// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/time/time.h" #if defined(_MSC_VER) #include <winsock2.h> // for timeval #endif #include <chrono> // NOLINT(build/c++11) #include <cstring> #include <ctime> #include <iomanip> #include <limits> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/numeric/int128.h" #include "absl/time/clock.h" #include "absl/time/internal/test_util.h" namespace { #if defined(GTEST_USES_SIMPLE_RE) && GTEST_USES_SIMPLE_RE const char kZoneAbbrRE[] = ".*"; // just punt #else const char kZoneAbbrRE[] = "[A-Za-z]{3,4}|[-+][0-9]{2}([0-9]{2})?"; #endif // This helper is a macro so that failed expectations show up with the // correct line numbers. #define EXPECT_CIVIL_INFO(ci, y, m, d, h, min, s, off, isdst) \ do { \ EXPECT_EQ(y, ci.cs.year()); \ EXPECT_EQ(m, ci.cs.month()); \ EXPECT_EQ(d, ci.cs.day()); \ EXPECT_EQ(h, ci.cs.hour()); \ EXPECT_EQ(min, ci.cs.minute()); \ EXPECT_EQ(s, ci.cs.second()); \ EXPECT_EQ(off, ci.offset); \ EXPECT_EQ(isdst, ci.is_dst); \ EXPECT_THAT(ci.zone_abbr, testing::MatchesRegex(kZoneAbbrRE)); \ } while (0) // A gMock matcher to match timespec values. Use this matcher like: // timespec ts1, ts2; // EXPECT_THAT(ts1, TimespecMatcher(ts2)); MATCHER_P(TimespecMatcher, ts, "") { if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) return true; *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} "; *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}"; return false; } // A gMock matcher to match timeval values. Use this matcher like: // timeval tv1, tv2; // EXPECT_THAT(tv1, TimevalMatcher(tv2)); MATCHER_P(TimevalMatcher, tv, "") { if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) return true; *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} "; *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}"; return false; } TEST(Time, ConstExpr) { constexpr absl::Time t0 = absl::UnixEpoch(); static_assert(t0 == absl::Time(), "UnixEpoch"); constexpr absl::Time t1 = absl::InfiniteFuture(); static_assert(t1 != absl::Time(), "InfiniteFuture"); constexpr absl::Time t2 = absl::InfinitePast(); static_assert(t2 != absl::Time(), "InfinitePast"); constexpr absl::Time t3 = absl::FromUnixNanos(0); static_assert(t3 == absl::Time(), "FromUnixNanos"); constexpr absl::Time t4 = absl::FromUnixMicros(0); static_assert(t4 == absl::Time(), "FromUnixMicros"); constexpr absl::Time t5 = absl::FromUnixMillis(0); static_assert(t5 == absl::Time(), "FromUnixMillis"); constexpr absl::Time t6 = absl::FromUnixSeconds(0); static_assert(t6 == absl::Time(), "FromUnixSeconds"); constexpr absl::Time t7 = absl::FromTimeT(0); static_assert(t7 == absl::Time(), "FromTimeT"); } TEST(Time, ValueSemantics) { absl::Time a; // Default construction absl::Time b = a; // Copy construction EXPECT_EQ(a, b); absl::Time c(a); // Copy construction (again) EXPECT_EQ(a, b); EXPECT_EQ(a, c); EXPECT_EQ(b, c); b = c; // Assignment EXPECT_EQ(a, b); EXPECT_EQ(a, c); EXPECT_EQ(b, c); } TEST(Time, UnixEpoch) { const auto ci = absl::UTCTimeZone().At(absl::UnixEpoch()); EXPECT_EQ(absl::CivilSecond(1970, 1, 1, 0, 0, 0), ci.cs); EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); } TEST(Time, Breakdown) { absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York"); absl::Time t = absl::UnixEpoch(); // The Unix epoch as seen in NYC. auto ci = tz.At(t); EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 19, 0, 0, -18000, false); EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); // Just before the epoch. t -= absl::Nanoseconds(1); ci = tz.At(t); EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 18, 59, 59, -18000, false); EXPECT_EQ(absl::Nanoseconds(999999999), ci.subsecond); EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); // Some time later. t += absl::Hours(24) * 2735; t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) + absl::Nanoseconds(9); ci = tz.At(t); EXPECT_CIVIL_INFO(ci, 1977, 6, 28, 14, 30, 15, -14400, true); EXPECT_EQ(8, ci.subsecond / absl::Nanoseconds(1)); EXPECT_EQ(absl::Weekday::tuesday, absl::GetWeekday(ci.cs)); } TEST(Time, AdditiveOperators) { const absl::Duration d = absl::Nanoseconds(1); const absl::Time t0; const absl::Time t1 = t0 + d; EXPECT_EQ(d, t1 - t0); EXPECT_EQ(-d, t0 - t1); EXPECT_EQ(t0, t1 - d); absl::Time t(t0); EXPECT_EQ(t0, t); t += d; EXPECT_EQ(t0 + d, t); EXPECT_EQ(d, t - t0); t -= d; EXPECT_EQ(t0, t); // Tests overflow between subseconds and seconds. t = absl::UnixEpoch(); t += absl::Milliseconds(500); EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); t += absl::Milliseconds(600); EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t); t -= absl::Milliseconds(600); EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); t -= absl::Milliseconds(500); EXPECT_EQ(absl::UnixEpoch(), t); } TEST(Time, RelationalOperators) { constexpr absl::Time t1 = absl::FromUnixNanos(0); constexpr absl::Time t2 = absl::FromUnixNanos(1); constexpr absl::Time t3 = absl::FromUnixNanos(2); static_assert(absl::Time() == t1, ""); static_assert(t1 == t1, ""); static_assert(t2 == t2, ""); static_assert(t3 == t3, ""); static_assert(t1 < t2, ""); static_assert(t2 < t3, ""); static_assert(t1 < t3, ""); static_assert(t1 <= t1, ""); static_assert(t1 <= t2, ""); static_assert(t2 <= t2, ""); static_assert(t2 <= t3, ""); static_assert(t3 <= t3, ""); static_assert(t1 <= t3, ""); static_assert(t2 > t1, ""); static_assert(t3 > t2, ""); static_assert(t3 > t1, ""); static_assert(t2 >= t2, ""); static_assert(t2 >= t1, ""); static_assert(t3 >= t3, ""); static_assert(t3 >= t2, ""); static_assert(t1 >= t1, ""); static_assert(t3 >= t1, ""); } TEST(Time, Infinity) { constexpr absl::Time ifuture = absl::InfiniteFuture(); constexpr absl::Time ipast = absl::InfinitePast(); static_assert(ifuture == ifuture, ""); static_assert(ipast == ipast, ""); static_assert(ipast < ifuture, ""); static_assert(ifuture > ipast, ""); // Arithmetic saturates EXPECT_EQ(ifuture, ifuture + absl::Seconds(1)); EXPECT_EQ(ifuture, ifuture - absl::Seconds(1)); EXPECT_EQ(ipast, ipast + absl::Seconds(1)); EXPECT_EQ(ipast, ipast - absl::Seconds(1)); EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture); EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast); EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture); EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast); constexpr absl::Time t = absl::UnixEpoch(); // Any finite time. static_assert(t < ifuture, ""); static_assert(t > ipast, ""); EXPECT_EQ(ifuture, t + absl::InfiniteDuration()); EXPECT_EQ(ipast, t - absl::InfiniteDuration()); } TEST(Time, FloorConversion) { #define TEST_FLOOR_CONVERSION(TO, FROM) \ EXPECT_EQ(1, TO(FROM(1001))); \ EXPECT_EQ(1, TO(FROM(1000))); \ EXPECT_EQ(0, TO(FROM(999))); \ EXPECT_EQ(0, TO(FROM(1))); \ EXPECT_EQ(0, TO(FROM(0))); \ EXPECT_EQ(-1, TO(FROM(-1))); \ EXPECT_EQ(-1, TO(FROM(-999))); \ EXPECT_EQ(-1, TO(FROM(-1000))); \ EXPECT_EQ(-2, TO(FROM(-1001))); TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos); TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros); TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis); TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis); #undef TEST_FLOOR_CONVERSION // Tests ToUnixNanos. EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2)); EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1))); EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2)); EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(0))); EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2)); EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1))); EXPECT_EQ(-2, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2)); // Tests ToUniversal, which uses a different epoch than the tests above. EXPECT_EQ(1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101))); EXPECT_EQ(1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100))); EXPECT_EQ(0, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99))); EXPECT_EQ(0, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1))); EXPECT_EQ(0, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(0))); EXPECT_EQ(-1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1))); EXPECT_EQ(-1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99))); EXPECT_EQ( -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100))); EXPECT_EQ( -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101))); // Tests ToTimespec()/TimeFromTimespec() const struct { absl::Time t; timespec ts; } to_ts[] = { {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}}, {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}}, {absl::FromUnixSeconds(1) + absl::Nanoseconds(0), {1, 0}}, {absl::FromUnixSeconds(0) + absl::Nanoseconds(0), {0, 0}}, {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}}, {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}}, {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}}, {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}}, {absl::FromUnixSeconds(-1) + absl::Nanoseconds(0), {-1, 0}}, {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}}, }; for (const auto& test : to_ts) { EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts)); } const struct { timespec ts; absl::Time t; } from_ts[] = { {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)}, {{1, 0}, absl::FromUnixSeconds(1) + absl::Nanoseconds(0)}, {{0, 0}, absl::FromUnixSeconds(0) + absl::Nanoseconds(0)}, {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)}, {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(0)}, {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, }; for (const auto& test : from_ts) { EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts)); } // Tests ToTimeval()/TimeFromTimeval() (same as timespec above) const struct { absl::Time t; timeval tv; } to_tv[] = { {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}}, {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}}, {absl::FromUnixSeconds(1) + absl::Microseconds(0), {1, 0}}, {absl::FromUnixSeconds(0) + absl::Microseconds(0), {0, 0}}, {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}}, {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}}, {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}}, {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}}, {absl::FromUnixSeconds(-1) + absl::Microseconds(0), {-1, 0}}, {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}}, }; for (const auto& test : to_tv) { EXPECT_THAT(ToTimeval(test.t), TimevalMatcher(test.tv)); } const