<()> { match node.kind() { // Root of a file contains no content, it's just a marker // type. rnix::SyntaxKind::NODE_ROOT => self.compile(node.first_child().expect("TODO")), // Literals contain a single token consisting of the // literal itself. rnix::SyntaxKind::NODE_LITERAL => { let value = rnix::types::Value::cast(node).unwrap(); self.compile_literal(value) } rnix::SyntaxKind::NODE_STRING => { let op = rnix::types::Str::cast(node).unwrap(); self.compile_string(op) } // The interpolation & dynamic nodes are just wrappers // around the inner value of a fragment, they only require // unwrapping. rnix::SyntaxKind::NODE_STRING_INTERPOL | rnix::SyntaxKind::NODE_DYNAMIC => { self.compile(node.first_child().expect("TODO (should not be possible)")) } rnix::SyntaxKind::NODE_BIN_OP => { let op = rnix::types::BinOp::cast(node).expect("TODO (should not be possible)"); self.compile_binop(op) } rnix::SyntaxKind::NODE_UNARY_OP => { let op = rnix::types::UnaryOp::cast(node).expect("TODO: (should not be possible)"); self.compile_unary_op(op) } rnix::SyntaxKind::NODE_PAREN => { let node = rnix::types::Paren::cast(node).unwrap(); self.compile(node.inner().unwrap()) } rnix::SyntaxKind::NODE_IDENT => { let node = rnix::types::Ident::cast(node).unwrap(); self.compile_ident(node) } rnix::SyntaxKind::NODE_ATTR_SET => { let node = rnix::types::AttrSet::cast(node).unwrap(); self.compile_attr_set(node) } rnix::SyntaxKind::NODE_SELECT => { let node = rnix::types::Select::cast(node).unwrap(); self.compile_select(node) } rnix::SyntaxKind::NODE_OR_DEFAULT => { let node = rnix::types::OrDefault::cast(node).unwrap(); self.compile_or_default(node) } rnix::SyntaxKind::NODE_LIST => { let node = rnix::types::List::cast(node).unwrap(); self.compile_list(node) } rnix::SyntaxKind::NODE_IF_ELSE => { let node = rnix::types::IfElse::cast(node).unwrap(); self.compile_if_else(node) } rnix::SyntaxKind::NODE_LET_IN => { let node = rnix::types::LetIn::cast(node).unwrap(); self.compile_let_in(node) } rnix::SyntaxKind::NODE_WITH => { let node = rnix::types::With::cast(node).unwrap(); self.compile_with(node) } rnix::SyntaxKind::NODE_ASSERT => { let node = rnix::types::Assert::cast(node).unwrap(); self.compile_assert(node) } kind => panic!("visiting unsupported node: {:?}", kind), } } /// Compiles nodes the same way that `Self::compile` does, with /// the exception of identifiers which are added literally to the /// stack as string values. /// /// This is needed for correctly accessing attribute sets. fn compile_with_literal_ident(&mut self, node: rnix::SyntaxNode) -> EvalResult<()> { if node.kind() == rnix::SyntaxKind::NODE_IDENT { let ident = rnix::types::Ident::cast(node).unwrap(); self.emit_literal_ident(&ident); return Ok(()); } self.compile(node) } fn compile_literal(&mut self, node: rnix::types::Value) -> EvalResult<()> { match node.to_value().unwrap() { rnix::NixValue::Float(f) => { let idx = self.chunk.push_constant(Value::Float(f)); self.chunk.push_op(OpCode::OpConstant(idx)); Ok(()) } rnix::NixValue::Integer(i) => { let idx = self.chunk.push_constant(Value::Integer(i)); self.chunk.push_op(OpCode::OpConstant(idx)); Ok(()) } // These nodes are yielded by literal URL values. rnix::NixValue::String(s) => { self.warnings.push(EvalWarning { node: node.node().clone(), kind: WarningKind::DeprecatedLiteralURL, }); let idx = self.chunk.push_constant(Value::String(s.into())); self.chunk.push_op(OpCode::OpConstant(idx)); Ok(()) } rnix::NixValue::Path(anchor, path) => self.compile_path(anchor, path), } } fn compile_path(&mut self, anchor: rnix::value::Anchor, path: