#include <algorithm> #include <cerrno> #include <climits> #include <functional> #include <queue> #include <random> #include <regex> #include <absl/strings/match.h> #include <absl/strings/str_split.h> #include <fcntl.h> #include <sys/stat.h> #include <sys/statvfs.h> #include <sys/types.h> #include <unistd.h> #include "derivations.hh" #include "finally.hh" #include "globals.hh" #include "glog/logging.h" #include "local-store.hh" namespace nix { static std::string gcLockName = "gc.lock"; static std::string gcRootsDir = "gcroots"; /* Acquire the global GC lock. This is used to prevent new Nix processes from starting after the temporary root files have been read. To be precise: when they try to create a new temporary root file, they will block until the garbage collector has finished / yielded the GC lock. */ AutoCloseFD LocalStore::openGCLock(LockType lockType) { Path fnGCLock = (format("%1%/%2%") % stateDir % gcLockName).str(); DLOG(INFO) << "acquiring global GC lock " << fnGCLock; AutoCloseFD fdGCLock = open(fnGCLock.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600); if (!fdGCLock) { throw SysError(format("opening global GC lock '%1%'") % fnGCLock); } if (!lockFile(fdGCLock.get(), lockType, false)) { LOG(ERROR) << "waiting for the big garbage collector lock..."; lockFile(fdGCLock.get(), lockType, true); } /* !!! Restrict read permission on the GC root. Otherwise any process that can open the file for reading can DoS the collector. */ return fdGCLock; } static void makeSymlink(const Path& link, const Path& target) { /* Create directories up to `gcRoot'. */ createDirs(dirOf(link)); /* Create the new symlink. */ Path tempLink = (format("%1%.tmp-%2%-%3%") % link % getpid() % random()).str(); createSymlink(target, tempLink); /* Atomically replace the old one. */ if (rename(tempLink.c_str(), link.c_str()) == -1) { throw SysError(format("cannot rename '%1%' to '%2%'") % tempLink % link); } } void LocalStore::syncWithGC() { AutoCloseFD fdGCLock = openGCLock(ltRead); } void LocalStore::addIndirectRoot(const Path& path) { std::string hash = hashString(htSHA1, path).to_string(Base32, false); Path realRoot = canonPath( (format("%1%/%2%/auto/%3%") % stateDir % gcRootsDir % hash).str()); makeSymlink(realRoot, path); } Path LocalFSStore::addPermRoot(const Path& _storePath, const Path& _gcRoot, bool indirect, bool allowOutsideRootsDir) { Path storePath(canonPath(_storePath)); Path gcRoot(canonPath(_gcRoot)); assertStorePath(storePath); if (isInStore(gcRoot)) { throw Error(format("creating a garbage collector root (%1%) in the Nix " "store is forbidden " "(are you running nix-build inside the store?)") % gcRoot); } if (indirect) { /* Don't clobber the link if it already exists and doesn't point to the Nix store. */ if (pathExists(gcRoot) && (!isLink(gcRoot) || !isInStore(readLink(gcRoot)))) { throw Error(format("cannot create symlink '%1%'; already exists") % gcRoot); } makeSymlink(gcRoot, storePath); addIndirectRoot(gcRoot); } else { if (!allowOutsideRootsDir) { Path rootsDir = canonPath((format("%1%/%2%") % stateDir % gcRootsDir).str()); if (std::string(gcRoot, 0, rootsDir.size() + 1) != rootsDir + "/") { throw Error(format("path '%1%' is not a valid garbage collector root; " "it's not in the directory '%2%'") % gcRoot % rootsDir); } } if (baseNameOf(gcRoot) == baseNameOf(storePath)) { writeFile(gcRoot, ""); } else { makeSymlink(gcRoot, storePath); } } /* Check that the root can be found by the garbage collector. !!! This can be very slow on machines that have many roots. Instead of reading all the roots, it would be more efficient to check if the root is in a directory in or linked from the gcroots