#include "libexpr/primops.hh" #include <algorithm> #include <cstring> #include <regex> #include <absl/strings/str_split.h> #include <glog/logging.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include "libexpr/eval-inline.hh" #include "libexpr/eval.hh" #include "libexpr/json-to-value.hh" #include "libexpr/names.hh" #include "libexpr/value-to-json.hh" #include "libexpr/value-to-xml.hh" #include "libstore/derivations.hh" #include "libstore/download.hh" #include "libstore/globals.hh" #include "libstore/store-api.hh" #include "libutil/archive.hh" #include "libutil/json.hh" #include "libutil/util.hh" namespace nix { /************************************************************* * Miscellaneous *************************************************************/ /* Decode a context string ‘!<name>!<path>’ into a pair <path, name>. */ std::pair<std::string, std::string> decodeContext(const std::string& s) { if (s.at(0) == '!') { size_t index = s.find('!', 1); return std::pair<std::string, std::string>(std::string(s, index + 1), std::string(s, 1, index - 1)); } return std::pair<std::string, std::string>( s.at(0) == '/' ? s : std::string(s, 1), ""); } InvalidPathError::InvalidPathError(const Path& path) : EvalError(format("path '%1%' is not valid") % path), path(path) {} void EvalState::realiseContext(const PathSet& context) { PathSet drvs; for (auto& i : context) { std::pair<std::string, std::string> decoded = decodeContext(i); Path ctx = decoded.first; assert(store->isStorePath(ctx)); if (!store->isValidPath(ctx)) { throw InvalidPathError(ctx); } if (!decoded.second.empty() && nix::isDerivation(ctx)) { drvs.insert(decoded.first + "!" + decoded.second); /* Add the output of this derivation to the allowed paths. */ if (allowedPaths) { auto drv = store->derivationFromPath(decoded.first); auto i = drv.outputs.find(decoded.second); if (i == drv.outputs.end()) { throw Error("derivation '%s' does not have an output named '%s'", decoded.first, decoded.second); } allowedPaths->insert(i->second.path); } } } if (drvs.empty()) { return; } if (!evalSettings.enableImportFromDerivation) { throw EvalError(format("attempted to realize '%1%' during evaluation but " "'allow-import-from-derivation' is false") % *(drvs.begin())); } /* For performance, prefetch all substitute info. */ PathSet willBuild; PathSet willSubstitute; PathSet unknown; unsigned long long downloadSize; unsigned long long narSize; store->queryMissing(drvs, willBuild, willSubstitute, unknown, downloadSize, narSize); store->buildPaths(drvs); } /* Load and evaluate an expression from path specified by the argument. */ static void prim_scopedImport(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.coerceToPath(pos, *args[1], context); try { state.realiseContext(context); } catch (InvalidPathError& e) { throw EvalError( format("cannot import '%1%', since path '%2%' is not valid, at %3%") % path % e.path % pos); } Path realPath = state.checkSourcePath(state.toRealPath(path, context)); if (state.store->isStorePath(path) && state.store->isValidPath(path) && isDerivation(path)) { Derivation drv = readDerivation(realPath); Value& w = *state.allocValue(); state.mkAttrs(w, 3 + drv.outputs.size()); Value* v2 = state.allocAttr(w, state.sDrvPath); mkString(*v2, path, {"=" + path}); v2 = state.allocAttr(w, state.sName); mkString(*v2, drv.env["name"]); Value* outputsVal = state.allocAttr(w, state.symbols.Create("outputs")); state.mkList(*outputsVal, drv.outputs.size()); unsigned int outputs_index = 0; for (const auto& o : drv.outputs) { v2 = state.allocAttr(w, state.symbols.Create(o.first)); mkString(*v2, o.second.path, {"!" + o.first + "!" + path}); (*outputsVal->list)[outputs_index] = state.allocValue(); mkString(*((*outputsVal->list)[outputs_index++]), o.first); } Value fun; state.evalFile( settings.nixDataDir + "/nix/corepkgs/imported-drv-to-derivation.nix", fun); state.forceFunction(fun, pos); mkApp(v, fun, w); state.forceAttrs(v, pos); } else { state.forceAttrs(*args[0]); if (args[0]->attrs->empty()) { state.evalFile(realPath, v); } else { Env* env = &state.allocEnv(args[0]->attrs->size()); env->up = &state.baseEnv; StaticEnv staticEnv(false, &state.staticBaseEnv); unsigned int displ = 0; for (auto& attr : *args[0]->attrs) { staticEnv.vars[attr.second.name] = displ; env->values[displ++] = attr.second.value; } DLOG(INFO) << "evaluating file '" << realPath << "'"; Expr* e = state.parseExprFromFile(resolveExprPath(realPath), staticEnv); e->eval(state, *env, v); } } } /* Return a string representing the type of the expression. */ static void prim_typeOf(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); std::string t; switch (args[0]->type) { case tInt: t = "int"; break; case tBool: t = "bool"; break; case tString: t = "string"; break; case tPath: t = "path"; break; case tNull: t = "null"; break; case tAttrs: t = "set"; break; case tList: t = "list"; break; case tLambda: case tPrimOp: case tPrimOpApp: t = "lambda"; break; case tFloat: t = "float"; break; default: abort(); } mkString(v, state.symbols.Create(t)); } /* Determine whether the argument is the null value. */ static void prim_isNull(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tNull); } /* Determine whether the argument is a function. */ static void prim_isFunction(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); bool res; switch (args[0]->type) { case tLambda: case tPrimOp: case tPrimOpApp: res = true; break; default: res = false; break; } mkBool(v, res); } /* Determine whether the argument is an integer. */ static void prim_isInt(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tInt); } /* Determine whether the argument is a float. */ static void prim_isFloat(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tFloat); } /* Determine whether the argument is a string. */ static void prim_isString(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tString); } /* Determine whether the argument is a Boolean. */ static void prim_isBool(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tBool); } /* Determine whether the argument is a path. */ static void prim_isPath(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tPath); } struct CompareValues { bool operator()(const Value* v1, const Value* v2) const { if (v1->type == tFloat && v2->type == tInt) { return v1->fpoint < v2->integer; } if (v1->type == tInt && v2->type == tFloat) { return v1->integer < v2->fpoint; } if (v1->type != v2->type) { throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2)); } switch (v1->type) { case tInt: return v1->integer < v2->integer; case tFloat: return v1->fpoint < v2->fpoint; case tString: return strcmp(v1->string.s, v2->string.s) < 0; case tPath: return strcmp(v1->path, v2->path) < 0; default: throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2)); } } }; typedef std::list<Value*> ValueList; static void prim_genericClosure(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); /* Get the start set. */ Bindings::iterator startSet = args[0]->attrs->find(state.symbols.Create("startSet")); if (startSet == args[0]->attrs->end()) { throw EvalError(format("attribute 'startSet' required, at %1%") % pos); } state.forceList(*startSet->second.value, pos); ValueList workSet; for (Value* elem : *startSet->second.value->list) { workSet.push_back(elem); } /* Get the operator. */ Bindings::iterator op = args[0]->attrs->find(state.symbols.Create("operator")); if (op == args[0]->attrs->end()) { throw EvalError(format("attribute 'operator' required, at %1%") % pos); } state.forceValue(*op->second.value); /* Construct the closure by applying the operator to element of `workSet', adding the result to `workSet', continuing until no new elements are found. */ ValueList res; // `doneKeys' doesn't need to be a GC root, because its values are // reachable from res. std::set<Value*, CompareValues> doneKeys; while (!workSet.empty()) { Value* e = *(workSet.begin()); workSet.pop_front(); state.forceAttrs(*e, pos); Bindings::iterator key = e->attrs->find(state.symbols.Create("key")); if (key == e->attrs->end()) { throw EvalError(format("attribute 'key' required, at %1%") % pos); } state.forceValue(*key->second.value); if (doneKeys.find(key->second.value) != doneKeys.end()) { continue; } doneKeys.insert(key->second.value); res.push_back(e); /* Call the `operator' function with `e' as argument. */ Value call; mkApp(call, *op->second.value, *e); state.forceList(call, pos); /* Add the values returned by the operator to the work set. */ for (unsigned int n = 0; n < call.listSize(); ++n) { state.forceValue(*(*call.list)[n]); workSet.push_back((*call.list)[n]); } } /* Create the result list. */ state.mkList(v, res.size()); unsigned int n = 0; for (auto& i : res) { (*v.list)[n++] = i; } } static void prim_abort(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; std::string s = state.coerceToString(pos, *args[0], context); throw Abort( format("evaluation aborted with the following error message: '%1%'") % s); } static void prim_throw(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; std::string s = state.coerceToString(pos, *args[0], context); throw ThrownError(s); } static void prim_addErrorContext(EvalState& state, const Pos& pos, Value** args, Value& v) { try { state.forceValue(*args[1]); v = *args[1]; } catch (Error& e) { PathSet context; e.addPrefix(format("%1%\n") % state.coerceToString(pos, *args[0], context)); throw; } } /* Try evaluating the argument. Success => {success=true; value=something;}, * else => {success=false; value=false;} */ static void prim_tryEval(EvalState& state, const Pos& pos, Value** args, Value& v) { state.mkAttrs(v, 2); try { state.forceValue(*args[0]); v.attrs->push_back(Attr(state.sValue, args[0])); mkBool(*state.allocAttr(v, state.symbols.Create("success")), true); } catch (AssertionError& e) { mkBool(*state.allocAttr(v, state.sValue), false); mkBool(*state.allocAttr(v, state.symbols.Create("success")), false); } } /* Return an environment variable. Use with care. */ static void prim_getEnv(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string name = state.forceStringNoCtx(*args[0], pos); mkString(v, evalSettings.restrictEval || evalSettings.pureEval ? "" : getEnv(name)); } /* Evaluate the first argument, then return the second argument. */ static void prim_seq(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); state.forceValue(*args[1]); v = *args[1]; } /* Evaluate the first argument deeply (i.e. recursing into lists and attrsets), then return the second argument. */ static void prim_deepSeq(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValueDeep(*args[0]); state.forceValue(*args[1]); v = *args[1]; } /* Evaluate the first expression and print it on standard error. Then return the second expression. Useful for debugging. */ static void prim_trace(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); if (args[0]->type == tString) { LOG(INFO) << "trace: " << args[0]->string.s; } else { LOG(INFO) << "trace: " << *args[0]; } state.forceValue(*args[1]); v = *args[1]; } void prim_valueSize(EvalState& state, const Pos& pos, Value** args, Value& v) { /* We're not forcing the argument on purpose. */ mkInt(v, valueSize(*args[0])); } /************************************************************* * Derivations *************************************************************/ /* Construct (as a unobservable side effect) a Nix derivation expression that performs the derivation described by the argument set. Returns the original set extended with the following attributes: `outPath' containing the primary output path of the derivation; `drvPath' containing the path of the Nix expression; and `type' set to `derivation' to indicate that this is a derivation. */ static void prim_derivationStrict(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); /* Figure out the name first (for stack backtraces). */ Bindings::iterator attr = args[0]->attrs->find(state.sName); if (attr == args[0]->attrs->end()) { throw EvalError(format("required attribute 'name' missing, at %1%") % pos); } std::string drvName; Pos& posDrvName(*attr->second.pos); try { drvName = state.forceStringNoCtx(*attr->second.value, pos); } catch (Error& e) { e.addPrefix( format("while evaluating the derivation attribute 'name' at %1%:\n") % posDrvName); throw; } /* Check whether attributes should be passed as a JSON file. */ std::ostringstream jsonBuf; std::unique_ptr<JSONObject> jsonObject; attr = args[0]->attrs->find(state.sStructuredAttrs); if (attr != args[0]->attrs->end() && state.forceBool(*attr->second.value, pos)) { jsonObject = std::make_unique<JSONObject>(jsonBuf); } /* Check whether null attributes should be ignored. */ bool ignoreNulls = false; attr = args[0]->attrs->find(state.sIgnoreNulls); if (attr != args[0]->attrs->end()) { ignoreNulls = state.forceBool(*attr->second.value, pos); } /* Build the derivation expression by processing the attributes. */ Derivation drv; PathSet context; std::optional<std::string> outputHash; std::string outputHashAlgo; bool outputHashRecursive = false; StringSet outputs; outputs.insert("out"); for (auto& i : args[0]->attrs->SortedByKeys()) { if (i->name == state.sIgnoreNulls) { continue; } const std::string& key = i->name; auto handleHashMode = [&](const std::string& s) { if (s == "recursive") { outputHashRecursive = true; } else if (s == "flat") { outputHashRecursive = false; } else { throw EvalError( "invalid value '%s' for 'outputHashMode' attribute, at %s", s, posDrvName); } }; auto handleOutputs = [&](const Strings& ss) { outputs.clear(); for (auto& j : ss) { if (outputs.find(j) != outputs.end()) { throw EvalError(format("duplicate derivation output '%1%', at %2%") % j % posDrvName); } /* !!! Check whether j is a valid attribute name. */ /* Derivations cannot be named ‘drv’, because then we'd have an attribute ‘drvPath’ in the resulting set. */ if (j == "drv") { throw EvalError( format("invalid derivation output name 'drv', at %1%") % posDrvName); } outputs.insert(j); } if (outputs.empty()) { throw EvalError( format("derivation cannot have an empty set of outputs, at %1%") % posDrvName); } }; try { if (ignoreNulls) { state.forceValue(*i->value); if (i->value->type == tNull) { continue; } } /* The `args' attribute is special: it supplies the command-line arguments to the builder. */ if (i->name == state.sArgs) { state.forceList(*i->value, pos); for (unsigned int n = 0; n < i->value->listSize(); ++n) { std::string s = state.coerceToString( posDrvName, *(*i->value->list)[n], context, true); drv.args.push_back(s); } } /* All other attributes are passed to the builder through the environment. */ else { if (jsonObject) { if (i->name == state.sStructuredAttrs) { continue; } auto placeholder(jsonObject->placeholder(key)); printValueAsJSON(state, true, *i->value, placeholder, context); if (i->name == state.sBuilder) { drv.builder = state.forceString(*i->value, context, posDrvName); } else if (i->name == state.sSystem) { drv.platform = state.forceStringNoCtx(*i->value, posDrvName); } else if (i->name == state.sOutputHash) { outputHash = state.forceStringNoCtx(*i->value, posDrvName); } else if (i->name == state.sOutputHashAlgo) { outputHashAlgo = state.forceStringNoCtx(*i->value, posDrvName); } else if (i->name == state.sOutputHashMode) { handleHashMode(state.forceStringNoCtx(*i->value, posDrvName)); } else if (i->name == state.sOutputs) { /* Require ‘outputs’ to be a list of strings. */ state.forceList(*i->value, posDrvName); Strings ss; for (unsigned int n = 0; n < i->value->listSize(); ++n) { ss.emplace_back( state.forceStringNoCtx(*(*i->value->list)[n], posDrvName)); } handleOutputs(ss); } } else { auto s = state.coerceToString(posDrvName, *i->value, context, true); drv.env.emplace(key, s); if (i->name == state.sBuilder) { drv.builder = s; } else if (i->name == state.sSystem) { drv.platform = s; } else if (i->name == state.sOutputHash) { outputHash = s; } else if (i->name == state.sOutputHashAlgo) { outputHashAlgo = s; } else if (i->name == state.sOutputHashMode) { handleHashMode(s); } else if (i->name == state.sOutputs) { handleOutputs(absl::StrSplit(s, absl::ByAnyChar(" \t\n\r"), absl::SkipEmpty())); } } } } catch (Error& e) { e.addPrefix(format("while evaluating the attribute '%1%' of the " "derivation '%2%' at %3%:\n") % key % drvName % posDrvName); throw; } } if (jsonObject) { jsonObject.reset(); drv.env.emplace("__json", jsonBuf.str()); } /* Everything in the context of the strings in the derivation attributes should be added as dependencies of the resulting derivation. */ for (auto& path : context) { /* Paths marked with `=' denote that the path of a derivation is explicitly passed to the builder. Since that allows the builder to gain access to every path in the dependency graph of the derivation (including all outputs), all paths in the graph must be added to this derivation's list of inputs to ensure that they are available when the builder runs. */ if (path.at(0) == '=') { /* !!! This doesn't work if readOnlyMode is set. */ PathSet refs; state.store->computeFSClosure(std::string(path, 1), refs); for (auto& j : refs) { drv.inputSrcs.insert(j); if (isDerivation(j)) { drv.inputDrvs[j] = state.store->queryDerivationOutputNames(j); } } } /* Handle derivation outputs of the form ‘!<name>!<path>’. */ else if (path.at(0) == '!') { std::pair<std::string, std::string> ctx = decodeContext(path); drv.inputDrvs[ctx.first].insert(ctx.second); } /* Otherwise it's a source file. */ else { drv.inputSrcs.insert(path); } } /* Do we have all required attributes? */ if (drv.builder.empty()) { throw EvalError(format("required attribute 'builder' missing, at %1%") % posDrvName); } if (drv.platform.empty()) { throw EvalError(format("required attribute 'system' missing, at %1%") % posDrvName); } /* Check whether the derivation name is valid. */ checkStoreName(drvName); if (isDerivation(drvName)) { throw EvalError( format("derivation names are not allowed to end in '%1%', at %2%") % drvExtension % posDrvName); } if (outputHash) { /* Handle fixed-output derivations. */ if (outputs.size() != 1 || *(outputs.begin()) != "out") { throw Error(format("multiple outputs are not supported in fixed-output " "derivations, at %1%") % posDrvName); } HashType ht = outputHashAlgo.empty() ? htUnknown : parseHashType(outputHashAlgo); auto hash_ = Hash::deserialize(*outputHash, ht); auto h = Hash::unwrap_throw(hash_); Path outPath = state.store->makeFixedOutputPath(outputHashRecursive, h, drvName); if (!jsonObject) { drv.env["out"] = outPath; } drv.outputs["out"] = DerivationOutput( outPath, (outputHashRecursive ? "r:" : "") + printHashType(h.type), h.to_string(Base16, false)); } else { /* Construct the "masked" store derivation, which is the final one except that in the list of outputs, the output paths are empty, and the corresponding environment variables have an empty value. This ensures that changes in the set of output names do get reflected in the hash. */ for (auto& i : outputs) { if (!jsonObject) { drv.env[i] = ""; } drv.outputs[i] = DerivationOutput("", "", ""); } /* Use the masked derivation expression to compute the output path. */ Hash h = hashDerivationModulo(*state.store, drv); for (auto& i : drv.outputs) { if (i.second.path.empty()) { Path outPath = state.store->makeOutputPath(i.first, h, drvName); if (!jsonObject) { drv.env[i.first] = outPath; } i.second.path = outPath; } } } /* Write the resulting term into the Nix store directory. */ Path drvPath = writeDerivation(state.store, drv, drvName, state.repair); DLOG(INFO) << "instantiated '" << drvName << "' -> '" << drvPath << "'"; /* Optimisation, but required in read-only mode! because in that case we don't actually write store derivations, so we can't read them later. */ drvHashes[drvPath] = hashDerivationModulo(*state.store, drv); state.mkAttrs(v, 1 + drv.outputs.size()); mkString(*state.allocAttr(v, state.sDrvPath), drvPath, {"=" + drvPath}); for (auto& i : drv.outputs) { mkString(*state.allocAttr(v, state.symbols.Create(i.first)), i.second.path, {"!" + i.first + "!" + drvPath}); } } /* Return a placeholder string for the specified output that will be substituted by the corresponding output path at build time. For example, 'placeholder "out"' returns the string /1rz4g4znpzjwh1xymhjpm42vipw92pr73vdgl6xs1hycac8kf2n9. At build time, any occurence of this string in an derivation attribute will be replaced with the concrete path in the Nix store of the output ‘out’. */ static void prim_placeholder(EvalState& state, const Pos& pos, Value** args, Value& v) { mkString(v, hashPlaceholder(state.forceStringNoCtx(*args[0], pos))); } /************************************************************* * Paths *************************************************************/ /* Convert the argument to a path. !!! obsolete? */ static void prim_toPath(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.coerceToPath(pos, *args[0], context); mkString(v, canonPath(path), context); } /* Allow a valid store path to be used in an expression. This is useful in some generated expressions such as in nix-push, which generates a call to a function with an already existing store path as argument. You don't want to use `toPath' here because it copies the path to the Nix store, which yields a copy like /nix/store/newhash-oldhash-oldname. In the past, `toPath' had special case behaviour for store paths, but that created weird corner cases. */ static void prim_storePath(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.checkSourcePath(state.coerceToPath(pos, *args[0], context)); /* Resolve symlinks in ‘path’, unless ‘path’ itself is a symlink directly in the store. The latter condition is necessary so e.g. nix-push does the right thing. */ if (!state.store->isStorePath(path)) { path = canonPath(path, true); } if (!state.store->isInStore(path)) { throw EvalError(format("path '%1%' is not in the Nix store, at %2%") % path % pos); } Path path2 = state.store->toStorePath(path); if (!settings.readOnlyMode) { state.store->ensurePath(path2); } context.insert(path2); mkString(v, path, context); } static void prim_pathExists(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.coerceToPath(pos, *args[0], context); try { state.realiseContext(context); } catch (InvalidPathError& e) { throw EvalError(format("cannot check the existence of '%1%', since path " "'%2%' is not valid, at %3%") % path % e.path % pos); } try { mkBool(v, pathExists(state.checkSourcePath(path))); } catch (SysError& e) { /* Don't give away info from errors while canonicalising ‘path’ in restricted mode. */ mkBool(v, false); } catch (RestrictedPathError& e) { mkBool(v, false); } } /* Return the base name of the given string, i.e., everything following the last slash. */ static void prim_baseNameOf(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; mkString( v, baseNameOf(state.coerceToString(pos, *args[0], context, false, false)), context); } /* Return the directory of the given path, i.e., everything before the last slash. Return either a path or a string depending on the type of the argument. */ static void prim_dirOf(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path dir = dirOf(state.coerceToString(pos, *args[0], context, false, false)); if (args[0]->type == tPath) { mkPath(v, dir.c_str()); } else { mkString(v, dir, context); } } /* Return the contents of a file as a string. */ static void prim_readFile(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.coerceToPath(pos, *args[0], context); try { state.realiseContext(context); } catch (InvalidPathError& e) { throw EvalError( format("cannot read '%1%', since path '%2%' is not valid, at %3%") % path % e.path % pos); } std::string s = readFile(state.checkSourcePath(state.toRealPath(path, context))); if (s.find(static_cast<char>(0)) != std::string::npos) { throw Error(format("the contents of the file '%1%' cannot be represented " "as a Nix string") % path); } mkString(v, s.c_str()); } /* Find a file in the Nix search path. Used to implement <x> paths, which are desugared to 'findFile __nixPath "x"'. */ static void prim_findFile(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); SearchPath searchPath; for (unsigned int n = 0; n < args[0]->listSize(); ++n) { Value& v2(*(*args[0]->list)[n]); state.forceAttrs(v2, pos); std::string prefix; Bindings::iterator i = v2.attrs->find(state.symbols.Create("prefix")); if (i != v2.attrs->end()) { prefix = state.forceStringNoCtx(*i->second.value, pos); } i = v2.attrs->find(state.symbols.Create("path")); if (i == v2.attrs->end()) { throw EvalError(format("attribute 'path' missing, at %1%") % pos); } PathSet context; std::string path = state.coerceToString(pos, *i->second.value, context, false, false); try { state.realiseContext(context); } catch (InvalidPathError& e) { throw EvalError( format("cannot find '%1%', since path '%2%' is not valid, at %3%") % path % e.path % pos); } searchPath.emplace_back(prefix, path); } std::string path = state.forceStringNoCtx(*args[1], pos); mkPath(v, state.checkSourcePath(state.findFile(searchPath, path, pos)).c_str()); } /* Return the cryptographic hash of a file in base-16. */ static void prim_hashFile(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string type = state.forceStringNoCtx(*args[0], pos); HashType ht = parseHashType(type); if (ht == htUnknown) { throw Error(format("unknown hash type '%1%', at %2%") % type % pos); } PathSet context; // discarded Path p = state.coerceToPath(pos, *args[1], context); mkString(v, hashFile(ht, state.checkSourcePath(p)).to_string(Base16, false), context); } /* Read a directory (without . or ..) */ static void prim_readDir(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet ctx; Path path = state.coerceToPath(pos, *args[0], ctx); try { state.realiseContext(ctx); } catch (InvalidPathError& e) { throw EvalError( format("cannot read '%1%', since path '%2%' is not valid, at %3%") % path % e.path % pos); } DirEntries entries = readDirectory(state.checkSourcePath(path)); state.mkAttrs(v, entries.size()); for (auto& ent : entries) { Value* ent_val = state.allocAttr(v, state.symbols.Create(ent.name)); if (ent.type == DT_UNKNOWN) { ent.type = getFileType(path + "/" + ent.name); } mkStringNoCopy(*ent_val, ent.type == DT_REG ? "regular" : ent.type == DT_DIR ? "directory" : ent.type == DT_LNK ? "symlink" : "unknown"); } } /************************************************************* * Creating files *************************************************************/ /* Convert the argument (which can be any Nix expression) to an XML representation returned in a string. Not all Nix expressions can be sensibly or completely represented (e.g., functions). */ static void prim_toXML(EvalState& state, const Pos& pos, Value** args, Value& v) { std::ostringstream out; PathSet context; printValueAsXML(state, true, false, *args[0], out, context); mkString(v, out.str(), context); } /* Convert the argument (which can be any Nix expression) to a JSON string. Not all Nix expressions can be sensibly or completely represented (e.g., functions). */ static void prim_toJSON(EvalState& state, const Pos& pos, Value** args, Value& v) { std::ostringstream out; PathSet context; printValueAsJSON(state, true, *args[0], out, context); mkString(v, out.str(), context); } /* Parse a JSON string to a value. */ static void prim_fromJSON(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string s = state.forceStringNoCtx(*args[0], pos); parseJSON(state, s, v); } /* Store a string in the Nix store as a source file that can be used as an input by derivations. */ static void prim_toFile(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; std::string name = state.forceStringNoCtx(*args[0], pos); std::string contents = state.forceString(*args[1], context, pos); PathSet refs; for (auto path : context) { if (path.at(0) != '/') { throw EvalError(format("in 'toFile': the file '%1%' cannot refer to " "derivation outputs, at %2%") % name % pos); } refs.insert(path); } Path storePath = settings.readOnlyMode ? state.store->computeStorePathForText(name, contents, refs) : state.store->addTextToStore(name, contents, refs, state.repair); /* Note: we don't need to add `context' to the context of the result, since `storePath' itself has references to the paths used in args[1]. */ mkString(v, storePath, {storePath}); } static void addPath(EvalState& state, const Pos& pos, const std::string& name, const Path& path_, Value* filterFun, bool recursive, const Hash& expectedHash, Value& v) { const auto path = evalSettings.pureEval && expectedHash ? path_ : state.checkSourcePath(path_); PathFilter filter = filterFun != nullptr ? ([&](const Path& path) { auto st = lstat(path); /* Call the filter function. The first argument is the path, the second is a string indicating the type of the file. */ Value arg1; mkString(arg1, path); Value fun2; state.callFunction(*filterFun, arg1, fun2, noPos); Value arg2; mkString(arg2, S_ISREG(st.st_mode) ? "regular" : S_ISDIR(st.st_mode) ? "directory" : S_ISLNK(st.st_mode) ? "symlink" : "unknown" /* not supported, will fail! */); Value res; state.callFunction(fun2, arg2, res, noPos); return state.forceBool(res, pos); }) : defaultPathFilter; Path expectedStorePath; if (expectedHash) { expectedStorePath = state.store->makeFixedOutputPath(recursive, expectedHash, name); } Path dstPath; if (!expectedHash || !state.store->isValidPath(expectedStorePath)) { dstPath = settings.readOnlyMode ? state.store ->computeStorePathForPath(name, path, recursive, htSHA256, filter) .first : state.store->addToStore(name, path, recursive, htSHA256, filter, state.repair); if (expectedHash && expectedStorePath != dstPath) { throw Error(format("store path mismatch in (possibly filtered) path " "added from '%1%'") % path); } } else { dstPath = expectedStorePath; } mkString(v, dstPath, {dstPath}); } static void prim_filterSource(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; Path path = state.coerceToPath(pos, *args[1], context); if (!context.empty()) { throw EvalError(format("string '%1%' cannot refer to other paths, at %2%") % path % pos); } state.forceValue(*args[0]); if (args[0]->type != tLambda) { throw TypeError(format("first argument in call to 'filterSource' is not a " "function but %1%, at %2%") % showType(*args[0]) % pos); } addPath(state, pos, baseNameOf(path), path, args[0], true, Hash(), v); } static void prim_path(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); Path path; std::string name; Value* filterFun = nullptr; auto recursive = true; Hash expectedHash; for (auto& attr : *args[0]->attrs) { const std::string& n(attr.second.name); if (n == "path") { PathSet context; path = state.coerceToPath(*attr.second.pos, *attr.second.value, context); if (!context.empty()) { throw EvalError( format("string '%1%' cannot refer to other paths, at %2%") % path % *attr.second.pos); } } else if (attr.second.name == state.sName) { name = state.forceStringNoCtx(*attr.second.value, *attr.second.pos); } else if (n == "filter") { state.forceValue(*attr.second.value); filterFun = attr.second.value; } else if (n == "recursive") { recursive = state.forceBool(*attr.second.value, *attr.second.pos); } else if (n == "sha256") { auto hash_ = Hash::deserialize( state.forceStringNoCtx(*attr.second.value, *attr.second.pos), htSHA256); expectedHash = Hash::unwrap_throw(hash_); } else { throw EvalError( format("unsupported argument '%1%' to 'addPath', at %2%") % attr.second.name % *attr.second.pos); } } if (path.empty()) { throw EvalError(format("'path' required, at %1%") % pos); } if (name.empty()) { name = baseNameOf(path); } addPath(state, pos, name, path, filterFun, recursive, expectedHash, v); } /************************************************************* * Sets *************************************************************/ /* Return the names of the attributes in a set as a sorted list of strings. */ static void prim_attrNames(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); state.mkList(v, args[0]->attrs->size()); unsigned