String) -> EvalResult<()> { let path = match anchor { rnix::value::Anchor::Absolute => Path::new(&path).to_owned(), rnix::value::Anchor::Home => { let mut buf = dirs::home_dir().ok_or_else(|| { Error::PathResolution("failed to determine home directory".into()) })?; buf.push(&path); buf } rnix::value::Anchor::Relative => { let mut buf = self.root_dir.clone(); buf.push(path); buf } // This confusingly named variant is actually // angle-bracket lookups, which in C++ Nix desugar // to calls to `__findFile` (implicitly in the // current scope). rnix::value::Anchor::Store => todo!("resolve <...> lookups at runtime"), }; // TODO: Use https://github.com/rust-lang/rfcs/issues/2208 // once it is available let value = Value::Path(path.clean()); let idx = self.chunk.push_constant(value); self.chunk.push_op(OpCode::OpConstant(idx)); Ok(()) } fn compile_string(&mut self, string: rnix::types::Str) -> EvalResult<()> { let mut count = 0; // The string parts are produced in literal order, however // they need to be reversed on the stack in order to // efficiently create the real string in case of // interpolation. for part in string.parts().into_iter().rev() { count += 1; match part { // Interpolated expressions are compiled as normal and // dealt with by the VM before being assembled into // the final string. rnix::StrPart::Ast(node) => self.compile(node)?, rnix::StrPart::Literal(lit) => { let idx = self.chunk.push_constant(Value::String(lit.into())); self.chunk.push_op(OpCode::OpConstant(idx)); } } } if count != 1 { self.chunk.push_op(OpCode::OpInterpolate(count)); } Ok(()) } fn compile_binop(&mut self, op: rnix::types::BinOp) -> EvalResult<()> { // Short-circuiting and other strange operators, which are // under the same node type as NODE_BIN_OP, but need to be // handled separately (i.e. before compiling the expressions // used for standard binary operators). match op.operator().unwrap() { BinOpKind::And => return self.compile_and(op), BinOpKind::Or => return self.compile_or(op), BinOpKind::Implication => return self.compile_implication(op), BinOpKind::IsSet => return self.compile_is_set(op), _ => {} }; self.compile(op.lhs().unwrap())?; self.compile(op.rhs().unwrap())?; match op.operator().unwrap() { BinOpKind::Add => self.chunk.push_op(OpCode::OpAdd), BinOpKind::Sub => self.chunk.push_op(OpCode::OpSub), BinOpKind::Mul => self.chunk.push_op(OpCode::OpMul), BinOpKind::Div => self.chunk.push_op(OpCode::OpDiv), BinOpKind::Update => self.chunk.push_op(OpCode::OpAttrsUpdate), BinOpKind::Equal => self.chunk.push_op(OpCode::OpEqual), BinOpKind::Less => self.chunk.push_op(OpCode::OpLess), BinOpKind::LessOrEq => self.chunk.push_op(OpCode::OpLessOrEq), BinOpKind::More => self.chunk.push_op(OpCode::OpMore), BinOpKind::MoreOrEq => self.chunk.push_op(OpCode::OpMoreOrEq), BinOpKind::Concat => self.chunk.push_op(OpCode::OpConcat), BinOpKind::NotEqual => { self.chunk.push_op(OpCode::OpEqual); self.chunk.push_op(OpCode::OpInvert) } // Handled by separate branch above. BinOpKind::And | BinOpKind::Implication | BinOpKind::Or | BinOpKind::IsSet => { unreachable!