// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/utility/utility.h" #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" namespace { #ifdef _MSC_VER // Warnings for unused variables in this test are false positives. On other // platforms, they are suppressed by ABSL_ATTRIBUTE_UNUSED, but that doesn't // work on MSVC. // Both the unused variables and the name length warnings are due to calls // to absl::make_index_sequence with very large values, creating very long type // names. The resulting warnings are so long they make build output unreadable. #pragma warning( push ) #pragma warning( disable : 4503 ) // decorated name length exceeded #pragma warning( disable : 4101 ) // unreferenced local variable #endif // _MSC_VER using ::testing::ElementsAre; using ::testing::Pointee; using ::testing::StaticAssertTypeEq; TEST(IntegerSequenceTest, ValueType) { StaticAssertTypeEq<int, absl::integer_sequence<int>::value_type>(); StaticAssertTypeEq<char, absl::integer_sequence<char>::value_type>(); } TEST(IntegerSequenceTest, Size) { EXPECT_EQ(0, (absl::integer_sequence<int>::size())); EXPECT_EQ(1, (absl::integer_sequence<int, 0>::size())); EXPECT_EQ(1, (absl::integer_sequence<int, 1>::size())); EXPECT_EQ(2, (absl::integer_sequence<int, 1, 2>::size())); EXPECT_EQ(3, (absl::integer_sequence<int, 0, 1, 2>::size())); EXPECT_EQ(3, (absl::integer_sequence<int, -123, 123, 456>::size())); constexpr size_t sz = absl::integer_sequence<int, 0, 1>::size(); EXPECT_EQ(2, sz); } TEST(IntegerSequenceTest, MakeIndexSequence) { StaticAssertTypeEq<absl::index_sequence<>, absl::make_index_sequence<0>>(); StaticAssertTypeEq<absl::index_sequence<0>, absl::make_index_sequence<1>>(); StaticAssertTypeEq<absl::index_sequence<0, 1>, absl::make_index_sequence<2>>(); StaticAssertTypeEq<absl::index_sequence<0, 1, 2>, absl::make_index_sequence<3>>(); } TEST(IntegerSequenceTest, MakeIntegerSequence) { StaticAssertTypeEq<absl::integer_sequence<int>, absl::make_integer_sequence<int, 0>>(); StaticAssertTypeEq<absl::integer_sequence<int, 0>, absl::make_integer_sequence<int, 1>>(); StaticAssertTypeEq<absl::integer_sequence<int, 0, 1>, absl::make_integer_sequence<int, 2>>(); StaticAssertTypeEq<absl::integer_sequence<int, 0, 1, 2>, absl::make_integer_sequence<int, 3>>(); } template <typename... Ts> class Counter {}; template <size_t... Is> void CountAll(absl::index_sequence<Is...>) { // We only need an alias here, but instantiate a variable to silence warnings // for unused typedefs in some compilers. ABSL_ATTRIBUTE_UNUSED Counter<absl::make_index_sequence<Is>...> seq; } // This test verifies that absl::make_index_sequence can handle large arguments // without blowing up template instantiation stack, going OOM or taking forever // to compile (there is hard 15 minutes limit imposed by forge). TEST(IntegerSequenceTest, MakeIndexSequencePerformance) { // O(log N) template instantiations. // We only need an alias here, but instantiate a variable to silence warnings // for unused typedefs in some compilers. ABSL_ATTRIBUTE_UNUSED absl::make_index_sequence<(1 << 16) - 1> seq; // O(N) template instantiations. CountAll(absl::make_index_sequence<(1 << 8) - 1>()); } template <typename F, typename Tup, size_t... Is> auto ApplyFromTupleImpl(F f, const Tup& tup, absl::index_sequence<Is...>) -> decltype(f(std::get<Is>(tup)...)) { return f(std::get<Is>(tup)...); } template <typename Tup> using TupIdxSeq = absl::make_index_sequence<std::tuple_size<Tup>::value>; template <typename F, typename Tup> auto ApplyFromTuple(F f, const Tup& tup) -> decltype(ApplyFromTupleImpl(f, tup, TupIdxSeq<Tup>{})) { return ApplyFromTupleImpl(f, tup, TupIdxSeq<Tup>{}); } template <typename T> std::string Fmt(const T& x) { std::ostringstream os; os << x; return os.str(); } struct PoorStrCat { template <typename... Args> std::string operator()(const Args&... args) const { std::string r; for (const auto& e : {Fmt(args)...