directory. */ if (settings.checkRootReachability) { Roots roots = findRoots(false); if (roots[storePath].count(gcRoot) == 0) { LOG(ERROR) << "warning: '" << gcRoot << "' is not in a directory where the garbage " << "collector looks for roots; therefore, '" << storePath << "' might be removed by the garbage collector"; } } /* Grab the global GC root, causing us to block while a GC is in progress. This prevents the set of permanent roots from increasing while a GC is in progress. */ syncWithGC(); return gcRoot; } void LocalStore::addTempRoot(const Path& path) { auto state(_state.lock()); /* Create the temporary roots file for this process. */ if (!state->fdTempRoots) { while (true) { AutoCloseFD fdGCLock = openGCLock(ltRead); if (pathExists(fnTempRoots)) { /* It *must* be stale, since there can be no two processes with the same pid. */ unlink(fnTempRoots.c_str()); } state->fdTempRoots = openLockFile(fnTempRoots, true); fdGCLock = -1; DLOG(INFO) << "acquiring read lock on " << fnTempRoots; lockFile(state->fdTempRoots.get(), ltRead, true); /* Check whether the garbage collector didn't get in our way. */ struct stat st; if (fstat(state->fdTempRoots.get(), &st) == -1) { throw SysError(format("statting '%1%'") % fnTempRoots); } if (st.st_size == 0) { break; } /* The garbage collector deleted this file before we could get a lock. (It won't delete the file after we get a lock.) Try again. */ } } /* Upgrade the lock to a write lock. This will cause us to block if the garbage collector is holding our lock. */ DLOG(INFO) << "acquiring write lock on " << fnTempRoots; lockFile(state->fdTempRoots.get(), ltWrite, true); std::string s = path + '\0'; writeFull(state->fdTempRoots.get(), s); /* Downgrade to a read lock. */ DLOG(INFO) << "downgrading to read lock on " << fnTempRoots; lockFile(state->fdTempRoots.get(), ltRead, true); } static std::string censored = "{censored}"; void LocalStore::findTempRoots(FDs& fds, Roots& tempRoots, bool censor) { /* Read the `temproots' directory for per-process temporary root files. */ for (auto& i : readDirectory(tempRootsDir)) { Path path = tempRootsDir + "/" + i.name; pid_t pid = std::stoi(i.name); DLOG(INFO) << "reading temporary root file " << path; FDPtr fd(new AutoCloseFD(open(path.c_str(), O_CLOEXEC | O_RDWR, 0666))); if (!*fd) { /* It's okay if the file has disappeared. */ if (errno == ENOENT) { continue; } throw SysError(format("opening temporary roots file '%1%'") % path); } /* This should work, but doesn't, for some reason. */ // FDPtr fd(new AutoCloseFD(openLockFile(path, false))); // if (*fd == -1) { continue; } /* Try to acquire a write lock without blocking. This can only succeed if the owning process has died. In that case we don't care about its temporary roots. */ if (lockFile(fd->get(), ltWrite, false)) { LOG(ERROR) << "removing stale temporary roots file " << path; unlink(path.c_str()); writeFull(fd->get(), "d"); continue; } /* Acquire a read lock. This will prevent the owning process from upgrading to a write lock, therefore it will block in addTempRoot(). */ DLOG(INFO) << "waiting for read lock on " << path; lockFile(fd->get(), ltRead, true); /* Read the entire file. */ std::string contents = readFile(fd->get()); /* Extract the roots. */ std::string::size_type pos = 0; std::string::size_type end; while ((end = contents.find((char)0, pos)) != std::string::npos) { Path root(contents, pos, end - pos); DLOG(INFO) << "got temporary root " << root; assertStorePath(root); tempRoots[root].emplace(censor ? censored : fmt("{temp:%d}", pid)); pos = end + 1; } fds.push_back(fd); /* keep open */ } } void LocalStore::findRoots(const Path& path, unsigned char