() } }; Ok(()) } fn compile_unary_op(&mut self, op: rnix::types::UnaryOp) -> EvalResult<()> { self.compile(op.value().unwrap())?; use rnix::types::UnaryOpKind; let opcode = match op.operator() { UnaryOpKind::Invert => OpCode::OpInvert, UnaryOpKind::Negate => OpCode::OpNegate, }; self.chunk.push_op(opcode); Ok(()) } fn compile_ident(&mut self, node: rnix::types::Ident) -> EvalResult<()> { match node.as_str() { // TODO(tazjin): Nix technically allows code like // // let null = 1; in null // => 1 // // which we do *not* want to check at runtime. Once // scoping is introduced, the compiler should carry some // optimised information about any "weird" stuff that's // happened to the scope (such as overrides of these // literals, or builtins). "true" if self.scope.poisoned_true == 0 => self.chunk.push_op(OpCode::OpTrue), "false" if self.scope.poisoned_false == 0 => self.chunk.push_op(OpCode::OpFalse), "null" if self.scope.poisoned_null == 0 => self.chunk.push_op(OpCode::OpNull), name => { // Note: `with` and some other special scoping // features are not yet implemented. match self.resolve_local(name) { Some(idx) => self.chunk.push_op(OpCode::OpGetLocal(idx)), None => { if self.scope.with_stack.is_empty() { return Err(Error::UnknownStaticVariable(node)); } // Variable needs to be dynamically resolved // at runtime. let idx = self.chunk.push_constant(Value::String(name.into())); self.chunk.push_op(OpCode::OpConstant(idx)); self.chunk.push_op(OpCode::OpResolveWith) } } } }; Ok(()) } // Compile attribute set literals into equivalent bytecode. // // This is complicated by a number of features specific to Nix // attribute sets, most importantly: // // 1. Keys can be dynamically constructed through interpolation. // 2. Keys can refer to nested attribute sets. // 3. Attribute sets can (optionally) be recursive. fn compile_attr_set(&mut self, node: rnix::types::AttrSet) -> EvalResult<()> { if node.recursive() { todo!("recursive attribute sets are not yet implemented") } let mut count = 0; // Inherits have to be evaluated before entering the scope of // a potentially recursive attribute sets (i.e. we always // inherit "from the outside"). for inherit in node.inherits() { match inherit.from() { Some(from) => { for ident in inherit.idents() { count += 1; // First emit the identifier itself self.emit_literal_ident(&ident); // Then emit the node that we're inheriting // from. // // TODO: Likely significant optimisation // potential in having a multi-select // instruction followed by a merge, rather // than pushing/popping the same attrs // potentially a lot of times. self.compile(from.inner().unwrap())?; self.emit_literal_ident(&ident); self.chunk.push_op(OpCode::OpAttrsSelect); } } None => { for ident in inherit.idents() { count += 1; self.emit_literal_ident(&ident); match self.resolve_local(ident.as_str()) { Some(idx) => self.chunk.push_op(OpCode::OpGetLocal(idx)), None => return Err(Error::UnknownStaticVariable(ident)), }; } } } } for kv in node.entries() { count += 1; // Because attribute set literals can contain nested keys, // there is potentially more than one key fragment. If // this is the case, a special operation to construct a // runtime value representing the attribute path is // emitted. let mut key_count = 0; for fragment in kv.key().unwrap().path() { key_count += 1; match fragment.kind() { rnix::SyntaxKind::NODE_IDENT => { let ident = rnix::types::Ident::cast(fragment).unwrap(); // TODO(tazjin): intern! let idx = self .chunk .push_constant(Value::String(ident.as_str().into())); self.chunk.push_op(OpCode::OpConstant(idx)); } // For all other expression types, we simply // compile them as normal. The operation should // result in a string value, which is checked at // runtime on construction. _ => self.compile(fragment)?, } } // We're done with the key if there was only one fragment, // otherwise we need to emit an instruction to construct // the attribute path. if key_count > 1 { self.chunk.push_op(OpCode::OpAttrPath(key_count)); } // The value is just compiled as normal so that