#pragma once #include "symbol-table.hh" #include "types.hh" #if HAVE_BOEHMGC #include <gc/gc_allocator.h> #endif namespace nix { typedef enum { tInt = 1, tBool, tString, tPath, tNull, tAttrs, tList1, tList2, tListN, tThunk, tApp, tLambda, tBlackhole, tPrimOp, tPrimOpApp, tExternal, tFloat } ValueType; class Bindings; struct Env; struct Expr; struct ExprLambda; struct PrimOp; struct PrimOp; class Symbol; struct Pos; class EvalState; class XMLWriter; class JSONPlaceholder; typedef int64_t NixInt; typedef double NixFloat; /* External values must descend from ExternalValueBase, so that * type-agnostic nix functions (e.g. showType) can be implemented */ class ExternalValueBase { friend std::ostream& operator<<(std::ostream& str, const ExternalValueBase& v); protected: /* Print out the value */ virtual std::ostream& print(std::ostream& str) const = 0; public: /* Return a simple string describing the type */ virtual std::string showType() const = 0; /* Return a string to be used in builtins.typeOf */ virtual std::string typeOf() const = 0; /* How much space does this value take up */ virtual size_t valueSize(std::set<const void*>& seen) const = 0; /* Coerce the value to a string. Defaults to uncoercable, i.e. throws an * error */ virtual std::string coerceToString(const Pos& pos, PathSet& context, bool copyMore, bool copyToStore) const; /* Compare to another value of the same type. Defaults to uncomparable, * i.e. always false. */ virtual bool operator==(const ExternalValueBase& b) const; /* Print the value as JSON. Defaults to unconvertable, i.e. throws an error */ virtual void printValueAsJSON(EvalState& state, bool strict, JSONPlaceholder& out, PathSet& context) const; /* Print the value as XML. Defaults to unevaluated */ virtual void printValueAsXML(EvalState& state, bool strict, bool location, XMLWriter& doc, PathSet& context, PathSet& drvsSeen) const; virtual ~ExternalValueBase(){}; }; std::ostream& operator<<(std::ostream& str, const ExternalValueBase& v); // Forward declaration of Value is required because the following // types are mutually recursive. // // TODO(tazjin): Really, these types need some serious refactoring. struct Value; /* Strings in the evaluator carry a so-called `context' which is a list of strings representing store paths. This is to allow users to write things like "--with-freetype2-library=" + freetype + "/lib" where `freetype' is a derivation (or a source to be copied to the store). If we just concatenated the strings without keeping track of the referenced store paths, then if the string is used as a derivation attribute, the derivation will not have the correct dependencies in its inputDrvs and inputSrcs. The semantics of the context is as follows: when a string with context C is used as a derivation attribute, then the derivations in C will be added to the inputDrvs of the derivation, and the other store paths in C will be added to the inputSrcs of the derivations. For canonicity, the store paths should be in sorted order. */ struct NixString { const char* s; const char** context; // must be in sorted order }; struct NixBigList { size_t size; Value** elems; }; struct NixThunk { Env* env; Expr* expr; }; struct NixApp { Value *left, *right; }; struct NixLambda { Env* env; ExprLambda* fun; }; struct NixPrimOpApp { Value *left, *right; }; struct Value { ValueType type; union { // TODO(tazjin): std::variant NixInt integer; bool boolean; NixString string; const char* path; Bindings* attrs; NixBigList bigList; Value* smallList[2]; NixThunk thunk; NixApp app; // TODO(tazjin): "app"? NixLambda lambda; PrimOp* primOp; NixPrimOpApp primOpApp; ExternalValueBase* external; NixFloat fpoint; }; bool isList() const { return type == tList1 || type == tList2 || type == tListN; } Value** listElems() { return type == tList1 || type == tList2 ? smallList : bigList.elems; } const Value* const* listElems() const { return type == tList1 || type == tList2 ? smallList : bigList.elems; } size_t listSize() const { return type == tList1 ? 1 : type == tList2 ? 2 : bigList.size; } }; /* After overwriting an app node, be sure to clear pointers in the Value to ensure that the target isn't kept alive unnecessarily. */ static inline void clearValue(Value& v) { v.app.left = v.app.right = 0; } static inline void mkInt(Value& v, NixInt n) { clearValue(v); v.type = tInt; v.integer = n; } static inline void mkFloat(Value& v, NixFloat n) { clearValue(v); v.type = tFloat; v.fpoint = n; } static inline void mkBool(Value& v, bool b) { clearValue(v); v.type = tBool; v.boolean = b; } static inline void mkNull(Value& v) { clearValue(v); v.type = tNull; } static inline void mkApp(Value& v, Value& left, Value& right) { v.type = tApp; v.app.left = &left; v.app.right = &right; } static inline void mkPrimOpApp(Value& v, Value& left, Value& right) { v.type = tPrimOpApp; v.app.left = &left; v.app.right = &right; } static inline void mkStringNoCopy(Value& v, const char* s) { v.type = tString; v.string.s = s; v.string.context = 0; } static inline void mkString(Value& v, const Symbol& s) { mkStringNoCopy(v, ((const std::string&)s).c_str()); } void mkString(Value& v, const char* s); static inline void mkPathNoCopy(Value& v, const char* s) { clearValue(v); v.type = tPath; v.path = s; } void mkPath(Value& v, const char* s); /* Compute the size in bytes of the given value, including all values and environments reachable from it. Static expressions (Exprs) are not included. */ size_t valueSize(Value& v); #if HAVE_BOEHMGC typedef std::vector<Value*, gc_allocator<Value*> > ValueVector; typedef std::map<Symbol, Value*, std::less<Symbol>, gc_allocator<std::pair<const Symbol, Value*> > > ValueMap; #else typedef std::vector<Value*> ValueVector; typedef std::map<Symbol, Value*> ValueMap; #endif } // namespace nix