type, Roots& roots) { auto foundRoot = [&](const Path& path, const Path& target) { Path storePath = toStorePath(target); if (isStorePath(storePath) && isValidPath(storePath)) { roots[storePath].emplace(path); } else { LOG(INFO) << "skipping invalid root from '" << path << "' to '" << storePath << "'"; } }; try { if (type == DT_UNKNOWN) { type = getFileType(path); } if (type == DT_DIR) { for (auto& i : readDirectory(path)) { findRoots(path + "/" + i.name, i.type, roots); } } else if (type == DT_LNK) { Path target = readLink(path); if (isInStore(target)) { foundRoot(path, target); } /* Handle indirect roots. */ else { target = absPath(target, dirOf(path)); if (!pathExists(target)) { if (isInDir(path, stateDir + "/" + gcRootsDir + "/auto")) { LOG(INFO) << "removing stale link from '" << path << "' to '" << target << "'"; unlink(path.c_str()); } } else { struct stat st2 = lstat(target); if (!S_ISLNK(st2.st_mode)) { return; } Path target2 = readLink(target); if (isInStore(target2)) { foundRoot(target, target2); } } } } else if (type == DT_REG) { Path storePath = storeDir + "/" + baseNameOf(path); if (isStorePath(storePath) && isValidPath(storePath)) { roots[storePath].emplace(path); } } } catch (SysError& e) { /* We only ignore permanent failures. */ if (e.errNo == EACCES || e.errNo == ENOENT || e.errNo == ENOTDIR) { LOG(INFO) << "cannot read potential root '" << path << "'"; } else { throw; } } } void LocalStore::findRootsNoTemp(Roots& roots, bool censor) { /* Process direct roots in {gcroots,profiles}. */ findRoots(stateDir + "/" + gcRootsDir, DT_UNKNOWN, roots); findRoots(stateDir + "/profiles", DT_UNKNOWN, roots); /* Add additional roots returned by different platforms-specific heuristics. This is typically used to add running programs to the set of roots (to prevent them from being garbage collected). */ findRuntimeRoots(roots, censor); } Roots LocalStore::findRoots(bool censor) { Roots roots; findRootsNoTemp(roots, censor); FDs fds; findTempRoots(fds, roots, censor); return roots; } static void readProcLink(const std::string& file, Roots& roots) { /* 64 is the starting buffer size gnu readlink uses... */ auto bufsiz = ssize_t{64}; try_again: char buf[bufsiz]; auto res = readlink(file.c_str(), buf, bufsiz); if (res == -1) { if (errno == ENOENT || errno == EACCES || errno == ESRCH) { return; } throw SysError("reading symlink"); } if (res == bufsiz) { if (SSIZE_MAX / 2 < bufsiz) { throw Error("stupidly long symlink"); } bufsiz *= 2; goto try_again; } if (res > 0 && buf[0] == '/') { roots[std::string(static_cast<char*>(buf), res)].emplace(file); } } static std::string quoteRegexChars(const std::string& raw) { static auto specialRegex = std::regex(R"([.^$\\*+?()\[\]{}|])"); return std::regex_replace(raw, specialRegex, R"(\$&)"); } static void readFileRoots(const char* path, Roots& roots) { try { roots[readFile(path)].emplace(path); } catch (SysError& e) { if (e.errNo != ENOENT && e.errNo != EACCES) { throw; } } } void LocalStore::findRuntimeRoots(Roots& roots, bool censor) { Roots unchecked; auto procDir = AutoCloseDir{opendir("/proc")}; if (procDir) { struct dirent* ent; auto digitsRegex = std::regex(R"(^\d+$)"); auto mapRegex = std::regex(R"(^\s*\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+(/\S+)\s*$)"); auto storePathRegex = std::regex(quoteRegexChars(storeDir) + R"(/[0-9a-z]+[0-9a-zA-Z\+\-\._\?