struct { timeval tv; absl::Time t; } from_tv[] = { {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)}, {{1, 0}, absl::FromUnixSeconds(1) + absl::Microseconds(0)}, {{0, 0}, absl::FromUnixSeconds(0) + absl::Microseconds(0)}, {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)}, {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Microseconds(0)}, {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, }; for (const auto& test : from_tv) { EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv)); } // Tests flooring near negative infinity. const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1; EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1))); EXPECT_EQ(std::numeric_limits<int64_t>::min(), absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1) - absl::Nanoseconds(1) / 2)); // Tests flooring near positive infinity. EXPECT_EQ(std::numeric_limits<int64_t>::max(), absl::ToUnixSeconds( absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(1) / 2)); EXPECT_EQ(std::numeric_limits<int64_t>::max(), absl::ToUnixSeconds( absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()))); EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1, absl::ToUnixSeconds( absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) - absl::Nanoseconds(1) / 2)); } TEST(Time, RoundtripConversion) { #define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \ EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE)) // FromUnixNanos() and ToUnixNanos() int64_t now_ns = absl::GetCurrentTimeNanos(); TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos, testing::Eq) << now_ns; // FromUnixMicros() and ToUnixMicros() int64_t now_us = absl::GetCurrentTimeNanos() / 1000; TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros, testing::Eq) << now_us; // FromUnixMillis() and ToUnixMillis() int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000; TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis, testing::Eq) << now_ms; // FromUnixSeconds() and ToUnixSeconds() int64_t now_s = std::time(nullptr); TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds, testing::Eq) << now_s; // FromTimeT() and ToTimeT() time_t now_time_t = std::time(nullptr); TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT, testing::Eq) << now_time_t; // TimeFromTimeval() and ToTimeval() timeval tv; tv.tv_sec = -1; tv.tv_usec = 0; TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, TimevalMatcher); tv.tv_sec = -1; tv.tv_usec = 999999; TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, TimevalMatcher); tv.tv_sec = 0; tv.tv_usec = 0; TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, TimevalMatcher); tv.tv_sec = 0; tv.tv_usec = 1; TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, TimevalMatcher); tv.tv_sec = 1; tv.tv_usec = 0; TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, TimevalMatcher); // TimeFromTimespec() and ToTimespec() timespec ts; ts.tv_sec = -1; ts.tv_nsec = 0; TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, TimespecMatcher); ts.tv_sec = -1; ts.tv_nsec = 999999999; TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, TimespecMatcher); ts.tv_sec = 0; ts.tv_nsec = 0; TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, TimespecMatcher); ts.tv_sec = 0; ts.tv_nsec = 1; TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, TimespecMatcher); ts.tv_sec = 1; ts.tv_nsec = 0; TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, TimespecMatcher); // FromUDate() and ToUDate() double now_ud = absl::GetCurrentTimeNanos() / 1000000; TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate, testing::DoubleEq); TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate, testing::DoubleEq) << std::fixed << std::setprecision(17) << now_ud; // FromUniversal() and ToUniversal() int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) + (absl::GetCurrentTimeNanos() / 100); TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal, testing::Eq); TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal, testing::Eq); TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal, testing::Eq); TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal, testing::Eq) << now_uni; #undef TEST_CONVERSION_ROUND_TRIP } template <typename Duration> std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) { return std::chrono::system_clock::from_time_t(0) + d; } TEST(Time, FromChrono) { EXPECT_EQ(absl::FromTimeT(-1), absl::FromChrono(std::chrono::system_clock::from_time_t(-1))); EXPECT_EQ(absl::FromTimeT(0), absl::FromChrono(std::chrono::system_clock::from_time_t(0))); EXPECT_EQ(absl::FromTimeT(1), absl::FromChrono(std::chrono::system_clock::from_time_t(1))); EXPECT_EQ( absl::FromUnixMillis(-1), absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1)))); EXPECT_EQ(absl::FromUnixMillis(0), absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0)))); EXPECT_EQ(absl::FromUnixMillis(1), absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1)))); // Chrono doesn't define exactly its range and precision (neither does // absl::Time), so let's simply test +/- ~100 years to make sure things work. const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100}; const auto