}) r += e; return r; } }; template <typename Tup, size_t... Is> std::vector<std::string> TupStringVecImpl(const Tup& tup, absl::index_sequence<Is...>) { return {Fmt(std::get<Is>(tup))...}; } template <typename... Ts> std::vector<std::string> TupStringVec(const std::tuple<Ts...>& tup) { return TupStringVecImpl(tup, absl::index_sequence_for<Ts...>()); } TEST(MakeIndexSequenceTest, ApplyFromTupleExample) { PoorStrCat f{}; EXPECT_EQ("12abc3.14", f(12, "abc", 3.14)); EXPECT_EQ("12abc3.14", ApplyFromTuple(f, std::make_tuple(12, "abc", 3.14))); } TEST(IndexSequenceForTest, Basic) { StaticAssertTypeEq<absl::index_sequence<>, absl::index_sequence_for<>>(); StaticAssertTypeEq<absl::index_sequence<0>, absl::index_sequence_for<int>>(); StaticAssertTypeEq<absl::index_sequence<0, 1, 2, 3>, absl::index_sequence_for<int, void, char, int>>(); } TEST(IndexSequenceForTest, Example) { EXPECT_THAT(TupStringVec(std::make_tuple(12, "abc", 3.14)), ElementsAre("12", "abc", "3.14")); } int Function(int a, int b) { return a - b; } int Sink(std::unique_ptr<int> p) { return *p; } std::unique_ptr<int> Factory(int n) { return absl::make_unique<int>(n); } void NoOp() {} struct ConstFunctor { int operator()(int a, int b) const { return a - b; } }; struct MutableFunctor { int operator()(int a, int b) { return a - b; } }; struct EphemeralFunctor { EphemeralFunctor() {} EphemeralFunctor(const EphemeralFunctor&) {} EphemeralFunctor(EphemeralFunctor&&) {} int operator()(int a, int b) && { return a - b; } }; struct OverloadedFunctor { OverloadedFunctor() {} OverloadedFunctor(const OverloadedFunctor&) {} OverloadedFunctor(OverloadedFunctor&&) {} template <typename... Args> std::string operator()(const Args&... args) & { return absl::StrCat("&", args...); } template <typename... Args> std::string operator()(const Args&... args) const& { return absl::StrCat("const&", args...); } template <typename... Args> std::string operator()(const Args&... args) && { return absl::StrCat("&&", args...); } }; struct Class { int Method(int a, int b) { return a - b; } int ConstMethod(int a, int b) const { return a - b; } int member; }; struct FlipFlop { int ConstMethod() const { return member; } FlipFlop operator*() const { return {-member}; } int member; }; TEST(ApplyTest, Function) { EXPECT_EQ(1, absl::apply(Function, std::make_tuple(3, 2))); EXPECT_EQ(1, absl::apply(&Function, std::make_tuple(3, 2))); } TEST(ApplyTest, NonCopyableArgument) { EXPECT_EQ(42, absl::apply(Sink, std::make_tuple(absl::make_unique<int>(42)))); } TEST(ApplyTest, NonCopyableResult) { EXPECT_THAT(absl::apply(Factory, std::make_tuple(42)), ::testing::Pointee(42)); } TEST(ApplyTest, VoidResult) { absl::apply(NoOp, std::tuple<>()); } TEST(ApplyTest, ConstFunctor) { EXPECT_EQ(1, absl::apply(ConstFunctor(), std::make_tuple(3, 2))); } TEST(ApplyTest, MutableFunctor) { MutableFunctor f; EXPECT_EQ(1, absl::apply(f, std::make_tuple(3, 2))); EXPECT_EQ(1, absl::apply(MutableFunctor(), std::make_tuple(3, 2))); } TEST(ApplyTest, EphemeralFunctor) { EphemeralFunctor f; EXPECT_EQ(1, absl::apply(std::move(f), std::make_tuple(3, 2))); EXPECT_EQ(1, absl::apply(EphemeralFunctor(), std::make_tuple(3, 2))); } TEST(ApplyTest, OverloadedFunctor) { OverloadedFunctor f; const OverloadedFunctor& cf = f; EXPECT_EQ("&", absl::apply(f, std::tuple<>{})); EXPECT_EQ("& 42", absl::apply(f, std::make_tuple(" 42"))); EXPECT_EQ("const&", absl::apply(cf, std::tuple<>{})); EXPECT_EQ("const& 42", absl::apply(cf, std::make_tuple(" 