#include "libexpr/eval.hh" #include <algorithm> #include <chrono> #include <cstring> #include <fstream> #include <iostream> #include <memory> #include <new> #include <optional> #include <variant> #define GC_INCLUDE_NEW #include <absl/strings/match.h> #include <gc/gc.h> #include <gc/gc_cpp.h> #include <glog/logging.h> #include <sys/resource.h> #include <sys/time.h> #include <unistd.h> #include "libexpr/eval-inline.hh" #include "libexpr/function-trace.hh" #include "libexpr/value.hh" #include "libstore/derivations.hh" #include "libstore/download.hh" #include "libstore/globals.hh" #include "libstore/store-api.hh" #include "libutil/hash.hh" #include "libutil/json.hh" #include "libutil/util.hh" #include "libutil/visitor.hh" namespace nix { static char* dupString(const char* s) { char* t = nullptr; t = GC_STRDUP(s); if (t == nullptr) { throw std::bad_alloc(); } return t; } std::shared_ptr<Value*> allocRootValue(Value* v) { return std::allocate_shared<Value*>(traceable_allocator<Value*>(), v); } static void printValue(std::ostream& str, std::set<const Value*>& active, const Value& v) { checkInterrupt(); if (active.find(&v) != active.end()) { str << "<CYCLE>"; return; } active.insert(&v); switch (v.type) { case tInt: str << v.integer; break; case tBool: str << (v.boolean ? "true" : "false"); break; case tString: str << "\""; for (const char* i = v.string.s; *i != 0; i++) { if (*i == '\"' || *i == '\\') { str << "\\" << *i; } else if (*i == '\n') { str << "\\n"; } else if (*i == '\r') { str << "\\r"; } else if (*i == '\t') { str << "\\t"; } else { str << *i; } } str << "\""; break; case tPath: str << v.path; // !!! escaping? break; case tNull: str << "null"; break; case tAttrs: { str << "{ "; for (auto& i : v.attrs->SortedByKeys()) { str << i->name << " = "; printValue(str, active, *i->value); str << "; "; } str << "}"; break; } case tList: str << "[ "; for (unsigned int n = 0; n < v.listSize(); ++n) { printValue(str, active, *(*v.list)[n]); str << " "; } str << "]"; break; case tThunk: case tApp: str << "<CODE>"; break; case tLambda: str << "<LAMBDA>"; break; case tPrimOp: str << "<PRIMOP>"; break; case tPrimOpApp: str << "<PRIMOP-APP>"; break; case tExternal: str << *v.external; break; case tFloat: str << v.fpoint; break; default: throw Error("invalid value"); } active.erase(&v); } std::ostream& operator<<(std::ostream& str, const Value& v) { std::set<const Value*> active; printValue(str, active, v); return str; } const Value* getPrimOp(const Value& v) { const Value* primOp = &v; while (primOp->type == tPrimOpApp) { primOp = primOp->primOpApp.left; } assert(primOp->type == tPrimOp); return primOp; } std::string showType(const Value& v) { switch (v.type) { case tInt: return "an integer"; case tBool: return "a boolean"; case tString: return v.string.context != nullptr ? "a string with context" : "a string"; case tPath: return "a path"; case tNull: return "null"; case tAttrs: return "a set"; case tList: return "a list"; case tThunk: return "a thunk"; case tApp: return "a function application"; case tLambda: return "a function"; case tBlackhole: return "a black hole"; case tPrimOp: return fmt("the built-in function '%s'", std::string(v.primOp->name)); case tPrimOpApp: return fmt("the partially applied built-in function '%s'", std::string(getPrimOp(v)->primOp->name)); case tExternal: return v.external->showType(); case tFloat: return "a float"; } abort(); } #if HAVE_BOEHMGC /* Called when the Boehm GC runs out of memory. */ static void* oomHandler(size_t requested) { /* Convert this to a proper C++ exception. */ throw std::bad_alloc(); } #endif static Symbol getName(const AttrName& name, EvalState& state, Env& env) { return std::visit( util::overloaded{[&](const Symbol& name) -> Symbol { return name; }, [&](Expr* expr) -> Symbol { Value nameValue{}; expr->eval(state, env, nameValue); state.forceStringNoCtx(nameValue); return state.symbols.Create(nameValue.string.s); }}, name); } static bool gcInitialised = false; void initGC() { if (gcInitialised) { return; } #if HAVE_BOEHMGC /* Initialise the Boehm garbage collector. */ /* Don't look for interior pointers. This reduces the odds of misdetection a bit. */ GC_set_all_interior_pointers(0); /* We don't have any roots in data segments, so don't scan from there. */ GC_set_no_dls(1); GC_INIT(); GC_set_oom_fn(oomHandler); /* Set the initial heap size to something fairly big (25% of physical RAM, up to a maximum of 384 MiB) so that in most cases we don't need to garbage collect at all. (Collection has a fairly significant overhead.) The heap size can be overridden through libgc's GC_INITIAL_HEAP_SIZE environment variable. We should probably also provide a nix.conf setting for this. Note that GC_expand_hp() causes a lot of virtual, but not physical (resident) memory to be allocated. This might be a problem on systems that don't overcommit. */ if (getenv("GC_INITIAL_HEAP_SIZE") == nullptr) { size_t size = 32 * 1024 * 1024; #if HAVE_SYSCONF && defined(_SC_PAGESIZE) && defined(_SC_PHYS_PAGES) size_t maxSize = 384 * 1024 * 1024; long pageSize = sysconf(_SC_PAGESIZE); long pages = sysconf(_SC_PHYS_PAGES); if (pageSize != -1) { size = (pageSize * pages) / 4; } // 25% of RAM if (size > maxSize) { size = maxSize; } #endif DLOG(INFO) << "setting initial heap size to " << size << " bytes"; GC_expand_hp(size); } #endif gcInitialised = true; } /* Very hacky way to parse $NIX_PATH, which is colon-separated, but can contain URLs (e.g. "nixpkgs=https://bla...:foo=https://"). */ static Strings parseNixPath(const std::string& s) { Strings res; auto p = s.begin(); while (p != s.end()) { auto start = p; auto start2 = p; while (p != s.end() && *p != ':') { if (*p == '=') { start2 = p + 1; } ++p; } if (p == s.end()) { if (p != start) { res.push_back(std::string(start, p)); } break; } if (*p == ':') { if (isUri(std::string(start2, s.end()))) { ++p; while (p != s.end() && *p != ':') { ++p; } } res.push_back(std::string(start, p)); if (p == s.end()) { break; } } ++p; } return res; } EvalState::EvalState(const Strings& _searchPath, const ref<Store>& store) : sWith(symbols.Create("<with>")), sOutPath(symbols.Create("outPath")), sDrvPath(symbols.Create("drvPath")), sType(symbols.Create("type")), sMeta(symbols.Create("meta")), sName(symbols.Create("name")), sValue(symbols.Create("value")), sSystem(symbols.Create("system")), sOutputs(symbols.Create("outputs")), sOutputName(symbols.Create("outputName")), sIgnoreNulls(symbols.Create("__ignoreNulls")), sFile(symbols.Create("file")), sLine(symbols.Create("line")), sColumn(symbols.Create("column")), sFunctor(symbols.Create("__functor")), sToString(symbols.Create("__toString")), sRight(symbols.Create("right")), sWrong(symbols.Create("wrong")), sStructuredAttrs(symbols.Create("__structuredAttrs")), sBuilder(symbols.Create("builder")), sArgs(symbols.Create("args")), sOutputHash(symbols.Create("outputHash")), sOutputHashAlgo(symbols.Create("outputHashAlgo")), sOutputHashMode(symbols.Create("outputHashMode")), sDerivationNix(std::nullopt), repair(NoRepair), store(store), baseEnv(allocEnv(128)), staticBaseEnv(false, nullptr) { countCalls = getEnv("NIX_COUNT_CALLS", "0") != "0"; assert(gcInitialised); /* Initialise the Nix expression search path. */ if (!evalSettings.pureEval) { Strings paths = parseNixPath(getEnv("NIX_PATH", "")); for (auto& i : _searchPath) { addToSearchPath(i); } for (auto& i : paths) { addToSearchPath(i); } } addToSearchPath("nix=" + canonPath(settings.nixDataDir + "/nix/corepkgs", true)); if (evalSettings.restrictEval || evalSettings.pureEval) { allowedPaths = PathSet(); for (auto& i : searchPath) { auto r = resolveSearchPathElem(i); if (!r.first) { continue; } auto path = r.second; if (store->isInStore(r.second)) { PathSet closure; store->computeFSClosure(store->toStorePath(r.second), closure); for (auto& path : closure) { allowedPaths->insert(path); } } else { allowedPaths->insert(r.second); } } } createBaseEnv(); } EvalState::~EvalState() = default; Path EvalState::checkSourcePath(const Path& path_) { if (!allowedPaths) { return path_; } auto i = resolvedPaths.find(path_); if (i != resolvedPaths.end()) { return i->second; } bool found = false; /* First canonicalize the path without symlinks, so we make sure an * attacker can't append ../../... to a path that would be in allowedPaths * and thus leak symlink targets. */ Path abspath = canonPath(path_); for (auto& i : *allowedPaths) { if (isDirOrInDir(abspath, i)) { found = true; break; } } if (!found) { throw RestrictedPathError( "access to path '%1%' is forbidden in restricted mode", abspath); } /* Resolve symlinks. */ DLOG(INFO) << "checking access to '" << abspath << "'"; Path path = canonPath(abspath, true); for (auto& i : *allowedPaths) { if (isDirOrInDir(path, i)) { resolvedPaths[path_] = path; return path; } } throw RestrictedPathError( "access to path '%1%' is forbidden in restricted mode", path); } void EvalState::checkURI(const std::string& uri) { if (!evalSettings.restrictEval) { return; } /* 'uri' should be equal to a prefix, or in a subdirectory of a prefix. Thus, the prefix https://github.co does not permit access to https://github.com. Note: this allows 'http://' and 'https://' as prefixes for any http/https URI. */ for (auto& prefix : evalSettings.allowedUris.get()) { if (uri == prefix || (uri.size() > prefix.size() && !prefix.empty() && absl::StartsWith(uri, prefix) && (prefix[prefix.size() - 1] == '/' || uri[prefix.size()] == '/'))) { return; } } /* If the URI is a path, then check it against allowedPaths as well. */ if (absl::StartsWith(uri, "/")) { checkSourcePath(uri); return; } if (absl::StartsWith(uri, "file://")) { checkSourcePath(std::string(uri, 7)); return; } throw RestrictedPathError( "access to URI '%s' is forbidden in restricted mode", uri); } Path EvalState::toRealPath(const Path& path, const PathSet& context) { // FIXME: check whether 'path' is in 'context'. return !context.empty() && store->isInStore(path) ? store->toRealPath(path) : path; }; Value* EvalState::addConstant(const std::string& name, Value& v) { Value* v2 = allocValue(); *v2 = v; staticBaseEnv.vars[symbols.Create(name)] = baseEnvDispl; baseEnv.values[baseEnvDispl++] = v2; std::string name2 = std::string(name, 0, 2) == "__" ? std::string(name, 2) : name; baseEnv.values[0]->attrs->push_back(Attr(symbols.Create(name2), v2)); return v2; } Value* EvalState::addPrimOp(const std::string& name, size_t arity, PrimOpFun primOp) { if (arity == 0) { Value v{}; primOp(*this, noPos, nullptr, v); return addConstant(name, v); } Value* v = allocValue(); std::string name2 = std::string(name, 0, 2) == "__" ? std::string(name, 2) : name; Symbol sym = symbols.Create(name2); v->type = tPrimOp; v->primOp = new PrimOp(primOp, arity, sym); staticBaseEnv.vars[symbols.Create(name)] = baseEnvDispl; baseEnv.values[baseEnvDispl++] = v; baseEnv.values[0]->attrs->push_back(Attr(sym, v)); return v; } Value& EvalState::getBuiltin(const std::string& name) { return *baseEnv.values[0]->attrs->find(symbols.Create(name))->second.value; } /* Every "format" object (even temporary) takes up a few hundred bytes of stack space, which is a real killer in the recursive evaluator. So here are some helper functions for throwing exceptions. */ LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2)) { throw