// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #include "extra/fuzzer/fuzzer_input.hpp" #include <array> #include <catch.hpp> #include <immer/flex_vector.hpp> #include <immer/flex_vector_transient.hpp> #include <immer/heap/gc_heap.hpp> #include <immer/refcount/no_refcount_policy.hpp> #include <iostream> #define IMMER_FUZZED_TRACE_ENABLE 0 #if IMMER_FUZZED_TRACE_ENABLE #define IMMER_FUZZED_TRACE(...) std::cout << __VA_ARGS__ << std::endl; #else #define IMMER_FUZZED_TRACE(...) #endif using gc_memory = immer::memory_policy<immer::heap_policy<immer::gc_heap>, immer::no_refcount_policy, immer::gc_transience_policy, false>; namespace { template <std::size_t VarCount = 4, unsigned Bits = 2> int run_input(const std::uint8_t* data, std::size_t size) { using vector_t = immer::flex_vector<int, gc_memory, Bits, Bits>; using transient_t = typename vector_t::transient_type; using size_t = std::uint8_t; auto vs = std::array<vector_t, VarCount>{}; auto ts = std::array<transient_t, VarCount>{}; #if IMMER_FUZZED_TRACE_ENABLE std::cout << "/// new test run" << std::endl; for (auto i = 0; i < VarCount; ++i) std::cout << "auto v" << i << " = vector_t{};" << std::endl; for (auto i = 0; i < VarCount; ++i) std::cout << "auto t" << i << " = transient_t{};" << std::endl; #endif auto is_valid_var = [&](auto idx) { return idx >= 0 && idx < VarCount; }; auto is_valid_var_neq = [](auto other) { return [=](auto idx) { return idx >= 0 && idx < VarCount && idx != other; }; }; auto is_valid_index = [](auto& v) { return [&](auto idx) { return idx >= 0 && idx < v.size(); }; }; auto is_valid_size = [](auto& v) { return [&](auto idx) { return idx >= 0 && idx <= v.size(); }; }; auto can_concat = [](auto&& v1, auto&& v2) { using size_type = decltype(v1.size()); auto max = std::numeric_limits<size_type>::max() >> (Bits * 4); return v1.size() < max && v2.size() < max; }; return fuzzer_input{data, size}.run([&](auto& in) { enum ops { op_transient, op_persistent, op_push_back, op_update, op_take, op_drop, op_concat, op_push_back_mut, op_update_mut, op_take_mut, op_drop_mut, op_prepend_mut, op_prepend_mut_move, op_append_mut, op_append_mut_move, }; auto dst = read<std::uint8_t>(in, is_valid_var); switch (read<char>(in)) { case op_transient: { auto src = read<std::uint8_t>(in, is_valid_var); IMMER_FUZZED_TRACE("t" << +dst << " = v" << +src << ".transient();"); ts[dst] = vs[src].transient(); break; } case op_persistent: { auto src = read<std::uint8_t>(in, is_valid_var); IMMER_FUZZED_TRACE("v" << +dst << " = t" << +src << ".persistent();"); vs[dst] = ts[src].persistent(); break; } case op_push_back: { auto src = read<std::uint8_t>(in, is_valid_var); IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".push_back(42);"); vs[dst] = vs[src].push_back(42); break; } case op_update: { auto src = read<std::uint8_t>(in, is_valid_var); auto idx = read<size_t>(in, is_valid_index(vs[src])); IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".update(" << +idx << ", [] (auto x) { return x + 1; });"); vs[dst] = vs[src].update(idx, [](auto x) { return x + 1; }); break; } case op_take: { auto src = read<std::uint8_t>(in, is_valid_var); auto idx = read<size_t>(in, is_valid_size(vs[src])); IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".take(" << +idx << ");"); vs[dst] = vs[src].take(idx); break; } case op_drop: { auto src = read<std::uint8_t>(in, is_valid_var); auto idx = read<size_t>(in, is_valid_size(vs[src])); IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << ".take(" << +idx << ");"); vs[dst] = vs[src].drop(idx); break; } case op_concat: { auto src = read<std::uint8_t>(in, is_valid_var); auto src2 = read<std::uint8_t>(in, is_valid_var); if (can_concat(vs[src], vs[src2])) { IMMER_FUZZED_TRACE("v" << +dst << " = v" << +src << " + v" << +src2 << ";"); vs[dst] = vs[src] + vs[src2]; } break; } case op_push_back_mut: { IMMER_FUZZED_TRACE("t" << +dst << ".push_back(13);"); ts[dst].push_back(13); break; } case op_update_mut: { auto idx = read<size_t>(in, is_valid_index(ts[dst])); IMMER_FUZZED_TRACE("t" << +dst << ".update(" << +idx << ", [] (auto x) { return x + 1; });"); ts[dst].update(idx, [](auto x) { return x + 1; }); break; } case op_take_mut: { auto idx = read<size_t>(in, is_valid_size(ts[dst])); IMMER_FUZZED_TRACE("t" << +dst << ").take(" << +idx << ");"); ts[dst].take(idx); break; } case op_prepend_mut: { auto src = read<std::uint8_t>(in, is_valid_var_neq(dst)); if (can_concat(ts[dst], ts[src])) { IMMER_FUZZED_TRACE("t" << +dst << ".prepend(t" << +src << ");"); ts[dst].prepend(ts[src]); } break; } case op_prepend_mut_move: { auto src = read<std::uint8_t>(in, is_valid_var_neq(dst)); if (can_concat(ts[dst], ts[src])) { IMMER_FUZZED_TRACE("t" << +dst << ".prepend(std::move(t" << +src << "));" << " t" << +src << " = {};"); ts[dst].prepend(std::move(ts[src])); ts[src] = {}; } break; } case op_append_mut: { auto src = read<std::uint8_t>(in, is_valid_var_neq(dst)); if (can_concat(ts[dst], ts[src])) { IMMER_FUZZED_TRACE("t" << +dst << ".append(t" << +src << ");"); ts[dst].append(ts[src]); } break; } case op_append_mut_move: { auto src = read<std::uint8_t>(in, is_valid_var_neq(dst)); if (can_concat(ts[dst], ts[src])) { IMMER_FUZZED_TRACE("t" << +dst << ".append(std::move(t" << +src << "));" << " t" << +src << " = {};"); ts[dst].append(std::move(ts[src])); ts[src] = {}; } break; } default: break; }; return true; }); } } // namespace TEST_CASE("bug: concatenating transients") { // When concatenating two transients vectors the nodes from the // argument become aliased in the result. As such, we need to // reset the identitiy of the argument. SECTION("simplified") { using vector_t = immer::flex_vector<int, gc_memory, 2, 2>; auto t0 = vector_t{}.transient(); t0.push_back(42); t0.push_back(42); t0.push_back(42); t0.push_back(42); t0.push_back(42); t0.push_back(42); auto t1 = t0; t1.append(t0); t1.append(t0); t0.append(t1); t1.append(t0); } #if __GNUC__ != 9 SECTION("") { constexpr std::uint8_t input[] = { 0x2, 0x2, 0x2, 0x2, 0x29, 0x32, 0x0, 0x0, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x6, 0x2, 0x2, 0x2, 0x2, 0x2, 0x6, 0x2, 0x2, 0x2, 0x0, 0x38, 0x2, 0x0, 0x0, 0x2, 0x2, 0xd, 0x0, 0x0, 0x3b, 0xff, 0x3a, 