// Copyright (c) 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: Satoru Takabayashi // Stack-footprint reduction work done by Raksit Ashok // // Implementation note: // // We don't use heaps but only use stacks. We want to reduce the // stack consumption so that the symbolizer can run on small stacks. // // Here are some numbers collected with GCC 4.1.0 on x86: // - sizeof(Elf32_Sym) = 16 // - sizeof(Elf32_Shdr) = 40 // - sizeof(Elf64_Sym) = 24 // - sizeof(Elf64_Shdr) = 64 // // This implementation is intended to be async-signal-safe but uses // some functions which are not guaranteed to be so, such as memchr() // and memmove(). We assume they are async-signal-safe. // // Additional header can be specified by the GLOG_BUILD_CONFIG_INCLUDE // macro to add platform specific defines (e.g. OS_OPENBSD). #ifdef GLOG_BUILD_CONFIG_INCLUDE #include GLOG_BUILD_CONFIG_INCLUDE #endif // GLOG_BUILD_CONFIG_INCLUDE #include "utilities.h" #if defined(HAVE_SYMBOLIZE) #include <string.h> #include <algorithm> #include <limits> #include "symbolize.h" #include "demangle.h" _START_GOOGLE_NAMESPACE_ // We don't use assert() since it's not guaranteed to be // async-signal-safe. Instead we define a minimal assertion // macro. So far, we don't need pretty printing for __FILE__, etc. // A wrapper for abort() to make it callable in ? :. static int AssertFail() { abort(); return 0; // Should not reach. } #define SAFE_ASSERT(expr) ((expr) ? 0 : AssertFail()) static SymbolizeCallback g_symbolize_callback = NULL; void InstallSymbolizeCallback(SymbolizeCallback callback) { g_symbolize_callback = callback; } static SymbolizeOpenObjectFileCallback g_symbolize_open_object_file_callback = NULL; void InstallSymbolizeOpenObjectFileCallback( SymbolizeOpenObjectFileCallback callback) { g_symbolize_open_object_file_callback = callback; } // This function wraps the Demangle function to provide an interface // where the input symbol is demangled in-place. // To keep stack consumption low, we would like this function to not // get inlined. static ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size) { char demangled[256]; // Big enough for sane demangled symbols. if (Demangle(out, demangled, sizeof(demangled))) { // Demangling succeeded. Copy to out if the space allows. size_t len = strlen(demangled); if (len + 1 <= (size_t)out_size) { // +1 for '\0'. SAFE_ASSERT(len < sizeof(demangled)); memmove(out, demangled, len + 1); } } } _END_GOOGLE_NAMESPACE_ #if defined(__ELF__) #if defined(HAVE_DLFCN_H) #include <dlfcn.h> #endif #if defined(OS_OPENBSD) #include <sys/exec_elf.h> #else #include <elf.h> #endif #include <errno.h> #include <fcntl.h> #include <limits.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <stddef.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include "symbolize.h" #include "config.h" #include "glog/raw_logging.h" // Re-runs fn until it doesn't cause EINTR. #define NO_INTR(fn) do {} while ((fn) < 0 && errno == EINTR) _START_GOOGLE_NAMESPACE_ // Read up to "count" bytes from "offset" in the file pointed by file // descriptor "fd" into the buffer starting at "buf" while handling short reads // and EINTR. On success, return the number of bytes read. Otherwise, return // -1. static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count, const off_t offset) { SAFE_ASSERT(fd >= 0); SAFE_ASSERT(count <= std::numeric_limits<ssize_t>::max()); char *buf0 = reinterpret_cast<char *>(buf); ssize_t num_bytes = 0; while (num_bytes < count) { ssize_t len; NO_INTR(len = pread(fd, buf0 + num_bytes, count - num_bytes, offset + num_bytes)); if (len < 0) { // There was an error other than EINTR. return -1; } if (len == 0) { // Reached EOF. break; } num_bytes += len; } SAFE_ASSERT(num_bytes <= count); return num_bytes; } // Try reading exactly "count" bytes from "offset" bytes in a file // pointed by "fd" into the buffer starting at "buf" while handling // short reads and EINTR. On success, return true. Otherwise, return // false. static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count, const off_t offset) { ssize_t len = ReadFromOffset(fd, buf, count, offset); return len == count; } // Returns elf_header.e_type if the file pointed by fd is an ELF binary. static int FileGetElfType(const int fd) { ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return -1; } if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { return -1; } return elf_header.e_type; } // Read