// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include "benchmark/vector/common.hpp" namespace { constexpr auto concat_steps = 10u; template <typename Vektor, typename PushFn=push_back_fn> auto benchmark_concat() { return [] (nonius::chronometer meter) { auto n = meter.param<N>(); auto v = Vektor{}; for (auto i = 0u; i < n; ++i) v = PushFn{}(std::move(v), i); measure(meter, [&] { return v + v; }); }; } template <typename Fn> auto benchmark_concat_librrb(Fn maker) { return [=] (nonius::chronometer meter) { auto n = meter.param<N>(); auto v = maker(n); measure(meter, [&] { return rrb_concat(v, v); }); }; } template <typename Vektor, typename PushFn=push_back_fn> auto benchmark_concat_incr() { return [] (nonius::chronometer meter) { auto n = meter.param<N>(); auto v = Vektor{}; for (auto i = 0u; i < n / concat_steps; ++i) v = PushFn{}(std::move(v), i); measure(meter, [&] { auto r = Vektor{}; for (auto i = 0u; i < concat_steps; ++i) r = r + v; return r; }); }; } template <typename Vektor> auto benchmark_concat_incr_mut() { return [] (nonius::chronometer meter) { auto n = meter.param<N>(); auto v = Vektor{}.transient(); for (auto i = 0u; i < n / concat_steps; ++i) v.push_back(i); measure(meter, [&] (int run) { auto r = Vektor{}.transient(); for (auto i = 0u; i < concat_steps; ++i) r.append(v); return r; }); }; } template <typename Vektor> auto benchmark_concat_incr_mut2() { return [] (nonius::chronometer meter) { auto n = meter.param<N>(); using transient_t = typename Vektor::transient_type; using steps_t = std::vector<transient_t, gc_allocator<transient_t>>; auto vs = std::vector<steps_t, gc_allocator<steps_t>>(meter.runs()); for (auto k = 0u; k < vs.size(); ++k) { vs[k].reserve(concat_steps); for (auto j = 0u; j < concat_steps; ++j) { auto vv = Vektor{}.transient(); for (auto i = 0u; i < n / concat_steps; ++i) vv.push_back(i); vs[k].push_back(std::move(vv)); } } measure(meter, [&] (int run) { auto& vr = vs[run]; auto r = Vektor{}.transient(); assert(vr.size() == concat_steps); for (auto i = 0u; i < concat_steps; ++i) r.append(std::move(vr[i])); return r; }); }; } template <typename Vektor> auto benchmark_concat_incr_chunkedseq() { return [] (nonius::chronometer meter) { auto n = meter.param<N>(); using steps_t = std::vector<Vektor>; auto vs = std::vector<steps_t>(meter.runs()); for (auto k = 0u; k < vs.size(); ++k) { for (auto j = 0u; j < concat_steps; ++j) { auto vv = Vektor{}; for (auto i = 0u; i < n / concat_steps; ++i) vv.push_back(i); vs[k].push_back(std::move(vv)); } } measure(meter, [&] (int run) { auto& vr = vs[run]; auto r = Vektor{}; for (auto i = 0u; i < concat_steps; ++i) r.concat(vr[i]); return r; }); }; } template <typename Fn> auto benchmark_concat_incr_librrb(Fn maker) { return [=] (nonius::chronometer meter) { auto n = meter.param<N>(); auto v = maker(n / concat_steps); measure(meter, [&] { auto r = rrb_create(); for (auto i = 0ul; i < concat_steps; ++i) r = rrb_concat(r, v); return r; }); }; } } // anonymous namespace