century = std::chrono::seconds(century_sec); const auto chrono_future = MakeChronoUnixTime(century); const auto chrono_past = MakeChronoUnixTime(-century); EXPECT_EQ(absl::FromUnixSeconds(century_sec), absl::FromChrono(chrono_future)); EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past)); // Roundtrip them both back to chrono. EXPECT_EQ(chrono_future, absl::ToChronoTime(absl::FromUnixSeconds(century_sec))); EXPECT_EQ(chrono_past, absl::ToChronoTime(absl::FromUnixSeconds(-century_sec))); } TEST(Time, ToChronoTime) { EXPECT_EQ(std::chrono::system_clock::from_time_t(-1), absl::ToChronoTime(absl::FromTimeT(-1))); EXPECT_EQ(std::chrono::system_clock::from_time_t(0), absl::ToChronoTime(absl::FromTimeT(0))); EXPECT_EQ(std::chrono::system_clock::from_time_t(1), absl::ToChronoTime(absl::FromTimeT(1))); EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)), absl::ToChronoTime(absl::FromUnixMillis(-1))); EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)), absl::ToChronoTime(absl::FromUnixMillis(0))); EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)), absl::ToChronoTime(absl::FromUnixMillis(1))); // Time before the Unix epoch should floor, not trunc. const auto tick = absl::Nanoseconds(1) / 4; EXPECT_EQ(std::chrono::system_clock::from_time_t(0) - std::chrono::system_clock::duration(1), absl::ToChronoTime(absl::UnixEpoch() - tick)); } // Check that absl::int128 works as a std::chrono::duration representation. TEST(Time, Chrono128) { // Define a std::chrono::time_point type whose time[sic]_since_epoch() is // a signed 128-bit count of attoseconds. This has a range and resolution // (currently) beyond those of absl::Time, and undoubtedly also beyond those // of std::chrono::system_clock::time_point. // // Note: The to/from-chrono support should probably be updated to handle // such wide representations. using Timestamp = std::chrono::time_point<std::chrono::system_clock, std::chrono::duration<absl::int128, std::atto>>; // Expect that we can round-trip the std::chrono::system_clock::time_point // extremes through both absl::Time and Timestamp, and that Timestamp can // handle the (current) absl::Time extremes. // // Note: We should use std::chrono::floor() instead of time_point_cast(), // but floor() is only available since c++17. for (const auto tp : {std::chrono::system_clock::time_point::min(), std::chrono::system_clock::time_point::max()}) { EXPECT_EQ(tp, absl::ToChronoTime(absl::FromChrono(tp))); EXPECT_EQ(tp, std::chrono::time_point_cast< std::chrono::system_clock::time_point::duration>( std::chrono::time_point_cast<Timestamp::duration>(tp))); } Timestamp::duration::rep v = std::numeric_limits<int64_t>::min(); v *= Timestamp::duration::period::den; auto ts = Timestamp(Timestamp::duration(v)); ts += std::chrono::duration<int64_t, std::atto>(0); EXPECT_EQ(std::numeric_limits<int64_t>::min(), ts.time_since_epoch().count() / Timestamp::duration::period::den); EXPECT_EQ(0, ts.time_since_epoch().count() % Timestamp::duration::period::den); v = std::numeric_limits<int64_t>::max(); v *= Timestamp::duration::period::den; ts = Timestamp(Timestamp::duration(v)); ts += std::chrono::duration<int64_t, std::atto>(999999999750000000); EXPECT_EQ(std::numeric_limits<int64_t>::max(), ts.time_since_epoch().count() / Timestamp::duration::period::den); EXPECT_EQ(999999999750000000, ts.time_since_epoch().count() % Timestamp::duration::period::den); } TEST(Time, TimeZoneAt) { const absl::TimeZone nyc = absl::time_internal::LoadTimeZone("America/New_York"); const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; // A non-transition where the civil time is unique. absl::CivilSecond nov01(2013, 11, 1, 8, 30, 0); const auto nov01_ci = nyc.At(nov01); EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, nov01_ci.kind); EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0400 (EDT)", absl::FormatTime(fmt, nov01_ci.pre, nyc)); EXPECT_EQ(nov01_ci.pre, nov01_ci.trans); EXPECT_EQ(nov01_ci.pre, nov01_ci.post); EXPECT_EQ(nov01_ci.pre, absl::FromCivil(nov01, nyc)); // A Spring DST transition, when there is a gap in civil time // and we prefer the later of the possible interpretations of a // non-existent time. absl::CivilSecond mar13(2011, 3, 13, 2, 15, 0); const auto mar_ci = nyc.At(mar13); EXPECT_EQ(absl::TimeZone::TimeInfo::SKIPPED, mar_ci.kind); EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)", absl::FormatTime(fmt, mar_ci.pre, nyc)); EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)", absl::FormatTime(fmt, mar_ci.trans, nyc)); EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)", absl::FormatTime(fmt, mar_ci.post, nyc)); EXPECT_EQ(mar_ci.trans, absl::FromCivil(mar13, nyc)); // A Fall DST transition, when civil times are repeated and // we prefer the earlier of the possible interpretations of an // ambiguous time. absl::CivilSecond nov06(2011, 11, 6, 1, 15, 0); const auto nov06_ci = nyc.At(nov06); EXPECT_EQ(absl::TimeZone::TimeInfo::REPEATED, nov06_ci.kind); EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)", absl::FormatTime(fmt, nov06_ci.pre, nyc)); EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)", absl::FormatTime(fmt, nov06_ci.trans, nyc)); EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)", absl::FormatTime(fmt, nov06_ci.post, nyc)); EXPECT_EQ(nov06_ci.pre, absl::FromCivil(nov06, nyc)); // Check