its // resulting value is on the stack when the attribute set // is constructed at runtime. self.compile(kv.value().unwrap())?; } self.chunk.push_op(OpCode::OpAttrs(count)); Ok(()) } fn compile_select(&mut self, node: rnix::types::Select) -> EvalResult<()> { // Push the set onto the stack self.compile(node.set().unwrap())?; // Push the key and emit the access instruction. // // This order matters because the key needs to be evaluated // first to fail in the correct order on type errors. self.compile_with_literal_ident(node.index().unwrap())?; self.chunk.push_op(OpCode::OpAttrsSelect); Ok(()) } // Compile list literals into equivalent bytecode. List // construction is fairly simple, consisting of pushing code for // each literal element and an instruction with the element count. // // The VM, after evaluating the code for each element, simply // constructs the list from the given number of elements. fn compile_list(&mut self, node: rnix::types::List) -> EvalResult<()> { let mut count = 0; for item in node.items() { count += 1; self.compile(item)?; } self.chunk.push_op(OpCode::OpList(count)); Ok(()) } // Compile conditional expressions using jumping instructions in the VM. // // ┌────────────────────┐ // │ 0 [ conditional ] │ // │ 1 JUMP_IF_FALSE →┼─┐ // │ 2 [ main body ] │ │ Jump to else body if // ┌┼─3─← JUMP │ │ condition is false. // Jump over else body ││ 4 [ else body ]←┼─┘ // if condition is true.└┼─5─→ ... │ // └────────────────────┘ fn compile_if_else(&mut self, node: rnix::types::IfElse) -> EvalResult<()> { self.compile(node.condition().unwrap())?; let then_idx = self.chunk.push_op(OpCode::OpJumpIfFalse(0)); self.chunk.push_op(OpCode::OpPop); // discard condition value self.compile(node.body().unwrap())?; let else_idx = self.chunk.push_op(OpCode::OpJump(0)); self.patch_jump(then_idx); // patch jump *to* else_body self.chunk.push_op(OpCode::OpPop); // discard condition value self.compile(node.else_body().unwrap())?; self.patch_jump(else_idx); // patch jump *over* else body Ok(()) } fn compile_and(&mut self, node: rnix::types::BinOp) -> EvalResult<()> { debug_assert!( matches!(node.operator(), Some(BinOpKind::And)), "compile_and called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack. self.compile(node.lhs().unwrap())?; // If this value is false, jump over the right-hand side - the // whole expression is false. let end_idx = self.chunk.push_op(OpCode::OpJumpIfFalse(0)); // Otherwise, remove the previous value and leave the // right-hand side on the stack. Its result is now the value // of the whole expression. self.chunk.push_op(OpCode::OpPop); self.compile(node.rhs().unwrap())?; self.patch_jump(end_idx); self.chunk.push_op(OpCode::OpAssertBool); Ok(()) } fn compile_or(&mut self, node: rnix::types::BinOp) -> EvalResult<()> { debug_assert!( matches!(node.operator(), Some(BinOpKind::Or)), "compile_or called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack self.compile(node.lhs().unwrap())?; // Opposite of above: If this value is **true**, we can // short-circuit the right-hand side. let end_idx = self.chunk.push_op(OpCode::OpJumpIfTrue(0)); self.chunk.push_op(OpCode::OpPop); self.compile(node.rhs().unwrap())?; self.patch_jump(end_idx); self.chunk.push_op(OpCode::OpAssertBool); Ok(()) } fn compile_implication(&mut self, node: rnix::types::BinOp) -> EvalResult<()> { debug_assert!( matches!(node.operator(), Some(BinOpKind::Implication)), "compile_implication called with wrong operator kind: {:?