the section headers in the given ELF binary, and if a section // of the specified type is found, set the output to this section header // and return true. Otherwise, return false. // To keep stack consumption low, we would like this function to not get // inlined. static ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type, ElfW(Shdr) *out) { // Read at most 16 section headers at a time to save read calls. ElfW(Shdr) buf[16]; for (int i = 0; i < sh_num;) { const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); const ssize_t num_bytes_to_read = (sizeof(buf) > num_bytes_left) ? num_bytes_left : sizeof(buf); const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, sh_offset + i * sizeof(buf[0])); if (len == -1) { return false; } SAFE_ASSERT(len % sizeof(buf[0]) == 0); const ssize_t num_headers_in_buf = len / sizeof(buf[0]); SAFE_ASSERT(num_headers_in_buf <= sizeof(buf) / sizeof(buf[0])); for (int j = 0; j < num_headers_in_buf; ++j) { if (buf[j].sh_type == type) { *out = buf[j]; return true; } } i += num_headers_in_buf; } return false; } // There is no particular reason to limit section name to 63 characters, // but there has (as yet) been no need for anything longer either. const int kMaxSectionNameLen = 64; // name_len should include terminating '\0'. bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, ElfW(Shdr) *out) { ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return false; } ElfW(Shdr) shstrtab; off_t shstrtab_offset = (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { return false; } for (int i = 0; i < elf_header.e_shnum; ++i) { off_t section_header_offset = (elf_header.e_shoff + elf_header.e_shentsize * i); if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { return false; } char header_name[kMaxSectionNameLen]; if (sizeof(header_name) < name_len) { RAW_LOG(WARNING, "Section name '%s' is too long (%" PRIuS "); " "section will not be found (even if present).", name, name_len); // No point in even trying. return false; } off_t name_offset = shstrtab.sh_offset + out->sh_name; ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); if (n_read == -1) { return false; } else if (n_read != name_len) { // Short read -- name could be at end of file. continue; } if (memcmp(header_name, name, name_len) == 0) { return true; } } return false; } // Read a symbol table and look for the symbol containing the // pc. Iterate over symbols in a symbol table and look for the symbol // containing "pc". On success, return true and write the symbol name // to out. Otherwise, return false. // To keep stack consumption low, we would like this function to not get // inlined. static ATTRIBUTE_NOINLINE bool FindSymbol(uint64_t pc, const int fd, char *out, int out_size, uint64_t symbol_offset, const ElfW(Shdr) *strtab, const ElfW(Shdr) *symtab) { if (symtab == NULL) { return false; } const int num_symbols = symtab->sh_size / symtab->sh_entsize; for (int i = 0; i < num_symbols;) { off_t offset = symtab->sh_offset + i * symtab->sh_entsize; // If we are reading Elf64_Sym's, we want to limit this array to // 32 elements (to keep stack consumption low), otherwise we can // have a 64 element Elf32_Sym array. #if __WORDSIZE == 64 #define NUM_SYMBOLS 32 #else #define NUM_SYMBOLS 64 #endif // Read at most NUM_SYMBOLS symbols at once to save read() calls. ElfW(Sym) buf[NUM_SYMBOLS]; int num_symbols_to_read = std::min(NUM_SYMBOLS, num_symbols - i); const ssize_t len = ReadFromOffset(fd, &buf, sizeof(buf[0]) * num_symbols_to_read, offset); SAFE_ASSERT(len % sizeof(buf[0]) == 0); const ssize_t num_symbols_in_buf = len / sizeof(buf[0]); SAFE_ASSERT(num_symbols_in_buf <= num_symbols_to_read); for (int j = 0; j < num_symbols_in_buf; ++j) { const ElfW(Sym)& symbol = buf[j]; uint64_t start_address = symbol.st_value; start_address += symbol_offset; uint64_t end_address = start_address + symbol.st_size; if (symbol.st_value != 0 && // Skip null value symbols. symbol.st_shndx != 0 && // Skip undefined symbols. start_address <= pc && pc < end_address) { ssize_t len1 = ReadFromOffset(fd, out, out_size, strtab->sh_offset + symbol.st_name); if (len1 <= 0 || memchr(out, '\0', out_size) == NULL) { memset(out, 0, out_size); return false; } return true; // Obtained the symbol name. } } i += num_symbols_in_buf; } return false; } // Get the symbol name of "pc" from the file pointed by "fd". Process // both regular and dynamic symbol tables if