//! This module implements logic required for persisting known paths //! during an evaluation. //! //! Tvix needs to be able to keep track of each Nix store path that it //! knows about during the scope of a single evaluation and its //! related builds. //! //! This data is required to scan derivation inputs for the build //! references (the "build closure") that they make use of. //! //! Please see //tvix/eval/docs/build-references.md for more //! information. use crate::refscan::{ReferenceScanner, STORE_PATH_LEN}; use std::{ collections::{hash_map, BTreeSet, HashMap}, ops::Index, }; #[derive(Debug, PartialEq)] pub enum PathType { /// A literal derivation (`.drv`-file), and the *names* of its outputs. Derivation { output_names: BTreeSet<String> }, /// An output of a derivation, its name, and the path of its derivation. Output { name: String, derivation: String }, /// A plain store path (e.g. source files copied to the store). Plain, } #[derive(Debug, Default)] pub struct KnownPaths { /// All known paths, and their associated [`PathType`]. paths: HashMap<String, PathType>, /// All known replacement strings for derivations. /// /// Keys are derivation paths, values are the opaque replacement /// strings. replacements: HashMap<String, String>, } impl Index<&str> for KnownPaths { type Output = PathType; fn index(&self, index: &str) -> &Self::Output { &self.paths[&index[..STORE_PATH_LEN]] } } impl KnownPaths { fn insert_path(&mut self, path: String, path_type: PathType) { let path = path[..STORE_PATH_LEN].to_owned(); assert_eq!(path.len(), STORE_PATH_LEN, "should match"); match self.paths.entry(path) { hash_map::Entry::Vacant(entry) => { entry.insert(path_type); } hash_map::Entry::Occupied(mut entry) => { match (path_type, entry.get_mut()) { // These variant combinations require no "merging action". (PathType::Plain, PathType::Plain) => (), (PathType::Output { .. }, PathType::Output { .. }) => (), ( PathType::Derivation { output_names: new }, PathType::Derivation { output_names: ref mut old, }, ) => { old.extend(new); } _ => panic!("path '{}' inserted twice with different types", entry.key()), }; } }; } /// Mark a plain path as known. pub fn plain<S: ToString>(&mut self, path: S) { self.insert_path(path.to_string(), PathType::Plain); } /// Mark a derivation as known. pub fn drv<P: ToString, O: ToString>(&mut self, path: P, outputs: &[O]) { self.insert_path( path.to_string(), PathType::Derivation { output_names: outputs.into_iter().map(ToString::to_string).collect(), }, ); } /// Mark a derivation output path as known. pub fn output<P: ToString, N: ToString, D: ToString>( &mut self, output_path: P, name: N, drv_path: D, ) { self.insert_path( output_path.to_string(), PathType::Output { name: name.to_string(), derivation: drv_path.to_string(), }, ); } /// Checks whether there are any known paths. If not, a reference /// scanner can not be created. pub fn is_empty(&self) -> bool { self.paths.is_empty() } /// Create a reference scanner from the current set of known paths. pub fn reference_scanner(&self) -> ReferenceScanner { let candidates = self.paths.keys().map(Clone::clone).collect(); ReferenceScanner::new(candidates) } /// Fetch the opaque "replacement string" for a given derivation path. pub fn get_replacement_string(&self, drv: &str) -> String { // TODO: we rely on an invariant that things *should* have // been calculated if we get this far. self.replacements[drv].clone() } pub fn add_replacement_string<D: ToString>(&mut self, drv: D, replacement_str: &str) { let old = self .replacements .insert(drv.to_string(), replacement_str.to_owned()); #[cfg(debug_assertions)] { if let Some(old) = old { debug_assert!( old == replacement_str, "replacement string for a given derivation should always match" ); } } } }