EvalError(format(s) % s2); } LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2, const Pos& pos)) { throw EvalError(format(s) % s2 % pos); } LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2, const std::string& s3)) { throw EvalError(format(s) % s2 % s3); } LocalNoInlineNoReturn(void throwEvalError(const char* s, const std::string& s2, const std::string& s3, const Pos& pos)) { throw EvalError(format(s) % s2 % s3 % pos); } LocalNoInlineNoReturn(void throwEvalError(const char* s, const Symbol& sym, const Pos& p1, const Pos& p2)) { throw EvalError(format(s) % sym % p1 % p2); } LocalNoInlineNoReturn(void throwTypeError(const char* s, const Pos& pos)) { throw TypeError(format(s) % pos); } LocalNoInlineNoReturn(void throwTypeError(const char* s, const std::string& s1)) { throw TypeError(format(s) % s1); } LocalNoInlineNoReturn(void throwTypeError(const char* s, const ExprLambda& fun, const Symbol& s2, const Pos& pos)) { throw TypeError(format(s) % fun.showNamePos() % s2 % pos); } LocalNoInlineNoReturn(void throwAssertionError(const char* s, const std::string& s1, const Pos& pos)) { throw AssertionError(format(s) % s1 % pos); } LocalNoInlineNoReturn(void throwUndefinedVarError(const char* s, const std::string& s1, const Pos& pos)) { throw UndefinedVarError(format(s) % s1 % pos); } LocalNoInline(void addErrorPrefix(Error& e, const char* s, const std::string& s2)) { e.addPrefix(format(s) % s2); } LocalNoInline(void addErrorPrefix(Error& e, const char* s, const ExprLambda& fun, const Pos& pos)) { e.addPrefix(format(s) % fun.showNamePos() % pos); } LocalNoInline(void addErrorPrefix(Error& e, const char* s, const std::string& s2, const Pos& pos)) { e.addPrefix(format(s) % s2 % pos); } void mkString(Value& v, const char* s) { mkStringNoCopy(v, dupString(s)); } Value& mkString(Value& v, const std::string& s, const PathSet& context) { mkString(v, s.c_str()); if (!context.empty()) { size_t n = 0; v.string.context = static_cast<const char**>( allocBytes((context.size() + 1) * sizeof(char*))); for (auto& i : context) { v.string.context[n++] = dupString(i.c_str()); } v.string.context[n] = nullptr; } return v; } void mkPath(Value& v, const char* s) { mkPathNoCopy(v, dupString(s)); } inline Value* EvalState::lookupVar(Env* env, const ExprVar& var, bool noEval) { for (size_t l = var.level; l != 0u; --l, env = env->up) { ; } if (!var.fromWith) { return env->values[var.displ]; } while (true) { if (env->type == Env::HasWithExpr) { if (noEval) { return nullptr; } Value* v = allocValue(); evalAttrs(*env->up, reinterpret_cast<Expr*>(env->values[0]), *v); env->values[0] = v; env->type = Env::HasWithAttrs; } Bindings::iterator j = env->values[0]->attrs->find(var.name); if (j != env->values[0]->attrs->end()) { if (countCalls && (j->second.pos != nullptr)) { attrSelects[*j->second.pos]++; } return j->second.value; } if (env->prevWith == 0u) { throwUndefinedVarError("undefined variable '%1%' at %2%", var.name, var.pos); } for (size_t l = env->prevWith; l != 0u; --l, env = env->up) { } } } Value* EvalState::allocValue() { nrValues++; return new (GC) Value; } Env& EvalState::allocEnv(size_t size) { if (size > std::numeric_limits<decltype(Env::size)>::max()) { throw Error("environment size %d is too big", size); } nrEnvs++; nrValuesInEnvs += size; Env* env = new Env(size); env->type = Env::Plain; return *env; } void EvalState::mkList(Value& v, NixList* list) { clearValue(v); v.type = tList; v.list = list; nrListElems += list->size(); } void EvalState::mkList(Value& v, size_t size) { EvalState::mkList(v, new (GC) NixList(size)); } unsigned long nrThunks = 0; static inline void mkThunk(Value& v, Env& env, Expr* expr) { v.type = tThunk; v.thunk.env = &env; v.thunk.expr = expr; nrThunks++; } void EvalState::mkThunk_(Value& v, Expr* expr) { mkThunk(v, baseEnv, expr); } void EvalState::mkPos(Value& v, Pos* pos) { if ((pos != nullptr) && pos->file.has_value() && pos->file.value().set()) { mkAttrs(v, 3); mkString(*allocAttr(v, sFile), pos->file.value()); mkInt(*allocAttr(v, sLine), pos->line); mkInt(*allocAttr(v, sColumn), pos->column); } else { mkNull(v); } } /* Create a thunk for the delayed computation of the given expression in the given environment. But if the expression is a variable, then look it up right away. This significantly reduces the number of thunks allocated. */ Value* Expr::maybeThunk(EvalState& state, Env& env) { Value* v = state.allocValue(); mkThunk(*v, env, this); return v; } unsigned long nrAvoided = 0; Value* ExprVar::maybeThunk(EvalState& state, Env& env) { Value* v = state.lookupVar(&env, *this, true); /* The value might not be initialised in the environment yet. In that case, ignore it. */ if (v != nullptr) { nrAvoided++; return v; } return Expr::maybeThunk(state, env); } Value* ExprString::maybeThunk(EvalState& state, Env& env) { nrAvoided++; return &v; } Value* ExprInt::maybeThunk(EvalState& state, Env& env) { nrAvoided++; return &v; } Value* ExprFloat::maybeThunk(EvalState& state, Env& env) { nrAvoided++; return &v; } Value* ExprPath::maybeThunk(EvalState& state, Env& env) { nrAvoided++; return &v; } void EvalState::evalFile(const Path& path_, Value& v) { auto path = checkSourcePath(path_); FileEvalCache::iterator i; if ((i = fileEvalCache.find(path)) != fileEvalCache.end()) { v = i->second; return; } Path path2 = resolveExprPath(path); if ((i = fileEvalCache.find(path2)) != fileEvalCache.end()) { v = i->second; return; } DLOG(INFO) << "evaluating file '" << path2 << "'"; Expr* e = nullptr; auto j = fileParseCache.find(path2); if (j != fileParseCache.end()) { e = j->second; } if (e == nullptr) { e = parseExprFromFile(checkSourcePath(path2)); } fileParseCache[path2] = e; try { eval(e, v); } catch (Error& e) { addErrorPrefix(e, "while evaluating the file '%1%':\n", path2); throw; } fileEvalCache[path2] = v; if (path != path2) { fileEvalCache[path] = v; } } void EvalState::resetFileCache() { fileEvalCache.clear(); fileParseCache.clear(); } void EvalState::eval(Expr* e, Value& v) { e->eval(*this, baseEnv, v); } inline bool EvalState::evalBool(Env& env, Expr* e) { Value v{}; e->eval(*this, env, v); if (v.type != tBool) { throwTypeError("value is %1% while a Boolean was expected", v); } return v.boolean; } inline bool EvalState::evalBool(Env& env, Expr* e, const Pos& pos) { Value v{}; e->eval(*this, env, v); if (v.type != tBool) { throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos); } return v.boolean; } inline void EvalState::evalAttrs(Env& env, Expr* e, Value& v) { e->eval(*this, env, v); if (v.type != tAttrs) { throwTypeError("value is %1% while a set was expected", v); } } void Expr::eval(EvalState& state, Env& env, Value& v) { abort(); } void ExprInt::eval(EvalState& state, Env& env, Value& v) { v = this->v; } void ExprFloat::eval(EvalState& state, Env& env, Value& v) { v = this->v; } void ExprString::eval(EvalState& state, Env& env, Value& v) { v = this->v; } void ExprPath::eval(EvalState& state, Env& env, Value& v) { v = this->v; } void ExprAttrs::eval(EvalState& state, Env& env, Value& value) { state.mkAttrs(value, attrs.size() + dynamicAttrs.size()); Env* dynamicEnv = &env; if (recursive) { /* Create a new environment that contains the attributes in this `rec'. */ Env& env2(state.allocEnv(attrs.size())); env2.up = &env; dynamicEnv = &env2; /* The recursive attributes are evaluated in the new environment, while the inherited attributes are evaluated in the original environment. */ size_t displ = 0; for (auto& attr : attrs) { Value* vAttr = nullptr; vAttr = attr.second.e->maybeThunk(state, attr.second.inherited ? env : env2); env2.values[displ++] = vAttr; value.attrs->push_back(Attr(attr.first, vAttr, &attr.second.pos)); } } else { // TODO(tazjin): insert range for (auto& i : attrs) { value.attrs->push_back( Attr(i.first, i.second.e->maybeThunk(state, env), &i.second.pos)); } } /* Dynamic attrs apply *after* rec. */ for (auto& i : dynamicAttrs) { Value nameVal{}; i.nameExpr->eval(state, *dynamicEnv, nameVal); state.forceValue(nameVal, i.pos); if (nameVal.type == tNull) { continue; } state.forceStringNoCtx(nameVal); Symbol nameSym = state.symbols.Create(nameVal.string.s); Bindings::iterator j = value.attrs->find(nameSym); if (j != value.attrs->end()) { throwEvalError("dynamic attribute '%1%' at %2% already defined at %3%", nameSym, i.pos, *j->second.pos); } value.attrs->push_back( Attr(nameSym, i.valueExpr->maybeThunk(state, *dynamicEnv), &i.pos)); } } void ExprLet::eval(EvalState& state, Env& env, Value& v) { /* Create a new environment that contains the attributes in this `let'. */ Env& env2(state.allocEnv(attrs->attrs.size())); env2.up = &env; /* The recursive attributes are evaluated in the new environment, while the inherited attributes are evaluated in the original environment. */ size_t displ = 0; for (auto& i : attrs->attrs) { env2.values[displ++] = i.second.e->maybeThunk(state, i.second.inherited ? env : env2); } body->eval(state, env2, v); } void ExprList::eval(EvalState& state, Env& env, Value& v) { state.mkList(v, elems.size()); for (size_t n = 0; n < elems.size(); ++n) { (*v.list)[n] = elems[n]->maybeThunk(state, env); } } void ExprVar::eval(EvalState& state, Env& env, Value& v) { Value* v2 = state.lookupVar(&env, *this, false); state.forceValue(*v2, pos); v = *v2; } static std::string showAttrPath(EvalState& state, Env& env, const AttrPath& attrPath) { std::ostringstream out; bool first = true; for (auto& i : attrPath) { if (!first) { out << '.'; } else { first = false; } out << getName(i, state, env); } return out.str(); } unsigned long nrLookups = 0; void ExprSelect::eval(EvalState& state, Env& env, Value& v) { Value vTmp{}; Pos* pos2 = nullptr; Value* vAttrs = &vTmp; e->eval(state, env, vTmp); try { for (auto& i : attrPath) { nrLookups++; Bindings::iterator j; Symbol name = getName(i, state, env); if (def != nullptr) { state.forceValue(*vAttrs, pos); if (vAttrs->type != tAttrs || (j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) { def->eval(state, env, v); return; } } else { state.forceAttrs(*vAttrs, pos); if ((j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) { throwEvalError("attribute '%1%' missing, at %2%", name, pos); } } vAttrs = j->second.value; pos2 = j->second.pos; if (state.countCalls && (pos2 != nullptr)) { state.attrSelects[*pos2]++; } } state.forceValue(*vAttrs, (pos2 != nullptr ? *pos2 : this->pos)); } catch (Error& e) { // This code relies on 'sDerivationNix' being correcty mutated at // some prior point (it would previously otherwise have been a // nullptr). // // We haven't seen this fail, so for now the contained value is // just accessed at the risk of potentially crashing. if ((pos2 != nullptr) && pos2->file != state.sDerivationNix.value()) { addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n", showAttrPath(state, env, attrPath), *pos2); } throw; } v = *vAttrs; } void ExprOpHasAttr::eval(EvalState& state, Env& env, Value& v) { Value vTmp{}; Value* vAttrs = &vTmp; e->eval(state, env, vTmp); for (auto& i : attrPath) { state.forceValue(*vAttrs); Bindings::iterator j; Symbol name = getName(i, state, env); if (vAttrs->type != tAttrs || (j = vAttrs->attrs->find(name)) == vAttrs->attrs->end()) { mkBool(v, false); return; } vAttrs = j->second.value; } mkBool(v, true); } void