int n = 0; for (auto& [key, value] : *args[0]->attrs) { mkString(*((*v.list)[n++] = state.allocValue()), key); } } /* Return the values of the attributes in a set as a list, in the same order as attrNames. */ static void prim_attrValues(EvalState& state, const Pos& pos, Value** input, Value& output) { state.forceAttrs(*input[0], pos); state.mkList(output, input[0]->attrs->size()); unsigned int n = 0; for (auto& [key, value] : *input[0]->attrs) { (*output.list)[n++] = value.value; } } /* Dynamic version of the `.' operator. */ void prim_getAttr(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string attr = state.forceStringNoCtx(*args[0], pos); state.forceAttrs(*args[1], pos); // !!! Should we create a symbol here or just do a lookup? Bindings::iterator i = args[1]->attrs->find(state.symbols.Create(attr)); if (i == args[1]->attrs->end()) { throw EvalError(format("attribute '%1%' missing, at %2%") % attr % pos); } // !!! add to stack trace? if (state.countCalls && (i->second.pos != nullptr)) { state.attrSelects[*i->second.pos]++; } state.forceValue(*i->second.value); v = *i->second.value; } /* Return position information of the specified attribute. */ void prim_unsafeGetAttrPos(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string attr = state.forceStringNoCtx(*args[0], pos); state.forceAttrs(*args[1], pos); Bindings::iterator i = args[1]->attrs->find(state.symbols.Create(attr)); if (i == args[1]->attrs->end()) { mkNull(v); } else { state.mkPos(v, i->second.pos); } } /* Dynamic version of the `?' operator. */ static void prim_hasAttr(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string attr = state.forceStringNoCtx(*args[0], pos); state.forceAttrs(*args[1], pos); mkBool(v, args[1]->attrs->find(state.symbols.Create(attr)) != args[1]->attrs->end()); } /* Determine whether the argument is a set. */ static void prim_isAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->type == tAttrs); } static void prim_removeAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); state.forceList(*args[1], pos); /* Get the attribute names to be removed. */ std::set<Symbol> names; for (unsigned int i = 0; i < args[1]->listSize(); ++i) { state.forceStringNoCtx(*(*args[1]->list)[i], pos); names.insert(state.symbols.Create((*args[1]->list)[i]->string.s)); } /* Copy all attributes not in that set. Note that we don't need to sort v.attrs because it's a subset of an already sorted vector. */ state.mkAttrs(v, args[0]->attrs->size()); for (auto& i : *args[0]->attrs) { if (names.find(i.second.name) == names.end()) { v.attrs->push_back(i.second); } } } /* Builds a set from a list specifying (name, value) pairs. To be precise, a list [{name = "name1"; value = value1;} ... {name = "nameN"; value = valueN;}] is transformed to {name1 = value1; ... nameN = valueN;}. In case of duplicate occurences of the same name, the first takes precedence. */ static void prim_listToAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); state.mkAttrs(v, args[0]->listSize()); std::set<Symbol> seen; for (unsigned int i = 0; i < args[0]->listSize(); ++i) { Value& v2(*(*args[0]->list)[i]); state.forceAttrs(v2, pos); Bindings::iterator j = v2.attrs->find(state.sName); if (j == v2.attrs->end()) { throw TypeError( format( "'name' attribute missing in a call to 'listToAttrs', at %1%") % pos); } std::string name = state.forceStringNoCtx(*j->second.value, pos); Symbol sym = state.symbols.Create(name); if (seen.find(sym) == seen.end()) { Bindings::iterator j2 = // TODO(tazjin): this line used to construct the symbol again: // state.symbols.Create(state.sValue)); // Why? v2.attrs->find(state.sValue); if (j2 == v2.attrs->end()) { throw TypeError(format("'value' attribute missing in a call to " "'listToAttrs', at %1%") % pos); } v.attrs->push_back(Attr(sym, j2->second.value, j2->second.pos)); seen.insert(sym); } } } /* Return the right-biased intersection of two sets as1 and as2, i.e. a set that contains every attribute from as2 that is also a member of as1. */ static void prim_intersectAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[0], pos); state.forceAttrs(*args[1], pos); state.mkAttrs(v, std::min(args[0]->attrs->size(), args[1]->attrs->size())); for (auto& i : *args[0]->attrs) { Bindings::iterator j = args[1]->attrs->find(i.second.name); if (j != args[1]->attrs->end()) { v.attrs->push_back(j->second); } } } /* Collect each attribute named `attr' from a list of attribute sets. Sets that don't contain the named attribute are ignored. Example: catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}] => [1 2] */ static void prim_catAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { Symbol attrName = state.symbols.Create(state.forceStringNoCtx(*args[0], pos)); state.forceList(*args[1], pos); Value* res[args[1]->listSize()]; unsigned int found = 0; for (unsigned int n = 0; n < args[1]->listSize(); ++n) { Value& v2(*(*args[1]->list)[n]); state.forceAttrs(v2, pos); Bindings::iterator i = v2.attrs->find(attrName); if (i != v2.attrs->end()) { res[found++] = i->second.value; } } state.mkList(v, found); for (unsigned int n = 0; n < found; ++n) { (*v.list)[n] = res[n]; } } /* Return a set containing the names of the formal arguments expected by the function `f'. The value of each attribute is a Boolean denoting whether the corresponding argument has a default value. For instance, functionArgs ({ x, y ? 123}: ...) => { x = false; y = true; } "Formal argument" here refers to the attributes pattern-matched by the function. Plain lambdas are not included, e.g. functionArgs (x: ...) => { } */ static void prim_functionArgs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); if (args[0]->type != tLambda) { throw TypeError(format("'functionArgs' requires a function, at %1%") % pos); } if (!args[0]->lambda.fun->matchAttrs) { state.mkAttrs(v, 0); return; } state.mkAttrs(v, args[0]->lambda.fun->formals->formals.size()); for (auto& i : args[0]->lambda.fun->formals->formals) { // !!! should optimise booleans (allocate only once) // TODO(tazjin): figure out what the above comment means mkBool(*state.allocAttr(v, i.name), i.def != nullptr); } } /* Apply a function to every element of an attribute set. */ static void prim_mapAttrs(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceAttrs(*args[1], pos); state.mkAttrs(v, args[1]->attrs->size()); for (auto& i : *args[1]->attrs) { Value* vName = state.allocValue(); Value* vFun2 = state.allocValue(); mkString(*vName, i.second.name); mkApp(*vFun2, *args[0], *vName); mkApp(*state.allocAttr(v, i.second.name), *vFun2, *i.second.value); } } /************************************************************* * Lists *************************************************************/ /* Determine whether the argument is a list. */ static void prim_isList(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); mkBool(v, args[0]->isList()); } static void elemAt(EvalState& state, const Pos& pos, Value& list, int n, Value& v) { state.forceList(list, pos); if (n < 0 || static_cast<unsigned int>(n) >= list.listSize()) { throw Error(format("list index %1% is out of bounds, at %2%") % n % pos); } state.forceValue(*(*list.list)[n]); v = *(*list.list)[n]; } /* Return the n-1'th element of a list. */ static void prim_elemAt(EvalState& state, const Pos& pos, Value** args, Value& v) { elemAt(state, pos, *args[0], state.forceInt(*args[1], pos), v); } /* Return the first element of a list. */ static void prim_head(EvalState& state, const Pos& pos, Value** args, Value& v) { elemAt(state, pos, *args[0], 0, v); } /* Return a list consisting of everything but the first element of a list. Warning: this function takes O(n) time, so you probably don't want to use it! */ static void prim_tail(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); if (args[0]->listSize() == 0) { throw Error(format("'tail' called on an empty list, at %1%") % pos); } state.mkList(v, args[0]->listSize() - 1); for (unsigned int n = 0; n < v.listSize(); ++n) { (*v.list)[n] = (*args[0]->list)[n + 1]; } } /* Apply a function to every element of a list. */ static void prim_map(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[1], pos); state.mkList(v, args[1]->listSize()); for (unsigned int n = 0; n < v.listSize(); ++n) { mkApp(*((*v.list)[n] = state.allocValue()), *args[0], *(*args[1]->list)[n]); } } /* Filter a list using a predicate; that is, return a list containing every element from the list for which the predicate function returns true. */ static void prim_filter(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[1], pos); // FIXME: putting this on the stack is risky. Value* vs[args[1]->listSize()]; unsigned int k = 0; bool same = true; for (unsigned int n = 0; n < args[1]->listSize(); ++n) { Value res; state.callFunction(*args[0], *(*args[1]->list)[n], res, noPos); if (state.forceBool(res, pos)) { vs[k++] = (*args[1]->list)[n]; } else { same = false; } } if (same) { v = *args[1]; } else { state.mkList(v, k); for (unsigned int n = 0; n < k; ++n) { (*v.list)[n] = vs[n]; } } } /* Return true if a list contains a given element. */ static void prim_elem(EvalState& state, const Pos& pos, Value** args, Value& v) { bool res = false; state.forceList(*args[1], pos); for (unsigned int n = 0; n < args[1]->listSize(); ++n) { if (state.eqValues(*args[0], *(*args[1]->list)[n])) { res = true; break; } } mkBool(v, res); } /* Concatenate a list of lists. */ static void prim_concatLists(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); state.concatLists(v, *args[0]->list, pos); } /* Return the length of a list. This is an O(1) time operation. */ static void prim_length(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); mkInt(v, args[0]->listSize()); } /* Reduce a list by applying a binary operator, from left to right. The operator is applied strictly. */ static void prim_foldlStrict(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[2], pos); if (args[2]->listSize() != 0u) { Value* vCur = args[1]; for (unsigned int n = 0; n < args[2]->listSize(); ++n) { Value vTmp; state.callFunction(*args[0], *vCur, vTmp, pos); vCur = n == args[2]->listSize() - 1 ? &v : state.allocValue(); state.callFunction(vTmp, *(*args[2]->list)[n], *vCur, pos); } state.forceValue(v); } else { state.forceValue(*args[1]); v = *args[1]; } } static void anyOrAll(bool any, EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[1], pos); Value vTmp; for (unsigned int n = 0; n < args[1]->listSize(); ++n) { state.callFunction(*args[0], *(*args[1]->list)[n], vTmp, pos); bool res = state.forceBool(vTmp, pos); if (res == any) { mkBool(v, any); return; } } mkBool(v, !any); } static void prim_any(EvalState& state, const Pos& pos, Value** args, Value& v) { anyOrAll(true, state, pos, args, v); } static void prim_all(EvalState& state, const Pos& pos, Value** args, Value& v) { anyOrAll(false, state, pos, args, v); } static void prim_genList(EvalState& state, const Pos& pos, Value** args, Value& v) { auto len = state.forceInt(*args[1], pos); if (len < 0) { throw EvalError(format("cannot create list of size %1%, at %2%") % len % pos); } state.mkList(v, len); for (unsigned int n = 0; n < static_cast<unsigned int>(len); ++n) { Value* arg = state.allocValue(); mkInt(*arg, n); mkApp(*((*v.list)[n] = state.allocValue()), *args[0], *arg); } } static void prim_lessThan(EvalState& state, const Pos& pos, Value** args, Value& v); static void prim_sort(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[1], pos); // Copy of the input list which can be sorted in place. auto outlist = new NixList(*args[1]->list); std::for_each(outlist->begin(), outlist->end(), [&](Value* val) { state.forceValue(*val); }); auto comparator = [&](Value* a, Value* b) { /* Optimization: if the comparator is lessThan, bypass callFunction. */ if (args[0]->type == tPrimOp && args[0]->primOp->fun == prim_lessThan) { return CompareValues()(a, b); } Value vTmp1; Value vTmp2; state.callFunction(*args[0], *a, vTmp1, pos); state.callFunction(vTmp1, *b, vTmp2, pos); return state.forceBool(vTmp2, pos); }; /* FIXME: std::sort can segfault if the comparator is not a strict weak ordering. What to do? std::stable_sort() seems more resilient, but no guarantees... */ std::stable_sort(v.list->begin(), v.list->end(), comparator); } static void prim_partition(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[1], pos); NixList* right = new NixList(); NixList* wrong = new NixList(); for (Value* elem : *args[1]->list) { state.forceValue(*elem, pos); Value res; state.callFunction(*args[0], *elem, res, pos); if (state.forceBool(res, pos)) { right->push_back(elem); } else { wrong->push_back(elem); } } state.mkAttrs(v, 2); Value* vRight = state.allocAttr(v, state.sRight); state.mkList(*vRight, right); Value* vWrong = state.allocAttr(v, state.sWrong); state.mkList(*vWrong, wrong); } /* concatMap = f: list: concatLists (map f list); */ /* C++-version is to avoid allocating `mkApp', call `f' eagerly */ static void prim_concatMap(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceFunction(*args[0], pos); state.forceList(*args[1], pos); NixList* outlist = new NixList; for (Value* elem : *args[1]->list) { auto out = state.allocValue(); state.callFunction(*args[0], *elem, *out, pos); state.forceList(*out, pos); outlist->insert(outlist->end(), out->list->begin(), out->list->end()); } state.mkList(v, outlist); } /************************************************************* * Integer arithmetic *************************************************************/ static void prim_add(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0], pos); state.forceValue(*args[1], pos); if (args[0]->type == tFloat || args[1]->type == tFloat) { mkFloat(v, state.forceFloat(*args[0], pos) + state.forceFloat(*args[1], pos)); } else { mkInt(v, state.forceInt(*args[0], pos) + state.forceInt(*args[1], pos)); } } static void prim_sub(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0], pos); state.forceValue(*args[1], pos); if (args[0]->type == tFloat || args[1]->type == tFloat) { mkFloat(v, state.forceFloat(*args[0], pos) - state.forceFloat(*args[1], pos)); } else { mkInt(v, state.forceInt(*args[0], pos) - state.forceInt(*args[1], pos)); } } static void prim_mul(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0], pos); state.forceValue(*args[1], pos); if (args[0]->type == tFloat || args[1]->type == tFloat) { mkFloat(v, state.forceFloat(*args[0], pos) * state.forceFloat(*args[1], pos)); } else { mkInt(v, state.forceInt(*args[0], pos) * state.forceInt(*args[1], pos)); } } static void prim_div(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0], pos); state.forceValue(*args[1], pos); NixFloat f2 = state.forceFloat(*args[1], pos); if (f2 == 0) { throw EvalError(format("division by zero, at %1%") % pos); } if (args[0]->type == tFloat || args[1]->type == tFloat) { mkFloat(v, state.forceFloat(*args[0], pos) / state.forceFloat(*args[1], pos)); } else { NixInt i1 = state.forceInt(*args[0], pos); NixInt i2 = state.forceInt(*args[1], pos); /* Avoid division overflow as it might raise SIGFPE. */ if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1) { throw EvalError(format("overflow in integer division, at %1%") % pos); } mkInt(v, i1 / i2); } } static void prim_bitAnd(EvalState& state, const Pos& pos, Value** args, Value& v) { mkInt(v, state.forceInt(*args[0], pos) & state.forceInt(*args[1], pos)); } static void prim_bitOr(EvalState& state, const Pos& pos, Value** args, Value& v) { mkInt(v, state.forceInt(*args[0], pos) | state.forceInt(*args[1], pos)); } static void prim_bitXor(EvalState& state, const Pos& pos, Value** args, Value& v) { mkInt(v, state.forceInt(*args[0], pos) ^ state.forceInt(*args[1], pos)); } static void prim_lessThan(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceValue(*args[0]); state.forceValue(*args[1]); CompareValues comp; mkBool(v, comp(args[0], args[1])); } /************************************************************* * String manipulation *************************************************************/ /* Convert the argument to a string. Paths are *not* copied to the store, so `toString /foo/bar' yields `"/foo/bar"', not `"/nix/store/whatever..."'