}", node.operator(), ); // Leave left-hand side value on the stack and invert it. self.compile(node.lhs().unwrap())?; self.chunk.push_op(OpCode::OpInvert); // Exactly as `||` (because `a -> b` = `!a || b`). let end_idx = self.chunk.push_op(OpCode::OpJumpIfTrue(0)); self.chunk.push_op(OpCode::OpPop); self.compile(node.rhs().unwrap())?; self.patch_jump(end_idx); self.chunk.push_op(OpCode::OpAssertBool); Ok(()) } fn compile_is_set(&mut self, node: rnix::types::BinOp) -> EvalResult<()> { debug_assert!( matches!(node.operator(), Some(BinOpKind::IsSet)), "compile_is_set called with wrong operator kind: {:?}", node.operator(), ); // Put the attribute set on the stack. self.compile(node.lhs().unwrap())?; // If the key is a NODE_SELECT, the check is deeper than one // level and requires special handling. // // Otherwise, the right hand side is the (only) key expression // itself and can be compiled directly. let mut next = node.rhs().unwrap(); let mut fragments = vec![]; loop { if matches!(next.kind(), rnix::SyntaxKind::NODE_SELECT) { // Keep nesting deeper until we encounter something // different than `NODE_SELECT` on the left side. This is // required because `rnix` parses nested keys as select // expressions, instead of as a key expression. // // The parsed tree will nest something like `a.b.c.d.e.f` // as (((((a, b), c), d), e), f). fragments.push(next.last_child().unwrap()); next = next.first_child().unwrap(); } else { self.compile_with_literal_ident(next)?; for fragment in fragments.into_iter().rev() { self.chunk.push_op(OpCode::OpAttrOrNotFound); self.compile_with_literal_ident(fragment)?; } self.chunk.push_op(OpCode::OpAttrsIsSet); break; } } Ok(()) } /// Compile an `or` expression into a chunk of conditional jumps. /// /// If at any point during attribute set traversal a key is /// missing, the `OpAttrOrNotFound` instruction will leave a /// special sentinel value on the stack. /// /// After each access, a conditional jump evaluates the top of the /// stack and short-circuits to the default value if it sees the /// sentinel. /// /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and /// runtime stack: /// /// ```notrust /// Bytecode Runtime stack /// ┌────────────────────────────┐ ┌─────────────────────────┐ /// │ ... │ │ ... │ /// │ 5 OP_ATTRS(1) │ → │ 5 [ { a.b = 1; } ] │ /// │ 6 OP_CONSTANT("a") │ → │ 6 [ { a.b = 1; } "a" ] │ /// │ 7 OP_ATTR_OR_NOT_FOUND │ → │ 7 [ { b = 1; } ] │ /// │ 8 JUMP_IF_NOT_FOUND(13) │ → │ 8 [ { b = 1; } ] │ /// │ 9 OP_CONSTANT("C") │ → │ 9 [ { b = 1; } "c" ] │ /// │ 10 OP_ATTR_OR_NOT_FOUND │ → │ 10 [ NOT_FOUND ] │ /// │ 11 JUMP_IF_NOT_FOUND(13) │ → │ 11 [ ] │ /// │ 12 JUMP(14) │ │ .. jumped over │ /// │ 13 CONSTANT(42) │ → │ 12 [ 42 ] │ /// │ 14 ... │ │ .. .... │ /// └────────────────────────────┘ └─────────────────────────┘ /// ``` fn compile_or_default(&mut self, node: rnix::types::OrDefault) -> EvalResult<()> { let select = node.index().unwrap(); let mut next = select.set().unwrap(); let mut fragments = vec![select.index().unwrap()]; let mut jumps = vec![]; loop { if matches!(next.kind(), rnix::SyntaxKind::NODE_SELECT) { fragments.push(next.last_child().unwrap()); next = next.first_child().unwrap(); continue; } else { self.compile(next)?; } for fragment in fragments.into_iter().rev() { self.compile_with_literal_ident(fragment)?; self.chunk.push_op(OpCode::OpAttrOrNotFound); jumps.push(self.chunk.push_op(OpCode::OpJumpIfNotFound(0))); } break; } let final_jump = self.chunk.push_op(OpCode::OpJump(0)); for jump in jumps { self.patch_jump(jump); } // Compile the default value expression and patch the final // jump to point *beyond* it. self.compile(node.default().unwrap())?; self.patch_jump(final_jump); Ok(()) } // Compile a standard `let ...; in ...