ExprLambda::eval(EvalState& state, Env& env, Value& v) { v.type = tLambda; v.lambda.env = &env; v.lambda.fun = this; } void ExprApp::eval(EvalState& state, Env& env, Value& v) { /* FIXME: vFun prevents GCC from doing tail call optimisation. */ Value vFun{}; e1->eval(state, env, vFun); state.callFunction(vFun, *(e2->maybeThunk(state, env)), v, pos); } void EvalState::callPrimOp(Value& fun, Value& arg, Value& v, const Pos& pos) { /* Figure out the number of arguments still needed. */ size_t argsDone = 0; Value* primOp = &fun; while (primOp->type == tPrimOpApp) { argsDone++; primOp = primOp->primOpApp.left; } assert(primOp->type == tPrimOp); auto arity = primOp->primOp->arity; auto argsLeft = arity - argsDone; if (argsLeft == 1) { /* We have all the arguments, so call the primop. */ /* Put all the arguments in an array. */ Value* vArgs[arity]; auto n = arity - 1; vArgs[n--] = &arg; for (Value* arg = &fun; arg->type == tPrimOpApp; arg = arg->primOpApp.left) { vArgs[n--] = arg->primOpApp.right; } /* And call the primop. */ nrPrimOpCalls++; if (countCalls) { primOpCalls[primOp->primOp->name]++; } primOp->primOp->fun(*this, pos, vArgs, v); } else { Value* fun2 = allocValue(); *fun2 = fun; v.type = tPrimOpApp; v.primOpApp.left = fun2; v.primOpApp.right = &arg; } } void EvalState::callFunction(Value& fun, Value& arg, Value& v, const Pos& pos) { auto trace = evalSettings.traceFunctionCalls ? std::make_unique<FunctionCallTrace>(pos) : nullptr; forceValue(fun, pos); if (fun.type == tPrimOp || fun.type == tPrimOpApp) { callPrimOp(fun, arg, v, pos); return; } // If the value to be called is an attribute set, check whether it // contains an appropriate function in the '__functor' element and // use that. if (fun.type == tAttrs) { auto found = fun.attrs->find(sFunctor); if (found != fun.attrs->end()) { // fun may be allocated on the stack of the calling function, // but for functors we may keep a reference, so heap-allocate a // copy and use that instead auto& fun2 = *allocValue(); fun2 = fun; /* !!! Should we use the attr pos here? */ Value v2{}; // functors are called with the element itself as the first // parameter, which is partially applied here callFunction(*found->second.value, fun2, v2, pos); return callFunction(v2, arg, v, pos); } } if (fun.type != tLambda) { throwTypeError( "attempt to call something which is not a function but %1%, at %2%", fun, pos); } ExprLambda& lambda(*fun.lambda.fun); auto size = (lambda.arg.empty() ? 0 : 1) + (lambda.matchAttrs ? lambda.formals->formals.size() : 0); Env& env2(allocEnv(size)); env2.up = fun.lambda.env; size_t displ = 0; if (!lambda.matchAttrs) { env2.values[displ++] = &arg; } else { forceAttrs(arg, pos); if (!lambda.arg.empty()) { env2.values[displ++] = &arg; } /* For each formal argument, get the actual argument. If there is no matching actual argument but the formal argument has a default, use the default. */ size_t attrsUsed = 0; for (auto& i : lambda.formals->formals) { Bindings::iterator j = arg.attrs->find(i.name); if (j == arg.attrs->end()) { if (i.def == nullptr) { throwTypeError("%1% called without required argument '%2%', at %3%", lambda, i.name, pos); } env2.values[displ++] = i.def->maybeThunk(*this, env2); } else { attrsUsed++; env2.values[displ++] = j->second.value; } } /* Check that each actual argument is listed as a formal argument (unless the attribute match specifies a `...'). */ if (!lambda.formals->ellipsis && attrsUsed != arg.attrs->size()) { /* Nope, so show the first unexpected argument to the user. */ for (auto& i : *arg.attrs) { if (lambda.formals->argNames.find(i.second.name) == lambda.formals->argNames.end()) { throwTypeError("%1% called with unexpected argument '%2%', at %3%", lambda, i.second.name, pos); } } abort(); // shouldn't happen } } nrFunctionCalls++; if (countCalls) { incrFunctionCall(&lambda); } /* Evaluate the body. This is conditional on showTrace, because catching exceptions makes this function not tail-recursive. */ if (settings.showTrace) { try { lambda.body->eval(*this, env2, v); } catch (Error& e) { addErrorPrefix(e, "while evaluating %1%, called from %2%:\n", lambda, pos); throw; } } else { fun.lambda.fun->body->eval(*this, env2, v); } } // Lifted out of callFunction() because it creates a temporary that // prevents tail-call optimisation. void EvalState::incrFunctionCall(ExprLambda* fun) { functionCalls[fun]++; } void EvalState::autoCallFunction(Bindings& args, Value& fun, Value& res) { forceValue(fun); if (fun.type == tAttrs) { auto found = fun.attrs->find(sFunctor); if (found != fun.attrs->end()) { Value* v = allocValue(); callFunction(*found->second.value, fun, *v, noPos); forceValue(*v); return autoCallFunction(args, *v, res); } } if (fun.type != tLambda || !fun.lambda.fun->matchAttrs) { res = fun; return; } Value* actualArgs = allocValue(); mkAttrs(*actualArgs, fun.lambda.fun->formals->formals.size()); for (auto& i : fun.lambda.fun->formals->formals) { Bindings::iterator j = args.find(i.name); if (j != args.end()) { actualArgs->attrs->push_back(j->second); } else if (i.def == nullptr) { throwTypeError( "cannot auto-call a function that has an argument without a default " "value ('%1%')", i.name); } } callFunction(fun, *actualArgs, res, noPos); } void ExprWith::eval(EvalState& state, Env& env, Value& v) { Env& env2(state.allocEnv(1)); env2.up = &env; env2.prevWith = prevWith; env2.type = Env::HasWithExpr; // TODO(kanepyork): Figure out what's going on here. `Expr* attrs` is not // layout-compatible with Value*. env2.values[0] = reinterpret_cast<Value*>(attrs); body->eval(state, env2, v); } void