// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Implementation of a small subset of Mutex and CondVar functionality // for platforms where the production implementation hasn't been fully // ported yet. #include "absl/synchronization/mutex.h" #if defined(_WIN32) #include <chrono> // NOLINT(build/c++11) #else #include <sys/time.h> #include <time.h> #endif #include <algorithm> #include "absl/base/internal/raw_logging.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN void SetMutexDeadlockDetectionMode(OnDeadlockCycle) {} void EnableMutexInvariantDebugging(bool) {} namespace synchronization_internal { namespace { // Return the current time plus the timeout. absl::Time DeadlineFromTimeout(absl::Duration timeout) { return absl::Now() + timeout; } // Limit the deadline to a positive, 32-bit time_t value to accommodate // implementation restrictions. This also deals with InfinitePast and // InfiniteFuture. absl::Time LimitedDeadline(absl::Time deadline) { deadline = std::max(absl::FromTimeT(0), deadline); deadline = std::min(deadline, absl::FromTimeT(0x7fffffff)); return deadline; } } // namespace #if defined(_WIN32) MutexImpl::MutexImpl() {} MutexImpl::~MutexImpl() { if (locked_) { std_mutex_.unlock(); } } void MutexImpl::Lock() { std_mutex_.lock(); locked_ = true; } bool MutexImpl::TryLock() { bool locked = std_mutex_.try_lock(); if (locked) locked_ = true; return locked; } void MutexImpl::Unlock() { locked_ = false; released_.SignalAll(); std_mutex_.unlock(); } CondVarImpl::CondVarImpl() {} CondVarImpl::~CondVarImpl() {} void CondVarImpl::Signal() { std_cv_.notify_one(); } void CondVarImpl::SignalAll() { std_cv_.notify_all(); } void CondVarImpl::Wait(MutexImpl* mu) { mu->released_.SignalAll(); std_cv_.wait(mu->std_mutex_); } bool CondVarImpl::WaitWithDeadline(MutexImpl* mu, absl::Time deadline) { mu->released_.SignalAll(); time_t when = ToTimeT(deadline); int64_t nanos = ToInt64Nanoseconds(deadline - absl::FromTimeT(when)); std::chrono::system_clock::time_point deadline_tp = std::chrono::system_clock::from_time_t(when) + std::chrono::duration_cast<std::chrono::system_clock::duration>( std::chrono::nanoseconds(nanos)); auto deadline_since_epoch = std::chrono::duration_cast<std::chrono::duration<double>>( deadline_tp - std::chrono::system_clock::from_time_t(0)); return std_cv_.wait_until(mu->std_mutex_, deadline_tp) == std::cv_status::timeout; } #else // ! _WIN32 MutexImpl::MutexImpl() { ABSL_RAW_CHECK(pthread_mutex_init(&pthread_mutex_, nullptr) == 0, "pthread error"); } MutexImpl::~MutexImpl() { if (locked_) { ABSL_RAW_CHECK(pthread_mutex_unlock(&pthread_mutex_) == 0, "pthread error"); } ABSL_RAW_CHECK(pthread_mutex_destroy(&pthread_mutex_) == 0, "pthread error"); } void MutexImpl::Lock() { ABSL_RAW_CHECK(pthread_mutex_lock(&pthread_mutex_) == 0, "pthread error"); locked_ = true; } bool MutexImpl::TryLock() { bool locked = (0 == pthread_mutex_trylock(&pthread_mutex_)); if (locked) locked_ = true; return locked; } void MutexImpl::Unlock() { locked_ = false; released_.SignalAll(); ABSL_RAW_CHECK(pthread_mutex_unlock(&pthread_mutex_) == 0, "pthread error"); } CondVarImpl::CondVarImpl() { ABSL_RAW_CHECK(pthread_cond_init(&pthread_cv_, nullptr) == 0, "pthread error"); } CondVarImpl::~CondVarImpl() { ABSL_RAW_CHECK(pthread_cond_destroy(&pthread_cv_) == 0, "pthread error"); } void CondVarImpl::Signal() { ABSL_RAW_CHECK(pthread_cond_signal(&pthread_cv_) == 0, "pthread error"); } void CondVarImpl::SignalAll() { ABSL_RAW_CHECK(pthread_cond_broadcast(&pthread_cv_) == 0, "pthread error"); } void CondVarImpl::Wait(MutexImpl* mu) { mu->released_.SignalAll(); ABSL_RAW_CHECK(pthread_cond_wait(&pthread_cv_, &mu->pthread_mutex_) == 0, "pthread error"); } bool CondVarImpl::WaitWithDeadline(MutexImpl* mu, absl::Time deadline) { mu->released_.SignalAll(); struct timespec ts = ToTimespec(deadline); int rc = pthread_cond_timedwait(&pthread_cv_, &mu->pthread_mutex_, &ts); if (rc == ETIMEDOUT) return true; ABSL_RAW_CHECK(rc == 0, "pthread error"); return false; } #endif // ! _WIN32 void MutexImpl::Await(const Condition& cond) { if (cond.Eval()) return; released_.SignalAll(); do { released_.Wait(this); } while (!cond.Eval()); } bool MutexImpl::AwaitWithDeadline(const Condition& cond, absl::Time deadline) { if (cond.Eval()) return true; released_.SignalAll(); while (true) { if (released_.WaitWithDeadline(this, deadline)) return false; if (cond.Eval()) return true; } } } // namespace synchronization_internal Mutex::Mutex() {} Mutex::~Mutex() {} void Mutex::Lock() { impl()->Lock(); } void Mutex::Unlock() { impl()->Unlock(); } bool Mutex::TryLock() { return impl()->TryLock(); } void Mutex::ReaderLock() { Lock(); } void Mutex::ReaderUnlock() { Unlock(); } void Mutex::Await(const Condition& cond) { impl()->Await(cond); } void Mutex::LockWhen(const Condition& cond) { Lock(); Await(cond); } bool Mutex::AwaitWithDeadline(const Condition& cond, absl::Time deadline) { return impl()->AwaitWithDeadline( cond, synchronization_internal::LimitedDeadline(deadline)); } bool Mutex::AwaitWithTimeout(const Condition& cond, absl::Duration timeout) { return AwaitWithDeadline( cond, synchronization_internal::DeadlineFromTimeout(timeout)); } bool Mutex::LockWhenWithDeadline(const Condition& cond, absl::Time deadline) { Lock(); return AwaitWithDeadline(cond, deadline); } bool Mutex::LockWhenWithTimeout(const Condition& cond, absl::Duration timeout) { return LockWhenWithDeadline( cond, synchronization_internal::DeadlineFromTimeout(timeout)); } void Mutex::ReaderLockWhen(const Condition& cond) { ReaderLock(); Await(cond); } bool Mutex::ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout) { return LockWhenWithTimeout(cond, timeout); } bool Mutex::ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline) { return LockWhenWithDeadline(cond, deadline); } void Mutex::EnableDebugLog(const char*) {} void Mutex::EnableInvariantDebugging(void (*)(void*), void*) {} void Mutex::ForgetDeadlockInfo() {} void Mutex::AssertHeld() const {} void Mutex::AssertReaderHeld() const {} void Mutex::AssertNotHeld() const {} CondVar::CondVar() {} CondVar::~CondVar() {} void CondVar::Signal() { impl()->Signal(); } void CondVar::SignalAll() { impl()->SignalAll(); } void CondVar::Wait(Mutex* mu) { return impl()->Wait(mu->impl()); } bool CondVar::WaitWithDeadline(Mutex* mu, absl::Time deadline) { return impl()->WaitWithDeadline( mu->impl(), synchronization_internal::LimitedDeadline(deadline)); } bool CondVar::WaitWithTimeout(Mutex* mu, absl::Duration timeout) { return WaitWithDeadline(mu, absl::Now() + timeout); } void CondVar::EnableDebugLog(const char*) {} #ifdef THREAD_SANITIZER extern "C" void __tsan_read1(void *addr); #else #define __tsan_read1(addr) // do nothing if TSan not enabled #endif // A function that just returns its argument, dereferenced static bool Dereference(void *arg) { // ThreadSanitizer does not instrument this file for memory accesses. // This function dereferences a user variable that can participate // in a data race, so we need to manually tell TSan about this memory access. __tsan_read1(arg); return *(static_cast<bool *>(arg)); } Condition::Condition() {} // null constructor, used for kTrue only const Condition Condition::kTrue; Condition::Condition(bool (*func)(void *), void *arg) : eval_(&CallVoidPtrFunction), function_(func), method_(nullptr), arg_(arg) {} bool Condition::CallVoidPtrFunction(const Condition *c) { return (*c->function_)(c->arg_); } Condition::Condition(const bool *cond) : eval_(CallVoidPtrFunction), function_(Dereference), method_(nullptr), // const_cast is safe since Dereference does not modify arg arg_(const_cast<bool *>(cond)) {} bool Condition::Eval() const { // eval_ == null for kTrue return (this->eval_ == nullptr) || (*this->eval_)(this); } void RegisterSymbolizer(bool (*)(const void*, char*, int)) {} ABSL_NAMESPACE_END } // namespace absl