that (time_t) -1 is handled correctly. absl::CivilSecond minus1(1969, 12, 31, 18, 59, 59); const auto minus1_cl = nyc.At(minus1); EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, minus1_cl.kind); EXPECT_EQ(-1, absl::ToTimeT(minus1_cl.pre)); EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)", absl::FormatTime(fmt, minus1_cl.pre, nyc)); EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)", absl::FormatTime(fmt, minus1_cl.pre, absl::UTCTimeZone())); } // FromCivil(CivilSecond(year, mon, day, hour, min, sec), UTCTimeZone()) // has a specialized fastpath implementation, which we exercise here. TEST(Time, FromCivilUTC) { const absl::TimeZone utc = absl::UTCTimeZone(); const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; const int kMax = std::numeric_limits<int>::max(); const int kMin = std::numeric_limits<int>::min(); absl::Time t; // 292091940881 is the last positive year to use the fastpath. t = absl::FromCivil( absl::CivilSecond(292091940881, kMax, kMax, kMax, kMax, kMax), utc); EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); t = absl::FromCivil( absl::CivilSecond(292091940882, kMax, kMax, kMax, kMax, kMax), utc); EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow // -292091936940 is the last negative year to use the fastpath. t = absl::FromCivil( absl::CivilSecond(-292091936940, kMin, kMin, kMin, kMin, kMin), utc); EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); t = absl::FromCivil( absl::CivilSecond(-292091936941, kMin, kMin, kMin, kMin, kMin), utc); EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow // Check that we're counting leap years correctly. t = absl::FromCivil(absl::CivilSecond(1900, 2, 28, 23, 59, 59), utc); EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); t = absl::FromCivil(absl::CivilSecond(1900, 3, 1, 0, 0, 0), utc); EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); t = absl::FromCivil(absl::CivilSecond(2000, 2, 29, 23, 59, 59), utc); EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); t = absl::FromCivil(absl::CivilSecond(2000, 3, 1, 0, 0, 0), utc); EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)", absl::FormatTime(fmt, t, utc)); } TEST(Time, ToTM) { const absl::TimeZone utc = absl::UTCTimeZone(); // Compares the results of ToTM() to gmtime_r() for lots of times over the // course of a few days. const absl::Time start = absl::FromCivil(absl::CivilSecond(2014, 1, 2, 3, 4, 5), utc); const absl::Time end = absl::FromCivil(absl::CivilSecond(2014, 1, 5, 3, 4, 5), utc); for (absl::Time t = start; t < end; t += absl::Seconds(30)) { const struct tm tm_bt = ToTM(t, utc); const time_t tt = absl::ToTimeT(t); struct tm tm_lc; #ifdef _WIN32 gmtime_s(&tm_lc, &tt); #else gmtime_r(&tt, &tm_lc); #endif EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year); EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon); EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday); EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour); EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min); EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec); EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday); EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday); EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst); ASSERT_FALSE(HasFailure()); } // Checks that the tm_isdst field is correct when in standard time. const absl::TimeZone nyc = absl::time_internal::LoadTimeZone("America/New_York"); absl::Time t = absl::FromCivil(absl::CivilSecond(2014, 3, 1, 0, 0, 0), nyc); struct tm tm = ToTM(t, nyc); EXPECT_FALSE(tm.tm_isdst); // Checks that the tm_isdst field is correct when in daylight time. t = absl::FromCivil(absl::CivilSecond(2014, 4, 1, 0, 0, 0), nyc); tm = ToTM(t, nyc); EXPECT_TRUE(tm.tm_isdst); // Checks overflow. tm = ToTM(absl::InfiniteFuture(), nyc); EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year); EXPECT_EQ(11, tm.tm_mon); EXPECT_EQ(31, tm.tm_mday); EXPECT_EQ(23, tm.tm_hour); EXPECT_EQ(59, tm.tm_min); EXPECT_EQ(59, tm.tm_sec); EXPECT_EQ(4, tm.tm_wday); EXPECT_EQ(364, tm.tm_yday); EXPECT_FALSE(tm.tm_isdst); // Checks underflow. tm = ToTM(absl::InfinitePast(), nyc); EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year); EXPECT_EQ(0, tm.tm_mon); EXPECT_EQ(1, tm.tm_mday); EXPECT_EQ(0, tm.tm_hour); EXPECT_EQ(0, tm.tm_min); EXPECT_EQ(0, tm.tm_sec); EXPECT_EQ(0, tm.tm_wday); EXPECT_EQ(0, tm.tm_yday); EXPECT_FALSE(tm.tm_isdst); } TEST(Time, FromTM) { const absl::TimeZone nyc = absl::time_internal::LoadTimeZone("America/New_York"); // Verifies that tm_isdst doesn't affect anything when the time is unique. struct tm tm; std::memset(&tm, 0, sizeof(tm)); tm.tm_year = 2014 - 1900; tm.tm_mon = 6 - 1; tm.tm_mday = 28; tm.tm_hour = 1; tm.tm_min = 2; tm.tm_sec = 3; tm.tm_isdst = -1; absl::Time t = FromTM(tm, nyc); EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST tm.tm_isdst = 0; t = FromTM(tm, nyc); EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST tm.tm_isdst = 1; t = FromTM(tm, nyc); EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST // Adjusts tm to