0x2, 0xd, 0xd, 0x2, 0x0, 0x0, 0x10, 0xe, 0x0, 0xd, 0x0, 0x0, 0x2, 0x2, 0xd, 0x0, 0x1, 0x5, }; CHECK(run_input(input, sizeof(input)) == 0); } #endif } TEST_CASE("bug: concatenating moved transients") { // A moved from concatenated transient is totally smashed, we can // not do anything with it but reasign... SECTION("simplified") { using vector_t = immer::flex_vector<int, gc_memory, 2, 2>; using transient_t = typename vector_t::transient_type; auto v0 = vector_t{}; auto t0 = transient_t{}; auto t2 = transient_t{}; v0 = v0.push_back(42); t2 = v0.transient(); v0 = v0 + v0; v0 = v0 + v0; v0 = v0 + v0; v0 = v0 + v0; t0 = v0.transient(); t0 = v0.transient(); t0.append(std::move(t2)); t2 = {}; t2.append(std::move(t0)); } #if __GNUC__ != 9 SECTION("") { constexpr std::uint8_t input[] = { 0x0, 0x2, 0x0, 0x2, 0x0, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x9d, 0x0, 0x6, 0x0, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x9d, 0x28, 0x0, 0x0, 0x0, 0x0, 0x0, 0xf7, 0xc5, 0x0, 0xa, 0xa, 0x0, 0xfa, 0xe7, 0xff, 0xe7, 0xff, 0x0, 0xe, 0x2, 0x9, 0x0, 0x28, 0x2, 0xe, 0x0, 0x0, 0x2, 0xd, 0x0, 0x0, 0x28, 0x0, 0xd, 0x2, 0x5, 0x0, 0x2, }; CHECK(run_input(input, sizeof(input)) == 0); } #endif SECTION("simplified") { using vector_t = immer::flex_vector<int, gc_memory, 2, 2>; using transient_t = typename vector_t::transient_type; auto v0 = vector_t{}; auto t0 = transient_t{}; auto t2 = transient_t{}; v0 = v0.push_back(42); v0 = v0.push_back(42); v0 = v0 + v0; t0 = v0.transient(); t2.prepend(std::move(t0)); t0 = {}; t0 = v0.transient(); t0.push_back(13); t2.append(std::move(t0)); t0 = {}; t0 = v0.transient(); t0.push_back(13); t2.prepend(std::move(t0)); t0 = {}; } #if __GNUC__ != 9 SECTION("") { return; constexpr std::uint8_t input[] = { 0x0, 0x2, 0x0, 0x0, 0x2, 0xb7, 0x1, 0x36, 0x40, 0x0, 0x0, 0x0, 0x0, 0xb6, 0x0, 0x2, 0x0, 0x0, 0x6, 0xe, 0x0, 0x0, 0xfe, 0x0, 0x0, 0xff, 0x0, 0x2, 0xc, 0xff, 0xfc, 0x29, 0x0, 0x0, 0x0, 0x0, 0x0, 0x7, 0x2, 0xe, 0xff, 0xfc, 0x29, 0x0, 0x0, 0x0, 0x0, 0x0, 0x7, 0x3, 0x0, 0x0, 0x2, 0xc, 0x2, 0xc, 0x0, 0xd, 0x0, 0x0, 0x0, 0x0, 0x25, 0x6, }; CHECK(run_input(input, sizeof(input)) == 0); } #endif } TEST_CASE("bug: aegsdas") { SECTION("simplified") { using vector_t = immer::flex_vector<int, gc_memory, 2, 2>; using transient_t = typename vector_t::transient_type; auto v2 = vector_t{}; auto t0 = transient_t{}; auto t1 = transient_t{}; v2 = v2.push_back(42); v2 = v2.push_back(42); v2 = v2.push_back(42); v2 = v2.push_back(42); v2 = v2.push_back(42); t0 = v2.transient(); t1.prepend(t0); t1.prepend(t0); t1.prepend(t0); t0.prepend(std::move(t1)); t1 = {}; } #if __GNUC__ != 9 SECTION("") { constexpr std::uint8_t input[] = { 0xff, 0xff, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x82, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x0, 0x0, 0x3d, 0x0, 0x0, 0x0, 0x2, 0x84, 0x0, 0x3b, 0x1, 0xb, 0x0, 0xa, 0x1, 0xb, 0x0, 0x0, 0x3, 0x2, 0x0, 0x3b, 0x1, 0xb, 0x1, 0x0, 0x0, 0xc, 0xb, 0x1, 0x8, 0xff, 0xff, 0xfc, 0xfd, 0x0, 0x3b, 0x3, 0x2, 0x0, 0x3b, 0x1, 0x9, 0x1, 0x3b, }; CHECK(run_input(input, sizeof(input)) == 0); } #endif }