necessary. On success, // write the symbol name to "out" and return true. Otherwise, return // false. static bool GetSymbolFromObjectFile(const int fd, uint64_t pc, char* out, int out_size, uint64_t base_address) { // Read the ELF header. ElfW(Ehdr) elf_header; if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { return false; } ElfW(Shdr) symtab, strtab; // Consult a regular symbol table first. if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, SHT_SYMTAB, &symtab)) { if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { return false; } if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { return true; // Found the symbol in a regular symbol table. } } // If the symbol is not found, then consult a dynamic symbol table. if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, SHT_DYNSYM, &symtab)) { if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { return false; } if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { return true; // Found the symbol in a dynamic symbol table. } } return false; } namespace { // Thin wrapper around a file descriptor so that the file descriptor // gets closed for sure. struct FileDescriptor { const int fd_; explicit FileDescriptor(int fd) : fd_(fd) {} ~FileDescriptor() { if (fd_ >= 0) { close(fd_); } } int get() { return fd_; } private: explicit FileDescriptor(const FileDescriptor&); void operator=(const FileDescriptor&); }; // Helper class for reading lines from file. // // Note: we don't use ProcMapsIterator since the object is big (it has // a 5k array member) and uses async-unsafe functions such as sscanf() // and snprintf(). class LineReader { public: explicit LineReader(int fd, char *buf, int buf_len, off_t offset) : fd_(fd), buf_(buf), buf_len_(buf_len), offset_(offset), bol_(buf), eol_(buf), eod_(buf) {} // Read '\n'-terminated line from file. On success, modify "bol" // and "eol", then return true. Otherwise, return false. // // Note: if the last line doesn't end with '\n', the line will be // dropped. It's an intentional behavior to make the code simple. bool ReadLine(const char **bol, const char **eol) { if (BufferIsEmpty()) { // First time. const ssize_t num_bytes = ReadFromOffset(fd_, buf_, buf_len_, offset_); if (num_bytes <= 0) { // EOF or error. return false; } offset_ += num_bytes; eod_ = buf_ + num_bytes; bol_ = buf_; } else { bol_ = eol_ + 1; // Advance to the next line in the buffer. SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_". if (!HasCompleteLine()) { const int incomplete_line_length = eod_ - bol_; // Move the trailing incomplete line to the beginning. memmove(buf_, bol_, incomplete_line_length); // Read text from file and append it. char * const append_pos = buf_ + incomplete_line_length; const int capacity_left = buf_len_ - incomplete_line_length; const ssize_t num_bytes = ReadFromOffset(fd_, append_pos, capacity_left, offset_); if (num_bytes <= 0) { // EOF or error. return false; } offset_ += num_bytes; eod_ = append_pos + num_bytes; bol_ = buf_; } } eol_ = FindLineFeed(); if (eol_ == NULL) { // '\n' not found. Malformed line. return false; } *eol_ = '\0'; // Replace '\n' with '\0'. *bol = bol_; *eol = eol_; return true; } // Beginning of line. const char *bol() { return bol_; } // End of line. const char *eol() { return eol_; } private: explicit LineReader(const LineReader&); void operator=(const LineReader&); char *FindLineFeed() { return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_)); } bool BufferIsEmpty() { return buf_ == eod_; } bool HasCompleteLine() { return !BufferIsEmpty() && FindLineFeed() != NULL; } const int fd_; char * const buf_; const int buf_len_; off_t offset_; char *bol_; char *eol_; const char *eod_; // End of data in "buf_". }; } // namespace // Place the hex number read from "start" into "*hex". The pointer to // the first non-hex character or "end" is returned. static char *GetHex(const char *start, const char *end, uint64_t *hex) { *hex = 0; const char *p; for (p = start; p < end; ++p) { int ch = *p; if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || (ch >= 'a' && ch <= 'f')) { *hex = (*hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9); } else { // Encountered the first non-hex character. break; } } SAFE_ASSERT(p <= end); return const_cast<char *>(p); } // Searches for the object file (from /proc/self/maps) that contains // the specified pc. If found, sets |start_address| to the start address // of