refer to an ambiguous time. tm.tm_year = 2014 - 1900; tm.tm_mon = 11 - 1; tm.tm_mday = 2; tm.tm_hour = 1; tm.tm_min = 30; tm.tm_sec = 42; tm.tm_isdst = -1; t = FromTM(tm, nyc); EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST tm.tm_isdst = 0; t = FromTM(tm, nyc); EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD tm.tm_isdst = 1; t = FromTM(tm, nyc); EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST // Adjusts tm to refer to a skipped time. tm.tm_year = 2014 - 1900; tm.tm_mon = 3 - 1; tm.tm_mday = 9; tm.tm_hour = 2; tm.tm_min = 30; tm.tm_sec = 42; tm.tm_isdst = -1; t = FromTM(tm, nyc); EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST tm.tm_isdst = 0; t = FromTM(tm, nyc); EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD tm.tm_isdst = 1; t = FromTM(tm, nyc); EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST // Adjusts tm to refer to a time with a year larger than 2147483647. tm.tm_year = 2147483647 - 1900 + 1; tm.tm_mon = 6 - 1; tm.tm_mday = 28; tm.tm_hour = 1; tm.tm_min = 2; tm.tm_sec = 3; tm.tm_isdst = -1; t = FromTM(tm, absl::UTCTimeZone()); EXPECT_EQ("2147483648-06-28T01:02:03+00:00", absl::FormatTime(t, absl::UTCTimeZone())); // Adjusts tm to refer to a time with a very large month. tm.tm_year = 2019 - 1900; tm.tm_mon = 2147483647; tm.tm_mday = 28; tm.tm_hour = 1; tm.tm_min = 2; tm.tm_sec = 3; tm.tm_isdst = -1; t = FromTM(tm, absl::UTCTimeZone()); EXPECT_EQ("178958989-08-28T01:02:03+00:00", absl::FormatTime(t, absl::UTCTimeZone())); } TEST(Time, TMRoundTrip) { const absl::TimeZone nyc = absl::time_internal::LoadTimeZone("America/New_York"); // Test round-tripping across a skipped transition absl::Time start = absl::FromCivil(absl::CivilHour(2014, 3, 9, 0), nyc); absl::Time end = absl::FromCivil(absl::CivilHour(2014, 3, 9, 4), nyc); for (absl::Time t = start; t < end; t += absl::Minutes(1)) { struct tm tm = ToTM(t, nyc); absl::Time rt = FromTM(tm, nyc); EXPECT_EQ(rt, t); } // Test round-tripping across an ambiguous transition start = absl::FromCivil(absl::CivilHour(2014, 11, 2, 0), nyc); end = absl::FromCivil(absl::CivilHour(2014, 11, 2, 4), nyc); for (absl::Time t = start; t < end; t += absl::Minutes(1)) { struct tm tm = ToTM(t, nyc); absl::Time rt = FromTM(tm, nyc); EXPECT_EQ(rt, t); } // Test round-tripping of unique instants crossing a day boundary start = absl::FromCivil(absl::CivilHour(2014, 6, 27, 22), nyc); end = absl::FromCivil(absl::CivilHour(2014, 6, 28, 4), nyc); for (absl::Time t = start; t < end; t += absl::Minutes(1)) { struct tm tm = ToTM(t, nyc); absl::Time rt = FromTM(tm, nyc); EXPECT_EQ(rt, t); } } TEST(Time, Range) { // The API's documented range is +/- 100 billion years. const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000; // Arithmetic and comparison still works at +/-range around base values. absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()}; for (const auto base : bases) { absl::Time bottom = base - range; EXPECT_GT(bottom, bottom - absl::Nanoseconds(1)); EXPECT_LT(bottom, bottom + absl::Nanoseconds(1)); absl::Time top = base + range; EXPECT_GT(top, top - absl::Nanoseconds(1)); EXPECT_LT(top, top + absl::Nanoseconds(1)); absl::Duration full_range = 2 * range; EXPECT_EQ(full_range, top - bottom); EXPECT_EQ(-full_range, bottom - top); } } TEST(Time, Limits) { // It is an implementation detail that Time().rep_ == ZeroDuration(), // and that the resolution of a Duration is 1/4 of a nanosecond. const absl::Time zero; const absl::Time max = zero + absl::Seconds(std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4; const absl::Time min = zero + absl::Seconds(std::numeric_limits<int64_t>::min()); // Some simple max/min bounds checks. EXPECT_LT(max, absl::InfiniteFuture()); EXPECT_GT(min, absl::InfinitePast()); EXPECT_LT(zero, max); EXPECT_GT(zero, min); EXPECT_GE(absl::UnixEpoch(), min); EXPECT_LT(absl::UnixEpoch(), max); // Check sign of Time differences. EXPECT_LT(absl::ZeroDuration(), max - zero); EXPECT_LT(absl::ZeroDuration(), zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min // Arithmetic works at max - 0.25ns and min + 0.25ns. EXPECT_GT(max, max - absl::Nanoseconds(1) / 4); EXPECT_LT(min, min + absl::Nanoseconds(1) / 4); } TEST(Time, ConversionSaturation) { const absl::TimeZone utc = absl::UTCTimeZone(); absl::Time t; const auto max_time_t = std::numeric_limits<time_t>::max(); const auto min_time_t = std::numeric_limits<time_t>::min(); time_t tt = max_time_t - 1; t = absl::FromTimeT(tt); tt = absl::ToTimeT(t); EXPECT_EQ(max_time_t - 1, tt); t += absl::Seconds(1); tt = absl::ToTimeT(t); EXPECT_EQ(max_time_t, tt); t += absl::Seconds(1); // no effect tt = absl::ToTimeT(t); EXPECT_EQ(max_time_t, tt); tt = min_time_t + 1; t = absl::FromTimeT(tt); tt = absl::ToTimeT(t); EXPECT_EQ(min_time_t + 1, tt); t -= absl::Seconds(1); tt = absl::ToTimeT(t); EXPECT_EQ(min_time_t, tt); t -= absl::Seconds(1); // no effect tt = absl::ToTimeT(t); EXPECT_EQ(min_time_t, tt); const auto max_timeval_sec = std::numeric_limits<decltype(timeval::tv_sec)>::max(); const auto min_timeval_sec = std::numeric_limits<decltype(timeval::tv_sec)>::min(); timeval tv; tv.tv_sec = max_timeval_sec; tv.tv_usec = 999998; t = absl::TimeFromTimeval(tv); tv = ToTimeval(t); EXPECT_EQ(max_timeval_sec, tv.tv_sec); EXPECT_EQ(999998, tv.tv_usec); t += absl::Microseconds(1); tv = ToTimeval(t); EXPECT_EQ(max_timeval_sec, tv.tv_sec); EXPECT_EQ(999999, tv.tv_usec); t += absl::Microseconds(1); // no effect tv = ToTimeval(t); EXPECT_EQ(max_timeval_sec, tv.tv_sec); EXPECT_EQ(999999, tv.tv_usec); tv.tv_sec = min_timeval_sec; tv.tv_usec = 1; t = absl::TimeFromTimeval(tv); tv = ToTimeval(t); EXPECT_EQ(min_timeval_sec, tv.tv_sec); EXPECT_EQ(1, tv.tv_usec); t -= absl::Microseconds(1); tv = ToTimeval(t); EXPECT_EQ(min_timeval_sec, tv.tv_sec); EXPECT_EQ(0, tv.tv_usec); t -= absl::Microseconds(1); // no effect tv = ToTimeval(t); EXPECT_EQ(min_timeval_sec, tv.tv_sec); EXPECT_EQ(0, tv.tv_usec); const auto max_timespec_sec = std::numeric_limits<decltype(timespec::tv_sec)>::max(); const auto min_timespec_sec = std::numeric_limits<decltype(timespec::tv_sec)>::min(); timespec ts; ts.tv_sec = max_timespec_sec; ts.tv_nsec = 999999998; t = absl::TimeFromTimespec(ts); ts = absl::ToTimespec(t); EXPECT_EQ(max_timespec_sec, ts.tv_sec); EXPECT_EQ(999999998, ts.tv_nsec); t += absl::Nanoseconds(1); ts = absl::ToTimespec(t); EXPECT_EQ(max_timespec_sec, ts.tv_sec); EXPECT_EQ(999999999, ts.tv_nsec); t += absl::Nanoseconds(1); // no effect ts = absl::ToTimespec(t); EXPECT_EQ(max_timespec_sec, ts.tv_sec); EXPECT_EQ(999999999, ts.tv_nsec); ts.tv_sec = min_timespec_sec; ts.tv_nsec = 1; t = absl::TimeFromTimespec(ts); ts = absl::ToTimespec(t); EXPECT_EQ(min_timespec_sec, ts.tv_sec); EXPECT_EQ(1, ts.tv_nsec); t -= absl::Nanoseconds(1); ts = absl::ToTimespec(t); EXPECT_EQ(min_timespec_sec, ts.tv_sec); EXPECT_EQ(0, ts.tv_nsec); t -= absl::Nanoseconds(1); // no effect ts = absl::ToTimespec(t); EXPECT_EQ(min_timespec_sec, ts.tv_sec); EXPECT_EQ(0, ts.tv_nsec); // Checks how TimeZone::At() saturates on infinities. auto ci = utc.At(absl::InfiniteFuture()); EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, 0, false); EXPECT_EQ(absl::InfiniteDuration(), ci.subsecond); EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); EXPECT_EQ(365, absl::GetYearDay(ci.cs)); EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() ci = utc.At(absl::InfinitePast()); EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, 0, 0, false); EXPECT_EQ(-absl::InfiniteDuration(), ci.subsecond); EXPECT_EQ(absl::Weekday::sunday, absl::GetWeekday(ci.cs)); EXPECT_EQ(1, absl::GetYearDay(ci.cs)); EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() // Approach the maximal Time value from below. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 6), utc); EXPECT_EQ("292277026596-12-04T15:30:06+00:00", absl::FormatTime(absl::RFC3339_full, t, utc)); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 7), utc); EXPECT_EQ("292277026596-12-04T15:30:07+00:00", absl::FormatTime(absl::RFC3339_full, t, utc)); EXPECT_EQ( absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); // Checks that we can also get the maximal Time value for a far-east zone. const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 5, 30, 7), plus14); EXPECT_EQ("292277026596-12-05T05:30:07+14:00", absl::FormatTime(absl::RFC3339_full, t, plus14)); EXPECT_EQ( absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), t); // One second later should push us to infinity. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 8), utc); EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc)); // Approach the minimal Time value from above. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 53), utc); EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", absl::FormatTime(absl::RFC3339_full, t, utc)); t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 52), utc); EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", absl::FormatTime(absl::RFC3339_full, t, utc)); EXPECT_EQ( absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); // Checks that we can also get the minimal Time value for a far-west zone. const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60); t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 26, 20, 29, 52), minus12); EXPECT_EQ("-292277022657-01-26T20:29:52-12:00", absl::FormatTime(absl::RFC3339_full, t, minus12)); EXPECT_EQ( absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), t); // One second before should push us to -infinity. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 51), utc); EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc)); } // In zones with POSIX-style recurring rules we use special logic to // handle conversions in the distant future. Here we check the limits // of those conversions, particularly with respect to integer overflow. TEST(Time, ExtendedConversionSaturation) { const absl::TimeZone syd = absl::time_internal::LoadTimeZone("Australia/Sydney"); const absl::TimeZone nyc = absl::time_internal::LoadTimeZone("America/New_York"); const absl::Time max = absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()); absl::TimeZone::CivilInfo ci; absl::Time t; // The maximal time converted in each zone. ci = syd.At(max); EXPECT_CIVIL_INFO(ci, 292277026596, 12, 5, 2, 30, 7, 39600, true); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 7), syd); EXPECT_EQ(max, t); ci = nyc.At(max); EXPECT_CIVIL_INFO(ci, 292277026596, 12, 4, 10, 30, 7, -18000, false); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 7), nyc); EXPECT_EQ(max, t); // One second later should push us to infinity. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 8), syd); EXPECT_EQ(absl::InfiniteFuture(), t); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 8), nyc); EXPECT_EQ(absl::InfiniteFuture(), t); // And we should stick there. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 9), syd); EXPECT_EQ(absl::InfiniteFuture(), t); t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 9), nyc); EXPECT_EQ(absl::InfiniteFuture(), t); // All the way up to a saturated date/time, without overflow. t = absl::FromCivil(absl::CivilSecond::max(), syd); EXPECT_EQ(absl::InfiniteFuture(), t); t = absl::FromCivil(absl::CivilSecond::max(), nyc); EXPECT_EQ(absl::InfiniteFuture(), t); } TEST(Time, FromCivilAlignment) { const absl::TimeZone utc = absl::UTCTimeZone(); const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6); absl::Time t = absl::FromCivil(cs, utc); EXPECT_EQ("2015-02-03T04:05:06+00:00", absl::FormatTime(t, utc)); t = absl::FromCivil(absl::CivilMinute(cs), utc); EXPECT_EQ("2015-02-03T04:05:00+00:00", absl::FormatTime(t, utc)); t = absl::FromCivil(absl::CivilHour(cs), utc); EXPECT_EQ("2015-02-03T04:00:00+00:00", absl::FormatTime(t, utc)); t = absl::FromCivil(absl::CivilDay(cs), utc); EXPECT_EQ("2015-02-03T00:00:00+00:00", absl::FormatTime(t, utc)); t = absl::FromCivil(absl::CivilMonth(cs), utc); EXPECT_EQ("2015-02-01T00:00:00+00:00", absl::FormatTime(t, utc)); t = absl::FromCivil(absl::CivilYear(cs), utc); EXPECT_EQ("2015-01-01T00:00:00+00:00", absl::FormatTime(t, utc)); } TEST(Time, LegacyDateTime) { const absl::TimeZone utc = absl::UTCTimeZone(); const std::string ymdhms = "%Y-%m-%d %H:%M:%S"; const int kMax = std::numeric_limits<int>::max(); const int kMin = std::numeric_limits<int>::min(); absl::Time t; t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::max(), kMax, kMax, kMax, kMax, kMax, utc); EXPECT_EQ("infinite-future", absl::FormatTime(ymdhms, t, utc)); // no overflow t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::min(), kMin, kMin, kMin, kMin, kMin, utc); EXPECT_EQ("infinite-past", absl::FormatTime(ymdhms, t, utc)); // no overflow // Check normalization. EXPECT_TRUE(absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, utc).normalized); t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc); EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc); EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc); EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc); EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc); EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc); EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc); EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc); EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc); EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc); EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc); EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc); EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc)); } TEST(Time, NextTransitionUTC) { const auto tz = absl::UTCTimeZone(); absl::TimeZone::CivilTransition trans; auto t = absl::InfinitePast(); EXPECT_FALSE(tz.NextTransition(t, &trans)); t = absl::InfiniteFuture(); EXPECT_FALSE(tz.NextTransition(t, &trans)); } TEST(Time, PrevTransitionUTC) { const auto tz = absl::UTCTimeZone(); absl::TimeZone::CivilTransition trans; auto t = absl::InfiniteFuture(); EXPECT_FALSE(tz.PrevTransition(t, &trans)); t = absl::InfinitePast(); EXPECT_FALSE(tz.PrevTransition(t, &trans)); } TEST(Time, NextTransitionNYC) { const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); absl::TimeZone::CivilTransition trans; auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); EXPECT_TRUE(tz.NextTransition(t, &trans)); EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 2, 0, 0), trans.from); EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 1, 0, 0), trans.to); t = absl::InfiniteFuture(); EXPECT_FALSE(tz.NextTransition(t, &trans)); t = absl::InfinitePast(); EXPECT_TRUE(tz.NextTransition(t, &trans)); if (trans.from == absl::CivilSecond(1918, 03, 31, 2, 0, 0)) { // It looks like the tzdata is only 32 bit (probably macOS), // which bottoms out at 1901-12-13T20:45:52+00:00. EXPECT_EQ(absl::CivilSecond(1918, 3, 31, 3, 0, 0), trans.to); } else { EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 3, 58), trans.from); EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 0, 0), trans.to); } } TEST(Time, PrevTransitionNYC) { const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); absl::TimeZone::CivilTransition trans; auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); EXPECT_TRUE(tz.PrevTransition(t, &trans)); EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 2, 0, 0), trans.from); EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 3, 0, 0), trans.to); t = absl::InfinitePast(); EXPECT_FALSE(tz.PrevTransition(t, &trans)); t = absl::InfiniteFuture(); EXPECT_TRUE(tz.PrevTransition(t, &trans)); // We have a transition but we don't know which one. } } // namespace