. */ static void prim_toString(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; std::string s = state.coerceToString(pos, *args[0], context, true, false); mkString(v, s, context); } /* `substring start len str' returns the substring of `str' starting at character position `min(start, stringLength str)' inclusive and ending at `min(start + len, stringLength str)'. `start' must be non-negative. */ static void prim_substring(EvalState& state, const Pos& pos, Value** args, Value& v) { int start = state.forceInt(*args[0], pos); int len = state.forceInt(*args[1], pos); PathSet context; std::string s = state.coerceToString(pos, *args[2], context); if (start < 0) { throw EvalError(format("negative start position in 'substring', at %1%") % pos); } mkString(v, static_cast<unsigned int>(start) >= s.size() ? "" : std::string(s, start, len), context); } static void prim_stringLength(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; std::string s = state.coerceToString(pos, *args[0], context); mkInt(v, s.size()); } /* Return the cryptographic hash of a string in base-16. */ static void prim_hashString(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string type = state.forceStringNoCtx(*args[0], pos); HashType ht = parseHashType(type); if (ht == htUnknown) { throw Error(format("unknown hash type '%1%', at %2%") % type % pos); } PathSet context; // discarded std::string s = state.forceString(*args[1], context, pos); mkString(v, hashString(ht, s).to_string(Base16, false), context); } /* Match a regular expression against a string and return either ‘null’ or a list containing substring matches. */ static void prim_match(EvalState& state, const Pos& pos, Value** args, Value& v) { auto re = state.forceStringNoCtx(*args[0], pos); try { std::regex regex(re, std::regex::extended); PathSet context; const std::string str = state.forceString(*args[1], context, pos); std::smatch match; if (!std::regex_match(str, match, regex)) { mkNull(v); return; } // the first match is the whole string const size_t len = match.size() - 1; state.mkList(v, len); for (size_t i = 0; i < len; ++i) { if (!match[i + 1].matched) { mkNull(*((*v.list)[i] = state.allocValue())); } else { mkString(*((*v.list)[i] = state.allocValue()), match[i + 1].str().c_str()); } } } catch (std::regex_error& e) { if (e.code() == std::regex_constants::error_space) { // limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++ throw EvalError("memory limit exceeded by regular expression '%s', at %s", re, pos); } throw EvalError("invalid regular expression '%s', at %s", re, pos); } } /* Split a std::string with a regular expression, and return a list of the non-matching parts interleaved by the lists of the matching groups. */ static void prim_split(EvalState& state, const Pos& pos, Value** args, Value& v) { auto re = state.forceStringNoCtx(*args[0], pos); try { std::regex regex(re, std::regex::extended); PathSet context; const std::string str = state.forceString(*args[1], context, pos); auto begin = std::sregex_iterator(str.begin(), str.end(), regex); auto end = std::sregex_iterator(); // Any matches results are surrounded by non-matching results. const size_t len = std::distance(begin, end); state.mkList(v, 2 * len + 1); size_t idx = 0; Value* elem; if (len == 0) { (*v.list)[idx++] = args[1]; return; } for (std::sregex_iterator i = begin; i != end; ++i) { assert(idx <= 2 * len + 1 - 3); std::smatch match = *i; // Add a string for non-matched characters. elem = (*v.list)[idx++] = state.allocValue(); mkString(*elem, match.prefix().str().c_str()); // Add a list for matched substrings. const size_t slen = match.size() - 1; elem = (*v.list)[idx++] = state.allocValue(); // Start at 1, beacause the first match is the whole string. state.mkList(*elem, slen); for (size_t si = 0; si < slen; ++si) { if (!match[si + 1].matched) { mkNull(*((*elem->list)[si] = state.allocValue())); } else { mkString(*((*elem->list)[si] = state.allocValue()), match[si + 1].str().c_str()); } } // Add a string for non-matched suffix characters. if (idx == 2 * len) { elem = (*v.list)[idx++] = state.allocValue(); mkString(*elem, match.suffix().str().c_str()); } } assert(idx == 2 * len + 1); } catch (std::regex_error& e) { if (e.code() == std::regex_constants::error_space) { // limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++ throw EvalError("memory limit exceeded by regular expression '%s', at %s", re, pos); } throw EvalError("invalid regular expression '%s', at %s", re, pos); } } static void prim_concatStringSep(EvalState& state, const Pos& pos, Value** args, Value& v) { PathSet context; auto sep = state.forceString(*args[0], context, pos); state.forceList(*args[1], pos); std::string res; res.reserve((args[1]->listSize() + 32) * sep.size()); bool first = true; for (unsigned int n = 0; n < args[1]->listSize(); ++n) { if (first) { first = false; } else { res += sep; } res += state.coerceToString(pos, *(*args[1]->list)[n], context); } mkString(v, res, context); } static void prim_replaceStrings(EvalState& state, const Pos& pos, Value** args, Value& v) { state.forceList(*args[0], pos); state.forceList(*args[1], pos); if (args[0]->listSize() != args[1]->listSize()) { throw EvalError(format("'from' and 'to' arguments to 'replaceStrings' have " "different lengths, at %1%") % pos); } std::vector<std::string> from; from.reserve(args[0]->listSize()); for (unsigned int n = 0; n < args[0]->listSize(); ++n) { from.push_back(state.forceString(*(*args[0]->list)[n], pos)); } std::vector<std::pair<std::string, PathSet>> to; to.reserve(args[1]->listSize()); for (unsigned int n = 0; n < args[1]->listSize(); ++n) { PathSet ctx; auto s = state.forceString(*(*args[1]->list)[n], ctx, pos); to.emplace_back(std::move(s), std::move(ctx)); } PathSet context; auto s = state.forceString(*args[2], context, pos); std::string res; // Loops one past last character to handle the case where 'from' contains an // empty string. for (size_t p = 0; p <= s.size();) { bool found = false; auto i = from.begin(); auto j = to.begin(); for (; i != from.end(); ++i, ++j) { if (s.compare(p, i->size(), *i) == 0) { found = true; res += j->first; if (i->empty()) { if (p < s.size()) { res += s[p]; } p++; } else { p += i->size(); } for (auto& path : j->second) { context.insert(path); } j->second.clear(); break; } } if (!found) { if (p < s.size()) { res += s[p]; } p++; } } mkString(v, res, context); } /************************************************************* * Versions *************************************************************/ static void prim_parseDrvName(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string name = state.forceStringNoCtx(*args[0], pos); DrvName parsed(name); state.mkAttrs(v, 2); mkString(*state.allocAttr(v, state.sName), parsed.name); mkString(*state.allocAttr(v, state.symbols.Create("version")), parsed.version); } static void prim_compareVersions(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string version1 = state.forceStringNoCtx(*args[0], pos); std::string version2 = state.forceStringNoCtx(*args[1], pos); mkInt(v, compareVersions(version1, version2)); } static void prim_splitVersion(EvalState& state, const Pos& pos, Value** args, Value& v) { std::string version = state.forceStringNoCtx(*args[0], pos); auto iter = version.cbegin(); Strings components; while (iter != version.cend()) { auto component = nextComponent(iter, version.cend()); if (component.empty()) { break; } components.emplace_back(std::move(component)); } state.mkList(v, components.size()); unsigned int n = 0; for (auto& component : components) { auto listElem = (*v.list)[n++] = state.allocValue(); mkString(*listElem, component); } } /************************************************************* * Networking *************************************************************/ void