where this object file is mapped in memory, sets the module base // address into |base_address|, copies the object file name into // |out_file_name|, and attempts to open the object file. If the object // file is opened successfully, returns the file descriptor. Otherwise, // returns -1. |out_file_name_size| is the size of the file name buffer // (including the null-terminator). static ATTRIBUTE_NOINLINE int OpenObjectFileContainingPcAndGetStartAddress(uint64_t pc, uint64_t &start_address, uint64_t &base_address, char *out_file_name, int out_file_name_size) { int object_fd; int maps_fd; NO_INTR(maps_fd = open("/proc/self/maps", O_RDONLY)); FileDescriptor wrapped_maps_fd(maps_fd); if (wrapped_maps_fd.get() < 0) { return -1; } int mem_fd; NO_INTR(mem_fd = open("/proc/self/mem", O_RDONLY)); FileDescriptor wrapped_mem_fd(mem_fd); if (wrapped_mem_fd.get() < 0) { return -1; } // Iterate over maps and look for the map containing the pc. Then // look into the symbol tables inside. char buf[1024]; // Big enough for line of sane /proc/self/maps int num_maps = 0; LineReader reader(wrapped_maps_fd.get(), buf, sizeof(buf), 0); while (true) { num_maps++; const char *cursor; const char *eol; if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line. return -1; } // Start parsing line in /proc/self/maps. Here is an example: // // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat // // We want start address (08048000), end address (0804c000), flags // (r-xp) and file name (/bin/cat). // Read start address. cursor = GetHex(cursor, eol, &start_address); if (cursor == eol || *cursor != '-') { return -1; // Malformed line. } ++cursor; // Skip '-'. // Read end address. uint64_t end_address; cursor = GetHex(cursor, eol, &end_address); if (cursor == eol || *cursor != ' ') { return -1; // Malformed line. } ++cursor; // Skip ' '. // Read flags. Skip flags until we encounter a space or eol. const char * const flags_start = cursor; while (cursor < eol && *cursor != ' ') { ++cursor; } // We expect at least four letters for flags (ex. "r-xp"). if (cursor == eol || cursor < flags_start + 4) { return -1; // Malformed line. } // Determine the base address by reading ELF headers in process memory. ElfW(Ehdr) ehdr; // Skip non-readable maps. if (flags_start[0] == 'r' && ReadFromOffsetExact(mem_fd, &ehdr, sizeof(ElfW(Ehdr)), start_address) && memcmp(ehdr.e_ident, ELFMAG, SELFMAG) == 0) { switch (ehdr.e_type) { case ET_EXEC: base_address = 0; break; case ET_DYN: // Find the segment containing file offset 0. This will correspond // to the ELF header that we just read. Normally this will have // virtual address 0, but this is not guaranteed. We must subtract // the virtual address from the address where the ELF header was // mapped to get the base address. // // If we fail to find a segment for file offset 0, use the address // of the ELF header as the base address. base_address = start_address; for (unsigned i = 0; i != ehdr.e_phnum; ++i) { ElfW(Phdr) phdr; if (ReadFromOffsetExact( mem_fd, &phdr, sizeof(phdr), start_address + ehdr.e_phoff + i * sizeof(phdr)) && phdr.p_type == PT_LOAD && phdr.p_offset == 0) { base_address = start_address - phdr.p_vaddr; break; } } break; default: // ET_REL or ET_CORE. These aren't directly executable, so they don't // affect the base address. break; } } // Check start and end addresses. if (!(start_address <= pc && pc < end_address)) { continue; // We skip this map. PC isn't in this map. } // Check flags. We are only interested in "r*x" maps. if (flags_start[0] != 'r' || flags_start[2] != 'x') { continue; // We skip this map. } ++cursor; // Skip ' '. // Read file offset. uint64_t file_offset; cursor = GetHex(cursor, eol, &file_offset); if (cursor == eol || *cursor != ' ') { return -1; // Malformed line. } ++cursor; // Skip ' '. // Skip to file name. "cursor" now points to dev. We need to // skip at least two spaces for dev and inode. int num_spaces = 0; while (cursor < eol) { if (*cursor == ' ') { ++num_spaces; } else if (num_spaces >= 2) { // The first non-space character after skipping two spaces // is the beginning of the file name. break; } ++cursor; } if (cursor == eol) { return -1; // Malformed line. } // Finally, "cursor" now points to file name of our interest. NO_INTR(object_fd = open(cursor, O_RDONLY)); if (object_fd < 0) { // Failed to open object file. Copy the object file name to // |out_file_name|. strncpy(out_file_name, cursor, out_file_name_size); // Making