// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <cstdint> #include <mutex> // NOLINT(build/c++11) #include <vector> #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/spinlock.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/internal/thread_pool.h" #include "absl/synchronization/mutex.h" #include "benchmark/benchmark.h" namespace { void BM_Mutex(benchmark::State& state) { static absl::Mutex* mu = new absl::Mutex; for (auto _ : state) { absl::MutexLock lock(mu); } } BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu(); static void DelayNs(int64_t ns, int* data) { int64_t end = absl::base_internal::CycleClock::Now() + ns * absl::base_internal::CycleClock::Frequency() / 1e9; while (absl::base_internal::CycleClock::Now() < end) { ++(*data); benchmark::DoNotOptimize(*data); } } template <typename MutexType> class RaiiLocker { public: explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); } ~RaiiLocker() { mu_->Unlock(); } private: MutexType* mu_; }; template <> class RaiiLocker<std::mutex> { public: explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); } ~RaiiLocker() { mu_->unlock(); } private: std::mutex* mu_; }; template <typename MutexType> void BM_Contended(benchmark::State& state) { struct Shared { MutexType mu; int data = 0; }; static auto* shared = new Shared; int local = 0; for (auto _ : state) { // Here we model both local work outside of the critical section as well as // some work inside of the critical section. The idea is to capture some // more or less realisitic contention levels. // If contention is too low, the benchmark won't measure anything useful. // If contention is unrealistically high, the benchmark will favor // bad mutex implementations that block and otherwise distract threads // from the mutex and shared state for as much as possible. // To achieve this amount of local work is multiplied by number of threads // to keep ratio between local work and critical section approximately // equal regardless of number of threads. DelayNs(100 * state.threads, &local); RaiiLocker<MutexType> locker(&shared->mu); DelayNs(state.range(0), &shared->data); } } BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex) ->UseRealTime() // ThreadPerCpu poorly handles non-power-of-two CPU counts. ->Threads(1) ->Threads(2) ->Threads(4) ->Threads(6) ->Threads(8) ->Threads(12) ->Threads(16) ->Threads(24) ->Threads(32) ->Threads(48) ->Threads(64) ->Threads(96) ->Threads(128) ->Threads(192) ->Threads(256) // Some empirically chosen amounts of work in critical section. // 1 is low contention, 200 is high contention and few values in between. ->Arg(1) ->Arg(20) ->Arg(50) ->Arg(200); BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock) ->UseRealTime() // ThreadPerCpu poorly handles non-power-of-two CPU counts. ->Threads(1) ->Threads(2) ->Threads(4) ->Threads(6) ->Threads(8) ->Threads(12) ->Threads(16) ->Threads(24) ->Threads(32) ->Threads(48) ->Threads(64) ->Threads(96) ->Threads(128) ->Threads(192) ->Threads(256) // Some empirically chosen amounts of work in critical section. // 1 is low contention, 200 is high contention and few values in between. ->Arg(1) ->Arg(20) ->Arg(50) ->Arg(200); BENCHMARK_TEMPLATE(BM_Contended, std::mutex) ->UseRealTime() // ThreadPerCpu poorly handles non-power-of-two CPU counts. ->Threads(1) ->Threads(2) ->Threads(4) ->Threads(6) ->Threads(8) ->Threads(12) ->Threads(16) ->Threads(24) ->Threads(32) ->Threads(48) ->Threads(64) ->Threads(96) ->Threads(128) ->Threads(192) ->Threads(256) // Some empirically chosen amounts of work in critical section. // 1 is low contention, 200 is high contention and few values in between. ->Arg(1) ->Arg(20) ->Arg(50) ->Arg(200); // Measure the overhead of conditions on mutex release (when they must be // evaluated). Mutex has (some) support for equivalence classes allowing // Conditions with the same function/argument to potentially not be multiply // evaluated. // // num_classes==0 is used for the special case of every waiter being distinct. void BM_ConditionWaiters(benchmark::State& state) { int num_classes = state.range(0); int num_waiters = state.range(1); struct Helper { static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) { init->DecrementCount(); m->LockWhen(absl::Condition( static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p)); m->Unlock(); } }; if (num_classes == 0) { // No equivalence classes. num_classes = num_waiters; } absl::BlockingCounter init(num_waiters); absl::Mutex mu; std::vector<int> equivalence_classes(num_classes, 1); // Must be declared last to be destroyed first. absl::synchronization_internal::ThreadPool pool(num_waiters); for (int i = 0; i < num_waiters; i++) { // Mutex considers Conditions with the same function and argument // to be equivalent. pool.Schedule([&, i] { Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]); }); } init.Wait(); for (auto _ : state) { mu.Lock(); mu.Unlock(); // Each unlock requires Condition evaluation for our waiters. } mu.Lock(); for (int i = 0; i < num_classes; i++) { equivalence_classes[i] = 0; } mu.Unlock(); } // Some configurations have higher thread limits than others. #if defined(__linux__) && !defined(THREAD_SANITIZER) constexpr int kMaxConditionWaiters = 8192; #else constexpr int kMaxConditionWaiters = 1024; #endif BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters); } // namespace