ExprIf::eval(EvalState& state, Env& env, Value& v) { (state.evalBool(env, cond) ? then : else_)->eval(state, env, v); } void ExprAssert::eval(EvalState& state, Env& env, Value& v) { if (!state.evalBool(env, cond, pos)) { std::ostringstream out; cond->show(out); throwAssertionError("assertion %1% failed at %2%", out.str(), pos); } body->eval(state, env, v); } void ExprOpNot::eval(EvalState& state, Env& env, Value& v) { mkBool(v, !state.evalBool(env, e)); } void ExprOpEq::eval(EvalState& state, Env& env, Value& v) { Value v1{}; e1->eval(state, env, v1); Value v2{}; e2->eval(state, env, v2); mkBool(v, state.eqValues(v1, v2)); } void ExprOpNEq::eval(EvalState& state, Env& env, Value& v) { Value v1{}; e1->eval(state, env, v1); Value v2{}; e2->eval(state, env, v2); mkBool(v, !state.eqValues(v1, v2)); } void ExprOpAnd::eval(EvalState& state, Env& env, Value& v) { mkBool(v, state.evalBool(env, e1, pos) && state.evalBool(env, e2, pos)); } void ExprOpOr::eval(EvalState& state, Env& env, Value& v) { mkBool(v, state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos)); } void ExprOpImpl::eval(EvalState& state, Env& env, Value& v) { mkBool(v, !state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos)); } void ExprOpUpdate::eval(EvalState& state, Env& env, Value& dest) { Value v1{}; Value v2{}; state.evalAttrs(env, e1, v1); state.evalAttrs(env, e2, v2); state.nrOpUpdates++; clearValue(dest); dest.type = tAttrs; dest.attrs = Bindings::Merge(*v1.attrs, *v2.attrs); } void ExprOpConcatLists::eval(EvalState& state, Env& env, Value& v) { Value v1{}; e1->eval(state, env, v1); Value v2{}; e2->eval(state, env, v2); state.concatLists(v, {&v1, &v2}, pos); } void EvalState::concatLists(Value& v, const NixList& lists, const Pos& pos) { nrListConcats++; auto outlist = new (GC) NixList(); for (Value* list : lists) { forceList(*list, pos); outlist->insert(outlist->end(), list->list->begin(), list->list->end()); } mkList(v, outlist); } void ExprConcatStrings::eval(EvalState& state, Env& env, Value& v) { PathSet context; std::ostringstream s; NixInt n = 0; NixFloat nf = 0; bool first = !forceString; ValueType firstType = tString; for (auto& i : *es) { Value vTmp{}; i->eval(state, env, vTmp); /* If the first element is a path, then the result will also be a path, we don't copy anything (yet - that's done later, since paths are copied when they are used in a derivation), and none of the strings are allowed to have contexts. */ if (first) { firstType = vTmp.type; first = false; } if (firstType == tInt) { if (vTmp.type == tInt) { n += vTmp.integer; } else if (vTmp.type == tFloat) { // Upgrade the type from int to float; firstType = tFloat; nf = n; nf += vTmp.fpoint; } else { throwEvalError("cannot add %1% to an integer, at %2%", showType(vTmp), pos); } } else if (firstType == tFloat) { if (vTmp.type == tInt) { nf += vTmp.integer; } else if (vTmp.type == tFloat) { nf += vTmp.fpoint; } else { throwEvalError("cannot add %1% to a float, at %2%", showType(vTmp), pos); } } else { s << state.coerceToString(pos, vTmp, context, false, firstType == tString); } } if (firstType == tInt) { mkInt(v, n); } else if (firstType == tFloat) { mkFloat(v, nf); } else if (firstType == tPath) { if (!context.empty()) { throwEvalError( "a string that refers to a store path cannot be appended to a path, " "at %1%", pos); } auto path = canonPath(s.str()); mkPath(v, path.c_str()); } else { mkString(v, s.str(), context); } } void ExprPos::eval(EvalState& state, Env& env, Value& v) { state.mkPos(v, &pos); } void EvalState::forceValueDeep(Value& v) { std::set<const Value*> seen; std::function<void(Value & v)> recurse; recurse = [&](Value& v) { if (seen.find(&v) != seen.end()) { return; } seen.insert(&v); forceValue(v); if (v.type == tAttrs) { for (auto& i : *v.attrs) { try { recurse(*i.second.value); } catch (Error& e) { addErrorPrefix(e, "while evaluating the attribute '%1%' at %2%:\n", i.second.name, *i.second.pos); throw; } } } else if (v.isList()) { for (size_t n = 0; n < v.listSize(); ++n) { recurse(*(*v.list)[n]); } } }; recurse(v); } NixInt EvalState::forceInt(Value& v, const Pos& pos) { forceValue(v, pos); if (v.type != tInt) { throwTypeError("value is %1% while an integer was expected, at %2%", v, pos); } return v.integer; } NixFloat EvalState::forceFloat(Value& v, const Pos& pos) { forceValue(v, pos); if (v.type == tInt) { return v.integer; } if (v.type != tFloat) { throwTypeError("value is %1% while a float was expected, at %2%", v, pos); } return v.fpoint; } bool EvalState::forceBool(Value& v, const Pos& pos) { forceValue(v); if (v.type != tBool) { throwTypeError("value is %1% while a Boolean was expected, at %2%", v, pos); } return v.boolean; } bool EvalState::isFunctor(Value& fun) { return fun.type == tAttrs && fun.attrs->find(sFunctor) != fun.attrs->end(); } void EvalState::forceFunction(Value& v, const Pos& pos) { forceValue(v); if (v.type != tLambda && v.type != tPrimOp && v.type != tPrimOpApp && !isFunctor(v)) { throwTypeError("value is %1% while a function was expected, at %2%", v, pos); } } std::string EvalState::forceString(Value& v, const Pos& pos) { forceValue(v, pos); if (v.type != tString) { if (pos) { throwTypeError("value is %1% while a string was expected, at %2%", v, pos); } else { throwTypeError("value is %1% while a string was expected", v); } } return std::string(v.string.s); } void copyContext(const Value& v, PathSet& context) { if (v.string.context != nullptr) { for (const char** p = v.string.context; *p != nullptr; ++p) { context.insert(*p); } } } std::string EvalState::forceString(Value& v, PathSet& context, const Pos& pos) { std::string s = forceString(v, pos); copyContext(v, context); return