#pragma once #include <tuple> #include <vector> #include "libexpr/symbol-table.hh" #include "libutil/types.hh" namespace nix { using ValueType = enum { tInt = 1, tBool, tString, tPath, tNull, tAttrs, tList, tThunk, tApp, tLambda, tBlackhole, tPrimOp, tPrimOpApp, _reserved1, // formerly tExternal tFloat }; class Bindings; struct Env; struct Expr; struct ExprLambda; struct PrimOp; struct PrimOp; class Symbol; typedef int64_t NixInt; typedef double NixFloat; // Forward declaration of Value is required because the following // types are mutually recursive. // // TODO(tazjin): Really, these types need some serious refactoring. struct Value; /* Strings in the evaluator carry a so-called `context' which is a list of strings representing store paths. This is to allow users to write things like "--with-freetype2-library=" + freetype + "/lib" where `freetype' is a derivation (or a source to be copied to the store). If we just concatenated the strings without keeping track of the referenced store paths, then if the string is used as a derivation attribute, the derivation will not have the correct dependencies in its inputDrvs and inputSrcs. The semantics of the context is as follows: when a string with context C is used as a derivation attribute, then the derivations in C will be added to the inputDrvs of the derivation, and the other store paths in C will be added to the inputSrcs of the derivations. For canonicity, the store paths should be in sorted order. */ struct NixString { const char* s; const char** context; // must be in sorted order }; struct NixThunk { Env* env; Expr* expr; }; struct NixApp { Value *left, *right; }; struct NixLambda { Env* env; ExprLambda* fun; }; struct NixPrimOpApp { Value *left, *right; }; using NixList = std::vector<Value*>; struct Value { ValueType type; union { // TODO(tazjin): std::variant NixInt integer; bool boolean; NixString string; const char* path; Bindings* attrs; NixList* list; NixThunk thunk; NixApp app; // TODO(tazjin): "app"? NixLambda lambda; PrimOp* primOp; NixPrimOpApp primOpApp; NixFloat fpoint; }; Value() : type(tInt), integer(0) {} Value(const Value& copy); Value(Value&& move); ~Value() {} Value& operator=(const Value& copy); Value& operator=(Value&& move); bool isList() const { return type == tList; } size_t listSize() const { return list->size(); } }; /* After overwriting an app node, be sure to clear pointers in the Value to ensure that the target isn't kept alive unnecessarily. */ static inline void clearValue(Value& v) { v.app.left = v.app.right = 0; } static inline void mkInt(Value& v, NixInt n) { clearValue(v); v.type = tInt; v.integer = n; } static inline void mkFloat(Value& v, NixFloat n) { clearValue(v); v.type = tFloat; v.fpoint = n; } static inline void mkBool(Value& v, bool b) { clearValue(v); v.type = tBool; v.boolean = b; } static inline void mkNull(Value& v) { clearValue(v); v.type = tNull; } static inline void mkApp(Value& v, Value& left, Value& right) { v.type = tApp; v.app.left = &left; v.app.right = &right; } static inline void mkPrimOpApp(Value& v, Value& left, Value& right) { v.type = tPrimOpApp; v.app.left = &left; v.app.right = &right; } static inline void mkStringNoCopy(Value& v, const char* s) { v.type = tString; v.string.s = s; v.string.context = 0; } static inline void mkString(Value& v, const Symbol& s) { mkStringNoCopy(v, ((const std::string&)s).c_str()); } void mkString(Value& v, const char* s); static inline void mkPathNoCopy(Value& v, const char* s) { clearValue(v); v.type = tPath; v.path = s; } void mkPath(Value& v, const char* s); /* Compute the size in bytes of the given value, including all values and environments reachable from it. Static expressions (Exprs) are not included. */ size_t valueSize(const Value& v); using ValueMap = std::map<Symbol, Value*>; std::shared_ptr<Value*> allocRootValue(Value* v); } // namespace nix