` statement. // // Unless in a non-standard scope, the encountered values are // simply pushed on the stack and their indices noted in the // entries vector. fn compile_let_in(&mut self, node: rnix::types::LetIn) -> EvalResult<()> { self.begin_scope(); for inherit in node.inherits() { match inherit.from() { // Within a `let` binding, inheriting from the outer // scope is practically a no-op. None => { self.warnings.push(EvalWarning { node: inherit.node().clone(), kind: WarningKind::UselessInherit, }); continue; } Some(from) => { for ident in inherit.idents() { // TODO: Optimised multi-select instruction? self.compile(from.inner().unwrap())?; self.emit_literal_ident(&ident); self.chunk.push_op(OpCode::OpAttrsSelect); self.declare_local(ident.as_str()); } } } } for entry in node.entries() { let key = entry.key().unwrap(); let mut path = normalise_ident_path(key.path())?; if path.len() != 1 { todo!("nested bindings in let expressions :(") } self.compile(entry.value().unwrap())?; self.declare_local(path.pop().unwrap()); } // Deal with the body, then clean up the locals afterwards. self.compile(node.body().unwrap())?; self.end_scope(); Ok(()) } // Compile `with` expressions by emitting instructions that // pop/remove the indices of attribute sets that are implicitly in // scope through `with` on the "with-stack". fn compile_with(&mut self, node: rnix::types::With) -> EvalResult<()> { // TODO: Detect if the namespace is just an identifier, and // resolve that directly (thus avoiding duplication on the // stack). self.compile(node.namespace().unwrap())?; self.declare_phantom(); self.scope.with_stack.push(With { depth: self.scope.scope_depth, }); self.chunk .push_op(OpCode::OpPushWith(self.scope.locals.len() - 1)); self.compile(node.body().unwrap()) } fn compile_assert(&mut self, node: rnix::types::Assert) -> EvalResult<()> { // Compile the assertion condition to leave its value on the stack. self.compile(node.condition().unwrap())?; self.chunk.push_op(OpCode::OpAssert); // The runtime will abort evaluation at this point if the // assertion failed, if not the body simply continues on like // normal. self.compile(node.body().unwrap()) } // Emit the literal string value of an identifier. Required for // several operations related to attribute sets, where identifiers // are used as string keys. fn emit_literal_ident(&mut self, ident: &rnix::types::Ident) { let idx = self .chunk .push_constant(Value::String(ident.as_str().into())); self.chunk.push_op(OpCode::OpConstant(idx)); } fn patch_jump(&mut self, idx: CodeIdx) { let offset = self.chunk.code.len() - 1 - idx.0; match &mut self.chunk.code[idx.0] { OpCode::OpJump(n) | OpCode::OpJumpIfFalse(n) | OpCode::OpJumpIfTrue(n) | OpCode::OpJumpIfNotFound(n) => { *n = offset; } op => panic!("attempted to patch unsupported op: {:?}", op), } } fn begin_scope(&mut self) { self.scope.scope_depth += 1; } fn end_scope(&mut self) { let mut scope = &mut self.scope; debug_assert!(scope.scope_depth != 0, "can not end top scope"); // If this scope poisoned any builtins or special identifiers, // they need to be reset. if scope.poisoned_true == scope.scope_depth { scope.poisoned_true = 0; } if scope.poisoned_false == scope.scope_depth { scope.poisoned_false = 0; } if scope.poisoned_null == scope.scope_depth { scope.poisoned_null = 0; } scope.scope_depth -= 1; // When ending a scope, all corresponding locals need to be // removed, but the value of the body needs to remain on the // stack. This is implemented