=]*)"); while (errno = 0, ent = readdir(procDir.get())) { checkInterrupt(); if (std::regex_match(ent->d_name, digitsRegex)) { readProcLink(fmt("/proc/%s/exe", ent->d_name), unchecked); readProcLink(fmt("/proc/%s/cwd", ent->d_name), unchecked); auto fdStr = fmt("/proc/%s/fd", ent->d_name); auto fdDir = AutoCloseDir(opendir(fdStr.c_str())); if (!fdDir) { if (errno == ENOENT || errno == EACCES) { continue; } throw SysError(format("opening %1%") % fdStr); } struct dirent* fd_ent; while (errno = 0, fd_ent = readdir(fdDir.get())) { if (fd_ent->d_name[0] != '.') { readProcLink(fmt("%s/%s", fdStr, fd_ent->d_name), unchecked); } } if (errno) { if (errno == ESRCH) { continue; } throw SysError(format("iterating /proc/%1%/fd") % ent->d_name); } fdDir.reset(); try { auto mapFile = fmt("/proc/%s/maps", ent->d_name); std::vector<std::string> mapLines = absl::StrSplit(readFile(mapFile, true), absl::ByChar('\n')); for (const auto& line : mapLines) { auto match = std::smatch{}; if (std::regex_match(line, match, mapRegex)) { unchecked[match[1]].emplace(mapFile); } } auto envFile = fmt("/proc/%s/environ", ent->d_name); auto envString = readFile(envFile, true); auto env_end = std::sregex_iterator{}; for (auto i = std::sregex_iterator{envString.begin(), envString.end(), storePathRegex}; i != env_end; ++i) { unchecked[i->str()].emplace(envFile); } } catch (SysError& e) { if (errno == ENOENT || errno == EACCES || errno == ESRCH) { continue; } throw; } } } if (errno) { throw SysError("iterating /proc"); } } readFileRoots("/proc/sys/kernel/modprobe", unchecked); readFileRoots("/proc/sys/kernel/fbsplash", unchecked); readFileRoots("/proc/sys/kernel/poweroff_cmd", unchecked); for (auto& [target, links] : unchecked) { if (isInStore(target)) { Path path = toStorePath(target); if (isStorePath(path) && isValidPath(path)) { DLOG(INFO) << "got additional root " << path; if (censor) { roots[path].insert(censored); } else { roots[path].insert(links.begin(), links.end()); } } } } } struct GCLimitReached {}; struct LocalStore::GCState { GCOptions options; GCResults& results; PathSet roots; PathSet tempRoots; PathSet dead; PathSet alive; bool gcKeepOutputs; bool gcKeepDerivations; unsigned long long bytesInvalidated; bool moveToTrash = true; bool shouldDelete; explicit GCState(GCResults& results_) : results(results_), bytesInvalidated(0) {} }; bool LocalStore::isActiveTempFile(const GCState& state, const Path& path, const std::string& suffix) { return absl::EndsWith(path, suffix) && state.tempRoots.find(std::string( path, 0, path.size() - suffix.size())) != state.tempRoots.end(); } void LocalStore::deleteGarbage(GCState& state, const Path& path) { unsigned long long bytesFreed; deletePath(path, bytesFreed); state.results.bytesFreed += bytesFreed; } void LocalStore::deletePathRecursive(GCState& state, const Path& path) { checkInterrupt(); unsigned long long size = 0; if (isStorePath(path) && isValidPath(path)) { PathSet referrers; queryReferrers(path, referrers); for (auto& i : referrers) { if (i != path) { deletePathRecursive(state, i); } } size = queryPathInfo(path)->narSize; invalidatePathChecked(path); } Path realPath = realStoreDir + "/" + baseNameOf(path); struct stat st; if (lstat(realPath.c_str(), &st) != 0) { if (errno == ENOENT) { return; } throw SysError(format("getting status of %1%") % realPath); } LOG(INFO) << "deleting '" << path << "'"; state.results.paths.insert(path); /* If the path is not a regular file or symlink, move it to the trash directory. The move is to ensure that later (when we're not holding the global GC lock) we can delete the path without being afraid that the path has become alive again. Otherwise delete it right away. */ if (state.moveToTrash && S_ISDIR(st.st_mode)) { // Estimate the amount freed using the narSize field. FIXME: // if the path was not valid, need to determine the actual // size. try { if (chmod(realPath.c_str(), st.st_mode | S_IWUSR) == -1) { throw SysError(format("making '%1%' writable") % realPath); } Path tmp = trashDir + "/" + baseNameOf(path); if (rename(realPath.c_str(), tmp.c_str()) != 0) { throw SysError(format("unable to rename '%1%' to '%2%'") % realPath % tmp); } state.bytesInvalidated += size; } catch (SysError& e) { if (e.errNo == ENOSPC) { LOG(INFO) << "note: can't create move '" << realPath << "': " << e.msg(); deleteGarbage(state, realPath); } } } else { deleteGarbage(state, realPath); } if (state.results.bytesFreed + state.bytesInvalidated > state.options.maxFreed) { LOG(INFO) << "deleted or invalidated more than " << state.options.maxFreed << " bytes; stopping"; throw GCLimitReached(); } } bool LocalStore::canReachRoot(GCState& state, PathSet& visited, const Path& path) { if (visited.count(path) != 0u) { return false; } if (state.alive.count(path) != 0u) { return true; } if (state.dead.count(path) != 0u) { return false; } if (state.roots.count(path) != 0u) { DLOG(INFO) << "cannot delete '" << path << "' because it's a root"; state.alive.insert(path); return true; } visited.insert(path); if (!isStorePath(path) || !isValidPath(path)) { return false; } PathSet incoming; /* Don't delete this path if any of its referrers are alive. */ queryReferrers(path, incoming); /* If keep-derivations is set and this is a derivation, then don't delete the derivation if any of the outputs are alive. */ if (state.gcKeepDerivations && isDerivation(path)) { PathSet outputs = queryDerivationOutputs(path); for (auto& i : outputs) { if (isValidPath(i) && queryPathInfo(i)->deriver == path) { incoming.insert(i); } } } /* If keep-outputs is set, then don't delete this path if there are derivers of this path that are not garbage. */ if (state.gcKeepOutputs) { PathSet derivers = queryValidDerivers(path); for (auto& i : derivers) { incoming.insert(i); } } for (auto& i : incoming) { if (i != path) { if (canReachRoot(state, visited, i)) { state.alive.insert(path); return true; } } } return false; } void LocalStore::tryToDelete(GCState& state, const Path& path) { checkInterrupt(); auto realPath = realStoreDir + "/" + baseNameOf(path); if (realPath == linksDir || realPath == trashDir) { return; } // Activity act(*logger, lvlDebug, format("considering whether to delete // '%1%'") % path); if (!isStorePath(path) || !isValidPath(path)) { /* A lock file belonging to a path that we're building right now isn't garbage. */ if (isActiveTempFile(state, path, ".lock")) { return; } /* Don't delete .chroot directories for derivations that are currently being built. */ if (isActiveTempFile(state, path, ".chroot")) { return; } /* Don't delete .check directories for derivations that are currently being built, because we may need to run diff-hook. */ if (isActiveTempFile(state, path, ".check")) { return; } } PathSet visited; if (canReachRoot(state, visited, path)) { DLOG(INFO) << "cannot delete '" << path << "' because it's still reachable"; } else { /* No path we visited was a root, so everything is garbage. But we only delete ‘path’ and its referrers here so that ‘nix-store --delete’ doesn't have the unexpected effect of recursing into derivations and outputs. */ state.dead.insert(visited.begin(), visited.end()); if (state.shouldDelete) { deletePathRecursive(state, path); } } } /* Unlink all files in /nix/store/.links that have a link count of 1, which indicates that there are no other links and so they can be safely deleted. FIXME: race condition with optimisePath(): we might see a link count of 1 just before optimisePath() increases the link count. */ void LocalStore::removeUnusedLinks(const GCState& state) { AutoCloseDir dir(opendir(linksDir.c_str())); if (!dir) { throw SysError(format("opening