s; } std::string EvalState::forceStringNoCtx(Value& v, const Pos& pos) { std::string s = forceString(v, pos); if (v.string.context != nullptr) { if (pos) { throwEvalError( "the string '%1%' is not allowed to refer to a store path (such as " "'%2%'), at %3%", v.string.s, v.string.context[0], pos); } else { throwEvalError( "the string '%1%' is not allowed to refer to a store path (such as " "'%2%')", v.string.s, v.string.context[0]); } } return s; } bool EvalState::isDerivation(Value& v) { if (v.type != tAttrs) { return false; } Bindings::iterator i = v.attrs->find(sType); if (i == v.attrs->end()) { return false; } forceValue(*i->second.value); if (i->second.value->type != tString) { return false; } return strcmp(i->second.value->string.s, "derivation") == 0; } std::optional<std::string> EvalState::tryAttrsToString(const Pos& pos, Value& v, PathSet& context, bool coerceMore, bool copyToStore) { auto i = v.attrs->find(sToString); if (i != v.attrs->end()) { Value v1{}; callFunction(*i->second.value, v, v1, pos); return coerceToString(pos, v1, context, coerceMore, copyToStore); } return {}; } std::string EvalState::coerceToString(const Pos& pos, Value& v, PathSet& context, bool coerceMore, bool copyToStore) { forceValue(v); std::string s; if (v.type == tString) { copyContext(v, context); return v.string.s; } if (v.type == tPath) { Path path(canonPath(v.path)); return copyToStore ? copyPathToStore(context, path) : path; } if (v.type == tAttrs) { auto maybeString = tryAttrsToString(pos, v, context, coerceMore, copyToStore); if (maybeString) { return *maybeString; } auto i = v.attrs->find(sOutPath); if (i == v.attrs->end()) { throwTypeError("cannot coerce a set to a string, at %1%", pos); } return coerceToString(pos, *i->second.value, context, coerceMore, copyToStore); } if (v.type == tExternal) { return v.external->coerceToString(pos, context, coerceMore, copyToStore); } if (coerceMore) { /* Note that `false' is represented as an empty string for shell scripting convenience, just like `null'. */ if (v.type == tBool && v.boolean) { return "1"; } if (v.type == tBool && !v.boolean) { return ""; } if (v.type == tInt) { return std::to_string(v.integer); } if (v.type == tFloat) { return std::to_string(v.fpoint); } if (v.type == tNull) { return ""; } if (v.isList()) { std::string result; for (size_t n = 0; n < v.listSize(); ++n) { result += coerceToString(pos, *(*v.list)[n], context, coerceMore, copyToStore); if (n < v.listSize() - 1 /* !!! not quite correct */ && (!(*v.list)[n]->isList() || (*v.list)[n]->listSize() != 0)) { result += " "; } } return result; } } throwTypeError("cannot coerce %1% to a string, at %2%", v, pos); } std::string EvalState::copyPathToStore(PathSet& context, const Path& path) { if (nix::isDerivation(path)) { throwEvalError("file names are not allowed to end in '%1%'", drvExtension); } Path dstPath; if (!srcToStore[path].empty()) { dstPath = srcToStore[path]; } else { dstPath = settings.readOnlyMode ? store ->computeStorePathForPath(baseNameOf(path), checkSourcePath(path)) .first : store->addToStore(baseNameOf(path), checkSourcePath(path), true, htSHA256, defaultPathFilter, repair); srcToStore[path] = dstPath; DLOG(INFO) << "copied source '" << path << "' -> '" << dstPath << "'"; } context.insert(dstPath); return dstPath; } Path EvalState::coerceToPath(const Pos& pos, Value& v, PathSet& context) { std::string path = coerceToString(pos, v, context, false, false); if (path.empty() || path[0] != '/') { throwEvalError("string '%1%' doesn't represent an absolute path, at %2%", path, pos); } return path; } bool EvalState::eqValues(Value& v1, Value& v2) { forceValue(v1); forceValue(v2); /* !!! Hack to support some old broken code that relies on pointer equality tests between sets. (Specifically, builderDefs calls uniqList on a list of sets.) Will remove this eventually. */ if (&v1 == &v2) { return true; } // Special case type-compatibility between float and int if (v1.type == tInt && v2.type == tFloat) { return v1.integer == v2.fpoint; } if (v1.type == tFloat && v2.type == tInt) { return v1.fpoint == v2.integer; } // All other types are not compatible with each other. if (v1.type != v2.type) { return false; } switch (v1.type) { case tInt: return v1.integer == v2.integer; case tBool: return v1.boolean == v2.boolean; case tString: return strcmp(v1.string.s, v2.string.s) == 0; case tPath: return strcmp(v1.path, v2.path) == 0; case tNull: return true; case tList: if (v1.listSize() != v2.listSize()) { return false; } for (size_t n = 0; n < v1.listSize(); ++n) { if (!eqValues(*(*v1.list)[n], *(*v2.list)[n])) { return false; } } return true; case tAttrs: { // As an optimisation if both values are pointing towards the // same attribute set, we can skip all this extra work. if (v1.attrs == v2.attrs) { return true; } /* If both sets denote a derivation (type = "derivation"), then compare their outPaths. */ if (isDerivation(v1) && isDerivation(v2)) { Bindings::iterator i = v1.attrs->find(sOutPath); Bindings::iterator j = v2.attrs->find(sOutPath); if (i != v1.attrs->end() && j != v2.attrs->end()) { return eqValues(*i->second.value, *j->second.value); } } if (v1.attrs->size() != v2.attrs->size()) { return false; } /* Otherwise, compare the attributes one by one. */ Bindings::iterator i; Bindings::iterator j; for (i = v1.attrs->begin(), j = v2.attrs->begin(); i != v1.attrs->end(); ++i, ++j) { if (i->second.name != j->second.name || !eqValues(*i->second.value, *j->second.value)) { return false; } } return true; } /* Functions are incomparable. */ case tLambda: case tPrimOp: case tPrimOpApp: return false; case tExternal: return *v1.external == *v2.external; case tFloat: return v1.fpoint == v2.fpoint; default: throwEvalError("cannot compare %1% with %2%", showType(v1), showType(v2)); } } void EvalState::printStats() { bool showStats = getEnv("NIX_SHOW_STATS", "0") != "0"; struct rusage buf {}; getrusage(RUSAGE_SELF, &buf); float cpuTime = buf.ru_utime.tv_sec + (static_cast<float>(buf.ru_utime.tv_usec) / 1000000); uint64_t bEnvs = nrEnvs * sizeof(Env) + nrValuesInEnvs * sizeof(Value*); uint64_t bLists = nrListElems * sizeof(Value*); uint64_t bValues = nrValues * sizeof(Value); uint64_t bAttrsets = nrAttrsets * sizeof(Bindings) + nrAttrsInAttrsets * sizeof(Attr); #if HAVE_BOEHMGC GC_word heapSize = 0; GC_word totalBytes = 0; GC_get_heap_usage_safe(&heapSize, nullptr, nullptr, nullptr, &totalBytes); #endif if (showStats) { auto outPath = getEnv("NIX_SHOW_STATS_PATH", "-"); std::fstream fs; if (outPath != "-") { fs.open(outPath, std::fstream::out); } JSONObject topObj(outPath == "-" ? std::cerr : fs, true); topObj.attr("cpuTime", cpuTime); { auto envs = topObj.object("envs"); envs.attr("number", nrEnvs); envs.attr("elements", nrValuesInEnvs); envs.attr("bytes", bEnvs); } { auto lists = topObj.object("list"); lists.attr("elements", nrListElems); lists.attr("bytes", bLists); lists.attr("concats", nrListConcats); } { auto values = topObj.object("values"); values.attr("number", nrValues); values.attr("bytes", bValues); } { auto syms = topObj.object("symbols"); syms.attr("number", symbols.Size()); syms.attr("bytes", symbols.TotalSize()); } { auto sets = topObj.object("sets"); sets.attr("number", nrAttrsets); sets.attr("bytes", bAttrsets); sets.attr("elements", nrAttrsInAttrsets); } { auto sizes = topObj.object("sizes"); sizes.attr("Env", sizeof(Env)); sizes.attr("Value", sizeof(Value)); sizes.attr("Bindings", sizeof(Bindings)); sizes.attr("Attr", sizeof(Attr)); } topObj.attr("nrOpUpdates", nrOpUpdates); topObj.attr("nrOpUpdateValuesCopied", nrOpUpdateValuesCopied); topObj.attr("nrThunks", nrThunks); topObj.attr("nrAvoided", nrAvoided); topObj.attr("nrLookups", nrLookups); topObj.attr("nrPrimOpCalls", nrPrimOpCalls); topObj.attr("nrFunctionCalls", nrFunctionCalls); #if HAVE_BOEHMGC { auto gc = topObj.object("gc"); gc.attr("heapSize", heapSize); gc.attr("totalBytes", totalBytes); } #endif if (countCalls) { { auto obj = topObj.object("primops"); for (auto& i : primOpCalls) { obj.attr(i.first, i.second); } } { auto list = topObj.list("functions"); for (auto& i : functionCalls) { auto obj = list.object(); if (i.first->name.has_value()) { obj.attr("name", (const std::string&)i.first->name.value()); } else { obj.attr("name", nullptr); } if (i.first->pos) { obj.attr("file", (const std::string&)i.first->pos.file); obj.attr("line", i.first->pos.line); obj.attr("column", i.first->pos.column); } obj.attr("count", i.second); } } { auto list = topObj.list("attributes"); for (auto& i : attrSelects) { auto obj = list.object(); if (i.first) { obj.attr("file", (const std::string&)i.first.file); obj.attr("line", i.first.line); obj.attr("column", i.first.column); } obj.attr("count", i.second); } } } // TODO(tazjin): what is this? commented out because .dump() is gone. // if (getEnv("NIX_SHOW_SYMBOLS", "0") != "0") { // auto list = topObj.list("symbols"); // symbols.dump([&](const std::string& s) { list.elem(s); }); // } } } size_t valueSize(Value& v) { std::set<const void*> seen; auto doString = [&](const char* s) -> size_t { if (seen.find(s) != seen.end()) { return 0; } seen.insert(s); return strlen(s) + 1; }; std::function<size_t(Value & v)> doValue; std::function<size_t(Env & v)> doEnv; doValue = [&](Value& v) -> size_t { if (seen.find(&v) != seen.end()) { return 0; } seen.insert(&v); size_t sz = sizeof(Value); switch (v.type) { case tString: sz += doString(v.string.s); if (v.string.context != nullptr) { for (const char** p = v.string.context; *p != nullptr; ++p) { sz += doString(*p); } } break; case tPath: sz += doString(v.path); break; case tAttrs: if (seen.find(v.attrs) == seen.end()) { seen.insert(v.attrs); sz += sizeof(Bindings); for (auto& i : *v.attrs) { sz += doValue(*i.second.value); } } break; case tList: if (seen.find(v.list) == seen.end()) { seen.insert(v.list); sz += v.listSize() * sizeof(Value*); for (size_t n = 0; n < v.listSize(); ++n) { sz += doValue(*(*v.list)[n]); } } break; case tThunk: sz += doEnv(*v.thunk.env); break; case tApp: sz += doValue(*v.app.left); sz += doValue(*v.app.right); break; case tLambda: sz += doEnv(*v.lambda.env); break; case tPrimOpApp: sz += doValue(*v.primOpApp.left); sz += doValue(*v.primOpApp.right); break; case tExternal: if (seen.find(v.external) != seen.end()) { break; } seen.insert(v.external); sz += v.external->valueSize(seen); break; default:; } return sz; }; doEnv = [&](Env& env) -> size_t { if (seen.find(&env) != seen.end()) { return 0; } seen.insert(&env); size_t sz = sizeof(Env) + sizeof(Value*) * env.size; if (env.type != Env::HasWithExpr) { for (size_t i = 0; i < env.size; ++i) { if (env.values[i] != nullptr) { sz += doValue(*env.values[i]); } } } if (env.up != nullptr) { sz += doEnv(*env.up); } return sz; }; return doValue(v); } std::string ExternalValueBase::coerceToString(const Pos& pos, PathSet& context, bool copyMore, bool copyToStore) const { throw TypeError(format("cannot coerce %1% to a string, at %2%") % showType() % pos); } bool ExternalValueBase::operator==(const ExternalValueBase& b) const { return false; } std::ostream& operator<<(std::ostream& str, const ExternalValueBase& v) { return v.print(str); } EvalSettings evalSettings; static GlobalConfig::Register r1(&evalSettings); } // namespace nix