42"))); EXPECT_EQ("&&", absl::apply(std::move(f), std::tuple<>{})); OverloadedFunctor f2; EXPECT_EQ("&& 42", absl::apply(std::move(f2), std::make_tuple(" 42"))); } TEST(ApplyTest, ReferenceWrapper) { ConstFunctor cf; MutableFunctor mf; EXPECT_EQ(1, absl::apply(std::cref(cf), std::make_tuple(3, 2))); EXPECT_EQ(1, absl::apply(std::ref(cf), std::make_tuple(3, 2))); EXPECT_EQ(1, absl::apply(std::ref(mf), std::make_tuple(3, 2))); } TEST(ApplyTest, MemberFunction) { std::unique_ptr<Class> p(new Class); std::unique_ptr<const Class> cp(new Class); EXPECT_EQ( 1, absl::apply(&Class::Method, std::tuple<std::unique_ptr<Class>&, int, int>(p, 3, 2))); EXPECT_EQ(1, absl::apply(&Class::Method, std::tuple<Class*, int, int>(p.get(), 3, 2))); EXPECT_EQ( 1, absl::apply(&Class::Method, std::tuple<Class&, int, int>(*p, 3, 2))); EXPECT_EQ( 1, absl::apply(&Class::ConstMethod, std::tuple<std::unique_ptr<Class>&, int, int>(p, 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::tuple<Class*, int, int>(p.get(), 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::tuple<Class&, int, int>(*p, 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::tuple<std::unique_ptr<const Class>&, int, int>( cp, 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::tuple<const Class*, int, int>(cp.get(), 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::tuple<const Class&, int, int>(*cp, 3, 2))); EXPECT_EQ(1, absl::apply(&Class::Method, std::make_tuple(absl::make_unique<Class>(), 3, 2))); EXPECT_EQ(1, absl::apply(&Class::ConstMethod, std::make_tuple(absl::make_unique<Class>(), 3, 2))); EXPECT_EQ( 1, absl::apply(&Class::ConstMethod, std::make_tuple(absl::make_unique<const Class>(), 3, 2))); } TEST(ApplyTest, DataMember) { std::unique_ptr<Class> p(new Class{42}); std::unique_ptr<const Class> cp(new Class{42}); EXPECT_EQ( 42, absl::apply(&Class::member, std::tuple<std::unique_ptr<Class>&>(p))); EXPECT_EQ(42, absl::apply(&Class::member, std::tuple<Class&>(*p))); EXPECT_EQ(42, absl::apply(&Class::member, std::tuple<Class*>(p.get()))); absl::apply(&Class::member, std::tuple<std::unique_ptr<Class>&>(p)) = 42; absl::apply(&Class::member, std::tuple<Class*>(p.get())) = 42; absl::apply(&Class::member, std::tuple<Class&>(*p)) = 42; EXPECT_EQ(42, absl::apply(&Class::member, std::tuple<std::unique_ptr<const Class>&>(cp))); EXPECT_EQ(42, absl::apply(&Class::member, std::tuple<const Class&>(*cp))); EXPECT_EQ(42, absl::apply(&Class::member, std::tuple<const Class*>(cp.get()))); } TEST(ApplyTest, FlipFlop) { FlipFlop obj = {42}; // This call could resolve to (obj.*&FlipFlop::ConstMethod)() or // ((*obj).*&FlipFlop::ConstMethod)(). We verify that it's the former. EXPECT_EQ(42, absl::apply(&FlipFlop::ConstMethod, std::make_tuple(obj))); EXPECT_EQ(42, absl::apply(&FlipFlop::member, std::make_tuple(obj))); } TEST(ExchangeTest, MoveOnly) { auto a = Factory(1); EXPECT_EQ(1, *a); auto b = absl::exchange(a, Factory(2)); EXPECT_EQ(2, *a); EXPECT_EQ(1, *b); } TEST(MakeFromTupleTest, String) { EXPECT_EQ( absl::make_from_tuple<std::string>(std::make_tuple("hello world", 5)), "hello"); } TEST(MakeFromTupleTest, MoveOnlyParameter) { struct S { S(std::unique_ptr<int> n, std::unique_ptr<int> m) : value(*n + *m) {} int value = 0; }; auto tup = std::make_tuple(absl::make_unique<int>(3), absl::make_unique<int>(4)); auto s = absl::make_from_tuple<S>(std::move(tup)); EXPECT_EQ(s.value, 7); } TEST(MakeFromTupleTest, NoParameters) { struct S { S() : value(1) {} int value = 2; }; EXPECT_EQ(absl::make_from_tuple<S>(std::make_tuple()).value, 1); } TEST(MakeFromTupleTest, Pair) { EXPECT_EQ( (absl::make_from_tuple<std::pair<bool, int>>(std::make_tuple(true, 17))), std::make_pair(true, 17)); } } // namespace