sure |out_file_name| is always null-terminated. out_file_name[out_file_name_size - 1] = '\0'; return -1; } return object_fd; } } // POSIX doesn't define any async-signal safe function for converting // an integer to ASCII. We'll have to define our own version. // itoa_r() converts a (signed) integer to ASCII. It returns "buf", if the // conversion was successful or NULL otherwise. It never writes more than "sz" // bytes. Output will be truncated as needed, and a NUL character is always // appended. // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. static char *itoa_r(intptr_t i, char *buf, size_t sz, int base, size_t padding) { // Make sure we can write at least one NUL byte. size_t n = 1; if (n > sz) return NULL; if (base < 2 || base > 16) { buf[0] = '\000'; return NULL; } char *start = buf; uintptr_t j = i; // Handle negative numbers (only for base 10). if (i < 0 && base == 10) { // This does "j = -i" while avoiding integer overflow. j = static_cast<uintptr_t>(-(i + 1)) + 1; // Make sure we can write the '-' character. if (++n > sz) { buf[0] = '\000'; return NULL; } *start++ = '-'; } // Loop until we have converted the entire number. Output at least one // character (i.e. '0'). char *ptr = start; do { // Make sure there is still enough space left in our output buffer. if (++n > sz) { buf[0] = '\000'; return NULL; } // Output the next digit. *ptr++ = "0123456789abcdef"[j % base]; j /= base; if (padding > 0) padding--; } while (j > 0 || padding > 0); // Terminate the output with a NUL character. *ptr = '\000'; // Conversion to ASCII actually resulted in the digits being in reverse // order. We can't easily generate them in forward order, as we can't tell // the number of characters needed until we are done converting. // So, now, we reverse the string (except for the possible "-" sign). while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } // Safely appends string |source| to string |dest|. Never writes past the // buffer size |dest_size| and guarantees that |dest| is null-terminated. static void SafeAppendString(const char* source, char* dest, int dest_size) { int dest_string_length = strlen(dest); SAFE_ASSERT(dest_string_length < dest_size); dest += dest_string_length; dest_size -= dest_string_length; strncpy(dest, source, dest_size); // Making sure |dest| is always null-terminated. dest[dest_size - 1] = '\0'; } // Converts a 64-bit value into a hex string, and safely appends it to |dest|. // Never writes past the buffer size |dest_size| and guarantees that |dest| is // null-terminated. static void SafeAppendHexNumber(uint64_t value, char* dest, int dest_size) { // 64-bit numbers in hex can have up to 16 digits. char buf[17] = {'\0'}; SafeAppendString(itoa_r(value, buf, sizeof(buf), 16, 0), dest, dest_size); } // The implementation of our symbolization routine. If it // successfully finds the symbol containing "pc" and obtains the // symbol name, returns true and write the symbol name to "out". // Otherwise, returns false. If Callback function is installed via // InstallSymbolizeCallback(), the function is also called in this function, // and "out" is used as its output. // To keep stack consumption low, we would like this function to not // get inlined. static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out, int out_size) { uint64_t pc0 = reinterpret_cast<uintptr_t>(pc); uint64_t start_address = 0; uint64_t base_address = 0; int object_fd = -1; if (out_size < 1) { return false; } out[0] = '\0'; SafeAppendString("(", out, out_size); if (g_symbolize_open_object_file_callback) { object_fd = g_symbolize_open_object_file_callback(pc0, start_address, base_address, out + 1, out_size - 1); } else { object_fd = OpenObjectFileContainingPcAndGetStartAddress(pc0, start_address, base_address, out + 1, out_size - 1); } FileDescriptor wrapped_object_fd(object_fd); #if defined(PRINT_UNSYMBOLIZED_STACK_TRACES) { #else // Check whether a file name was returned. if (object_fd < 0) { #endif if (out[1]) { // The object file containing PC was determined successfully however the // object file was not opened successfully. This is still considered // success because the object file name and offset are known and tools // like asan_symbolize.py can be used for the symbolization. out[out_size - 1] = '\0'; // Making sure |out| is always null-terminated. SafeAppendString("+0x", out, out_size); SafeAppendHexNumber(pc0 - base_address, out, out_size); SafeAppendString(")", out, out_size); return true; } // Failed to determine the object file containing PC. Bail out. return false; } int elf_type = FileGetElfType(wrapped_object_fd.get()); if (elf_type == -1) { return false; } if (g_symbolize_callback) { // Run the call back if it's installed. // Note: relocation (and much of the rest of this code) will be // wrong for prelinked shared libraries and PIE executables. uint64_t relocation = (elf_type == ET_DYN) ? start_address : 0; int num_bytes_written = g_symbolize_callback(wrapped_object_fd.get(), pc, out, out_size, relocation); if (num_bytes_written > 0) { out += num_bytes_written; out_size -= num_bytes_written; } } if (!GetSymbolFromObjectFile(wrapped_object_fd.get(), pc0, out, out_size, base_address)) { if (out[1] && !g_symbolize_callback) { // The object file containing PC was opened successfully however the // symbol was not found. The object may have been stripped. This is still // considered success because the object file name and offset are known // and tools like asan_symbolize.py can be used for the symbolization. out[out_size - 1] = '\0'; // Making sure |out| is always null-terminated. SafeAppendString("+0x", out, out_size); SafeAppendHexNumber(pc0 - base_address, out, out_size); SafeAppendString(")", out, out_size); return true; } return false; } // Symbolization succeeded. Now we try to demangle the symbol. DemangleInplace(out, out_size); return true; } _END_GOOGLE_NAMESPACE_ #elif defined(OS_MACOSX) && defined(HAVE_DLADDR) #include <dlfcn.h> #include <string.h> _START_GOOGLE_NAMESPACE_ static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out, int out_size) { Dl_info info; if (dladdr(pc, &info)) { if ((int)strlen(info.dli_sname) < out_size) { strcpy(out, info.dli_sname); // Symbolization succeeded. Now we try to demangle the symbol. DemangleInplace(out, out_size); return true; } } return false; } _END_GOOGLE_NAMESPACE_ #elif defined(OS_WINDOWS) || defined(OS_CYGWIN) #include <windows.h> #include <dbghelp.h> #ifdef _MSC_VER #pragma comment(lib, "dbghelp") #endif _START_GOOGLE_NAMESPACE_ class SymInitializer { public: HANDLE process; bool ready; SymInitializer() : process(NULL), ready(false) { // Initialize the symbol handler. // https://msdn.microsoft.com/en-us/library/windows/desktop/ms680344(v=vs.85).aspx process = GetCurrentProcess(); // Defer symbol loading. // We do not request undecorated symbols with SYMOPT_UNDNAME // because the mangling library calls UnDecorateSymbolName. SymSetOptions(SYMOPT_DEFERRED_LOADS); if (SymInitialize(process, NULL, true)) { ready = true; } } ~SymInitializer() { SymCleanup(process); // We do not need to close `HANDLE process` because it's a "pseudo handle." } private: SymInitializer(const SymInitializer&); SymInitializer& operator=(const SymInitializer&); }; static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out, int out_size) { const static SymInitializer symInitializer; if (!symInitializer.ready) { return false; } // Resolve symbol information from address. // https://msdn.microsoft.com/en-us/library/windows/desktop/ms680578(v=vs.85).aspx char buf[sizeof(SYMBOL_INFO) + MAX_SYM_NAME]; SYMBOL_INFO *symbol = reinterpret_cast<SYMBOL_INFO *>(buf); symbol->SizeOfStruct = sizeof(SYMBOL_INFO); symbol->MaxNameLen = MAX_SYM_NAME; // We use the ANSI version to ensure the string type is always `char *`. // This could break if a symbol has Unicode in it. BOOL ret = SymFromAddr(symInitializer.process, reinterpret_cast<DWORD64>(pc), 0, symbol); if (ret == 1 && static_cast<int>(symbol->NameLen) < out_size) { // `NameLen` does not include the null terminating character. strncpy(out, symbol->Name, static_cast<size_t>(symbol->NameLen) + 1); out[static_cast<size_t>(symbol->NameLen)] = '\0'; // Symbolization succeeded. Now we try to demangle the symbol. DemangleInplace(out, out_size); return true; } return false; } _END_GOOGLE_NAMESPACE_ #else # error BUG: HAVE_SYMBOLIZE was wrongly set #endif _START_GOOGLE_NAMESPACE_ bool Symbolize(void *pc, char *out, int out_size) { SAFE_ASSERT(out_size >= 0); return SymbolizeAndDemangle(pc, out, out_size); } _END_GOOGLE_NAMESPACE_ #else /* HAVE_SYMBOLIZE */ #include <assert.h> #include "config.h" _START_GOOGLE_NAMESPACE_ // TODO: Support other environments. bool Symbolize(void *pc, char *out, int out_size) { assert(0); return false; } _END_GOOGLE_NAMESPACE_ #endif