directory '%1%'") % linksDir); } long long actualSize = 0; long long unsharedSize = 0; struct dirent* dirent; while (errno = 0, dirent = readdir(dir.get())) { checkInterrupt(); std::string name = dirent->d_name; if (name == "." || name == "..") { continue; } Path path = linksDir + "/" + name; struct stat st; if (lstat(path.c_str(), &st) == -1) { throw SysError(format("statting '%1%'") % path); } if (st.st_nlink != 1) { actualSize += st.st_size; unsharedSize += (st.st_nlink - 1) * st.st_size; continue; } LOG(INFO) << "deleting unused link " << path; if (unlink(path.c_str()) == -1) { throw SysError(format("deleting '%1%'") % path); } state.results.bytesFreed += st.st_size; } struct stat st; if (stat(linksDir.c_str(), &st) == -1) { throw SysError(format("statting '%1%'") % linksDir); } long long overhead = st.st_blocks * 512ULL; // TODO(tazjin): absl::StrFormat %.2f LOG(INFO) << "note: currently hard linking saves " << ((unsharedSize - actualSize - overhead) / (1024.0 * 1024.0)) << " MiB"; } void LocalStore::collectGarbage(const GCOptions& options, GCResults& results) { GCState state(results); state.options = options; state.gcKeepOutputs = settings.gcKeepOutputs; state.gcKeepDerivations = settings.gcKeepDerivations; /* Using `--ignore-liveness' with `--delete' can have unintended consequences if `keep-outputs' or `keep-derivations' are true (the garbage collector will recurse into deleting the outputs or derivers, respectively). So disable them. */ if (options.action == GCOptions::gcDeleteSpecific && options.ignoreLiveness) { state.gcKeepOutputs = false; state.gcKeepDerivations = false; } state.shouldDelete = options.action == GCOptions::gcDeleteDead || options.action == GCOptions::gcDeleteSpecific; if (state.shouldDelete) { deletePath(reservedPath); } /* Acquire the global GC root. This prevents a) New roots from being added. b) Processes from creating new temporary root files. */ AutoCloseFD fdGCLock = openGCLock(ltWrite); /* Find the roots. Since we've grabbed the GC lock, the set of permanent roots cannot increase now. */ LOG(INFO) << "finding garbage collector roots..."; Roots rootMap; if (!options.ignoreLiveness) { findRootsNoTemp(rootMap, true); } for (auto& i : rootMap) { state.roots.insert(i.first); } /* Read the temporary roots. This acquires read locks on all per-process temporary root files. So after this point no paths can be added to the set of temporary roots. */ FDs fds; Roots tempRoots; findTempRoots(fds, tempRoots, true); for (auto& root : tempRoots) { state.tempRoots.insert(root.first); } state.roots.insert(state.tempRoots.begin(), state.tempRoots.end()); /* After this point the set of roots or temporary roots cannot increase, since we hold locks on everything. So everything that is not reachable from `roots' is garbage. */ if (state.shouldDelete) { if (pathExists(trashDir)) { deleteGarbage(state, trashDir); } try { createDirs(trashDir); } catch (SysError& e) { if (e.errNo == ENOSPC) { LOG(INFO) << "note: can't create trash directory: " << e.msg(); state.moveToTrash = false; } } } /* Now either delete all garbage paths, or just the specified paths (for gcDeleteSpecific). */ if (options.action == GCOptions::gcDeleteSpecific) { for (auto& i : options.pathsToDelete) { assertStorePath(i); tryToDelete(state, i); if (state.dead.find(i) == state.dead.end()) { throw Error(format("cannot delete path '%1%' since it is still alive") % i); } } } else if (options.maxFreed > 0) { if (state.shouldDelete) { LOG(INFO) << "deleting garbage..."; } else { LOG(ERROR) << "determining live/dead paths..."; } try { AutoCloseDir dir(opendir(realStoreDir.c_str())); if (!dir) { throw