fetch(EvalState& state, const Pos& pos, Value** args, Value& v, const std::string& who, bool unpack, const std::string& defaultName) { CachedDownloadRequest request(""); request.unpack = unpack; request.name = defaultName; state.forceValue(*args[0]); if (args[0]->type == tAttrs) { state.forceAttrs(*args[0], pos); for (auto& attr : *args[0]->attrs) { std::string n(attr.second.name); if (n == "url") { request.uri = state.forceStringNoCtx(*attr.second.value, *attr.second.pos); } else if (n == "sha256") { auto hash_ = Hash::deserialize( state.forceStringNoCtx(*attr.second.value, *attr.second.pos), htSHA256); request.expectedHash = Hash::unwrap_throw(hash_); } else if (n == "name") { request.name = state.forceStringNoCtx(*attr.second.value, *attr.second.pos); } else { throw EvalError(format("unsupported argument '%1%' to '%2%', at %3%") % attr.second.name % who % attr.second.pos); } } if (request.uri.empty()) { throw EvalError(format("'url' argument required, at %1%") % pos); } } else { request.uri = state.forceStringNoCtx(*args[0], pos); } state.checkURI(request.uri); if (evalSettings.pureEval && !request.expectedHash) { throw Error("in pure evaluation mode, '%s' requires a 'sha256' argument", who); } auto res = getDownloader()->downloadCached(state.store, request); if (state.allowedPaths) { state.allowedPaths->insert(res.path); } mkString(v, res.storePath, PathSet({res.storePath})); } static void prim_fetchurl(EvalState& state, const Pos& pos, Value** args, Value& v) { fetch(state, pos, args, v, "fetchurl", false, ""); } static void prim_fetchTarball(EvalState& state, const Pos& pos, Value** args, Value& v) { fetch(state, pos, args, v, "fetchTarball", true, "source"); } /************************************************************* * Primop registration *************************************************************/ RegisterPrimOp::PrimOps* RegisterPrimOp::primOps; RegisterPrimOp::RegisterPrimOp(const std::string& name, size_t arity, PrimOpFun fun) { if (primOps == nullptr) { primOps = new PrimOps; } primOps->emplace_back(name, arity, fun); } void EvalState::createBaseEnv() { baseEnv.up = nullptr; /* Add global constants such as `true' to the base environment. */ Value v; /* `builtins' must be first! */ mkAttrs(v, 128); addConstant("builtins", v); mkBool(v, true); addConstant("true", v); mkBool(v, false); addConstant("false", v); mkNull(v); addConstant("null", v); auto vThrow = addPrimOp("throw", 1, prim_throw); auto addPurityError = [&](const std::string& name) { Value* v2 = allocValue(); mkString(*v2, fmt("'%s' is not allowed in pure evaluation mode", name)); mkApp(v, *vThrow, *v2); addConstant(name, v); }; if (!evalSettings.pureEval) { mkInt(v, time(nullptr)); addConstant("__currentTime", v); } if (!evalSettings.pureEval) { mkString(v, settings.thisSystem); addConstant("__currentSystem", v); } mkString(v, nixVersion); addConstant("__nixVersion", v); mkString(v, store->storeDir); addConstant("__storeDir", v); /* Language version. This should be increased every time a new language feature gets added. It's not necessary to increase it when primops get added, because you can just use `builtins ? primOp' to check. */ mkInt(v, 5); addConstant("__langVersion", v); // Miscellaneous auto vScopedImport = addPrimOp("scopedImport", 2, prim_scopedImport); Value* v2 = allocValue(); mkAttrs(*v2, 0); mkApp(v, *vScopedImport, *v2); forceValue(v); addConstant("import", v); addPrimOp("__typeOf", 1, prim_typeOf); addPrimOp("isNull", 1, prim_isNull); addPrimOp("__isFunction", 1, prim_isFunction); addPrimOp("__isString", 1, prim_isString); addPrimOp("__isInt", 1, prim_isInt); addPrimOp("__isFloat", 1, prim_isFloat); addPrimOp("__isBool", 1, prim_isBool); addPrimOp("__isPath", 1, prim_isPath); addPrimOp("__genericClosure", 1, prim_genericClosure); addPrimOp("abort", 1, prim_abort); addPrimOp("__addErrorContext", 2, prim_addErrorContext); addPrimOp("__tryEval", 1, prim_tryEval); addPrimOp("__getEnv", 1, prim_getEnv); // Strictness addPrimOp("__seq", 2, prim_seq); addPrimOp("__deepSeq", 2, prim_deepSeq); // Debugging addPrimOp("__trace", 2, prim_trace); addPrimOp("__valueSize", 1, prim_valueSize); // Paths addPrimOp("__toPath", 1, prim_toPath); if (evalSettings.pureEval) { addPurityError("__storePath"); } else { addPrimOp("__storePath", 1, prim_storePath); } addPrimOp("__pathExists", 1, prim_pathExists); addPrimOp("baseNameOf", 1, prim_baseNameOf); addPrimOp("dirOf", 1, prim_dirOf); addPrimOp("__readFile", 1, prim_readFile); addPrimOp("__readDir", 1, prim_readDir); addPrimOp("__findFile", 2, prim_findFile); addPrimOp("__hashFile", 2, prim_hashFile); // Creating files addPrimOp("__toXML", 1, prim_toXML); addPrimOp("__toJSON", 1, prim_toJSON); addPrimOp("__fromJSON", 1, prim_fromJSON); addPrimOp("__toFile", 2, prim_toFile); addPrimOp("__filterSource", 2, prim_filterSource); addPrimOp("__path", 1, prim_path); // Sets addPrimOp("__attrNames", 1, prim_attrNames); addPrimOp("__attrValues", 1, prim_attrValues); addPrimOp("__getAttr", 2, prim_getAttr); addPrimOp("__unsafeGetAttrPos", 2, prim_unsafeGetAttrPos); addPrimOp("__hasAttr", 2, prim_hasAttr); addPrimOp("__isAttrs", 1, prim_isAttrs); addPrimOp("removeAttrs", 2, prim_removeAttrs); addPrimOp("__listToAttrs", 1, prim_listToAttrs); addPrimOp("__intersectAttrs", 2, prim_intersectAttrs); addPrimOp("__catAttrs", 2, prim_catAttrs); addPrimOp("__functionArgs", 1, prim_functionArgs); addPrimOp("__mapAttrs", 2, prim_mapAttrs); // Lists addPrimOp("__isList", 1, prim_isList); addPrimOp("__elemAt", 2, prim_elemAt); addPrimOp("__head", 1, prim_head); addPrimOp("__tail", 1, prim_tail); addPrimOp("map", 2, prim_map); addPrimOp("__filter", 2, prim_filter); addPrimOp("__elem", 2, prim_elem); addPrimOp("__concatLists", 1, prim_concatLists); addPrimOp("__length", 1, prim_length); addPrimOp("__foldl'", 3, prim_foldlStrict); addPrimOp("__any", 2, prim_any); addPrimOp("__all", 2, prim_all); addPrimOp("__genList", 2, prim_genList); addPrimOp("__sort", 2, prim_sort); addPrimOp("__partition", 2, prim_partition); addPrimOp("__concatMap", 2, prim_concatMap); // Integer arithmetic addPrimOp("__add", 2, prim_add); addPrimOp("__sub", 2, prim_sub); addPrimOp("__mul", 2, prim_mul); addPrimOp("__div", 2, prim_div); addPrimOp("__bitAnd", 2, prim_bitAnd); addPrimOp("__bitOr", 2, prim_bitOr); addPrimOp("__bitXor", 2, prim_bitXor); addPrimOp("__lessThan", 2, prim_lessThan); // String manipulation addPrimOp("toString", 1, prim_toString); addPrimOp("__substring", 3, prim_substring); addPrimOp("__stringLength", 1, prim_stringLength); addPrimOp("__hashString", 2, prim_hashString); addPrimOp("__match", 2, prim_match); addPrimOp("__split", 2, prim_split); addPrimOp("__concatStringsSep", 2, prim_concatStringSep); addPrimOp("__replaceStrings", 3, prim_replaceStrings); // Versions addPrimOp("__parseDrvName", 1, prim_parseDrvName); addPrimOp("__compareVersions", 2, prim_compareVersions); addPrimOp("__splitVersion", 1, prim_splitVersion); // Derivations addPrimOp("derivationStrict", 1, prim_derivationStrict); addPrimOp("placeholder", 1, prim_placeholder); // Networking addPrimOp("__fetchurl", 1, prim_fetchurl); addPrimOp("fetchTarball", 1, prim_fetchTarball); /* Add a wrapper around the derivation primop that computes the `drvPath' and `outPath' attributes lazily. */ std::string path = canonPath(settings.nixDataDir + "/nix/corepkgs/derivation.nix", true); sDerivationNix = symbols.Create(path); evalFile(path, v); addConstant("derivation", v); /* Add a value containing the current Nix expression search path. */ mkList(v, searchPath.size()); int n = 0; for (auto& i : searchPath) { v2 = (*v.list)[n++] = allocValue(); mkAttrs(*v2, 2); mkString(*allocAttr(*v2, symbols.Create("path")), i.second); mkString(*allocAttr(*v2, symbols.Create("prefix")), i.first); } addConstant("__nixPath", v); if (RegisterPrimOp::primOps != nullptr) { for (auto& primOp : *RegisterPrimOp::primOps) { addPrimOp(std::get<0>(primOp), std::get<1>(primOp), std::get<2>(primOp)); } } } } // namespace nix