by a separate instruction. let mut pops = 0; // TL;DR - iterate from the back while things belonging to the // ended scope still exist. while !scope.locals.is_empty() && scope.locals[scope.locals.len() - 1].depth > scope.scope_depth { pops += 1; scope.locals.pop(); } if pops > 0 { self.chunk.push_op(OpCode::OpCloseScope(pops)); } while !scope.with_stack.is_empty() && scope.with_stack[scope.with_stack.len() - 1].depth > scope.scope_depth { self.chunk.push_op(OpCode::OpPopWith); scope.with_stack.pop(); } } /// Declare a local variable known in the scope that is being /// compiled by pushing it to the locals. This is used to /// determine the stack offset of variables. fn declare_local<S: Into<String>>(&mut self, name: S) { // Set up scope poisoning if required. let name = name.into(); match name.as_str() { "true" if self.scope.poisoned_true == 0 => { self.scope.poisoned_true = self.scope.scope_depth } "false" if self.scope.poisoned_false == 0 => { self.scope.poisoned_false = self.scope.scope_depth } "null" if self.scope.poisoned_null == 0 => { self.scope.poisoned_null = self.scope.scope_depth } _ => {} }; self.scope.locals.push(Local { name: name.into(), depth: self.scope.scope_depth, phantom: false, }); } fn declare_phantom(&mut self) { self.scope.locals.push(Local { name: "".into(), depth: self.scope.scope_depth, phantom: true, }); } fn resolve_local(&mut self, name: &str) -> Option<usize> { let scope = &self.scope; for (idx, local) in scope.locals.iter().enumerate().rev() { if !local.phantom && local.name == name { return Some(idx); } } None } } /// Convert a single identifier path fragment to a string if possible, /// or raise an error about the node being dynamic. fn ident_fragment_to_string(node: rnix::SyntaxNode) -> EvalResult<String> { match node.kind() { rnix::SyntaxKind::NODE_IDENT => { Ok(rnix::types::Ident::cast(node).unwrap().as_str().to_string()) } rnix::SyntaxKind::NODE_STRING => { let s = rnix::types::Str::cast(node).unwrap(); let mut parts = s.parts(); if parts.len() == 1 { if let rnix::value::StrPart::Literal(lit) = parts.pop().unwrap() { return Ok(lit); } } return Err(Error::DynamicKeyInLet(s.node().clone())); } // The dynamic node type is just a wrapper and we recurse to // its inner node. C++ Nix does not care about the dynamic // wrapper when determining whether the node itself is // dynamic, it depends solely on the expression inside (i.e. // `let ${"a"} = 1; in a` is valid) rnix::SyntaxKind::NODE_DYNAMIC => { ident_fragment_to_string(rnix::types::Dynamic::cast(node).unwrap().inner().unwrap()) } _ => Err(Error::DynamicKeyInLet(node)), } } // Normalises identifier fragments into a single string vector for // `let`-expressions; fails if fragments requiring dynamic computation // are encountered. fn normalise_ident_path<I: Iterator<Item = rnix::SyntaxNode>>(path: I) -> EvalResult<Vec<String>> { path.map(ident_fragment_to_string).collect() } pub fn compile(ast: rnix::AST, location: Option<PathBuf>) -> EvalResult<CompilationResult> { let mut root_dir = match location { Some(dir) => Ok(dir), None => std::env::current_dir().map_err(|e| { Error::PathResolution(format!("could not determine current directory: {}", e)) }), }?; // If the path passed from the caller points to a file, the // filename itself needs to be truncated as this must point to a // directory. if root_dir.is_file() { root_dir.pop(); } let mut c = Compiler { root_dir, chunk: Chunk::default(), warnings: vec![], scope: Default::default(), }; c.compile(ast.node())?; Ok(CompilationResult { chunk: c.chunk, warnings: c.warnings, }) }