SysError(format("opening directory '%1%'") % realStoreDir); } /* Read the store and immediately delete all paths that aren't valid. When using --max-freed etc., deleting invalid paths is preferred over deleting unreachable paths, since unreachable paths could become reachable again. We don't use readDirectory() here so that GCing can start faster. */ Paths entries; struct dirent* dirent; while (errno = 0, dirent = readdir(dir.get())) { checkInterrupt(); std::string name = dirent->d_name; if (name == "." || name == "..") { continue; } Path path = storeDir + "/" + name; if (isStorePath(path) && isValidPath(path)) { entries.push_back(path); } else { tryToDelete(state, path); } } dir.reset(); /* Now delete the unreachable valid paths. Randomise the order in which we delete entries to make the collector less biased towards deleting paths that come alphabetically first (e.g. /nix/store/000...). This matters when using --max-freed etc. */ std::vector<Path> entries_(entries.begin(), entries.end()); std::mt19937 gen(1); std::shuffle(entries_.begin(), entries_.end(), gen); for (auto& i : entries_) { tryToDelete(state, i); } } catch (GCLimitReached& e) { } } if (state.options.action == GCOptions::gcReturnLive) { state.results.paths = state.alive; return; } if (state.options.action == GCOptions::gcReturnDead) { state.results.paths = state.dead; return; } /* Allow other processes to add to the store from here on. */ fdGCLock = -1; fds.clear(); /* Delete the trash directory. */ LOG(INFO) << "deleting " << trashDir; deleteGarbage(state, trashDir); /* Clean up the links directory. */ if (options.action == GCOptions::gcDeleteDead || options.action == GCOptions::gcDeleteSpecific) { LOG(INFO) << "deleting unused links..."; removeUnusedLinks(state); } /* While we're at it, vacuum the database. */ // if (options.action == GCOptions::gcDeleteDead) { vacuumDB(); } } void LocalStore::autoGC(bool sync) { static auto fakeFreeSpaceFile = getEnv("_NIX_TEST_FREE_SPACE_FILE", ""); auto getAvail = [this]() -> uint64_t { if (!fakeFreeSpaceFile.empty()) { return std::stoll(readFile(fakeFreeSpaceFile)); } struct statvfs st; if (statvfs(realStoreDir.c_str(), &st) != 0) { throw SysError("getting filesystem info about '%s'", realStoreDir); } return (uint64_t)st.f_bavail * st.f_bsize; }; std::shared_future<void> future; { auto state(_state.lock()); if (state->gcRunning) { future = state->gcFuture; DLOG(INFO) << "waiting for auto-GC to finish"; goto sync; } auto now = std::chrono::steady_clock::now(); if (now < state->lastGCCheck + std::chrono::seconds(settings.minFreeCheckInterval)) { return; } auto avail = getAvail(); state->lastGCCheck = now; if (avail >= settings.minFree || avail >= settings.maxFree) { return; } if (avail > state->availAfterGC * 0.97) { return; } state->gcRunning = true; std::promise<void> promise; future = state->gcFuture = promise.get_future().share(); std::thread([promise{std::move(promise)}, this, avail, getAvail]() mutable { try { /* Wake up any threads waiting for the auto-GC to finish. */ Finally wakeup([&]() { auto state(_state.lock()); state->gcRunning = false; state->lastGCCheck = std::chrono::steady_clock::now(); promise.set_value(); }); GCOptions options; options.maxFreed = settings.maxFree - avail; LOG(INFO) << "running auto-GC to free " << options.maxFreed << " bytes"; GCResults results; collectGarbage(options, results); _state.lock()->availAfterGC = getAvail(); } catch (...) { // FIXME: we could propagate the exception to the // future, but we don't really care. ignoreException(); } }).detach(); } sync: // Wait for the future outside of the state lock. if (sync) { future.get(); } } } // namespace nix