// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // GraphCycles provides incremental cycle detection on a dynamic // graph using the following algorithm: // // A dynamic topological sort algorithm for directed acyclic graphs // David J. Pearce, Paul H. J. Kelly // Journal of Experimental Algorithmics (JEA) JEA Homepage archive // Volume 11, 2006, Article No. 1.7 // // Brief summary of the algorithm: // // (1) Maintain a rank for each node that is consistent // with the topological sort of the graph. I.e., path from x to y // implies rank[x] < rank[y]. // (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y]. // (3) Otherwise: adjust ranks in the neighborhood of x and y. #include "absl/base/attributes.h" // This file is a no-op if the required LowLevelAlloc support is missing. #include "absl/base/internal/low_level_alloc.h" #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING #include "absl/synchronization/internal/graphcycles.h" #include <algorithm> #include <array> #include "absl/base/internal/hide_ptr.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" // Do not use STL. This module does not use standard memory allocation. namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { namespace { // Avoid LowLevelAlloc's default arena since it calls malloc hooks in // which people are doing things like acquiring Mutexes. ABSL_CONST_INIT static absl::base_internal::SpinLock arena_mu( absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); ABSL_CONST_INIT static base_internal::LowLevelAlloc::Arena* arena; static void InitArenaIfNecessary() { arena_mu.Lock(); if (arena == nullptr) { arena = base_internal::LowLevelAlloc::NewArena(0); } arena_mu.Unlock(); } // Number of inlined elements in Vec. Hash table implementation // relies on this being a power of two. static const uint32_t kInline = 8; // A simple LowLevelAlloc based resizable vector with inlined storage // for a few elements. T must be a plain type since constructor // and destructor are not run on elements of type T managed by Vec. template <typename T> class Vec { public: Vec() { Init(); } ~Vec() { Discard(); } void clear() { Discard(); Init(); } bool empty() const { return size_ == 0; } uint32_t size() const { return size_; } T* begin() { return ptr_; } T* end() { return ptr_ + size_; } const T& operator[](uint32_t i) const { return ptr_[i]; } T& operator[](uint32_t i) { return ptr_[i]; } const T& back() const { return ptr_[size_-1]; } void pop_back() { size_--; } void push_back(const T& v) { if (size_ == capacity_) Grow(size_ + 1); ptr_[size_] = v; size_++; } void resize(uint32_t n) { if (n > capacity_) Grow(n); size_ = n; } void fill(const T& val) { for (uint32_t i = 0; i < size(); i++) { ptr_[i] = val; } } // Guarantees src is empty at end. // Provided for the hash table resizing code below. void MoveFrom(Vec<T>* src) { if (src->ptr_ == src->space_) { // Need to actually copy resize(src->size_); std::copy(src->ptr_, src->ptr_ + src->size_, ptr_); src->size_ = 0; } else { Discard(); ptr_ = src->ptr_; size_ = src->size_; capacity_ = src->capacity_; src->Init(); } } private: T* ptr_; T space_[kInline]; uint32_t size_; uint32_t capacity_; void Init() { ptr_ = space_; size_ = 0; capacity_ = kInline; } void Discard() { if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_); } void Grow(uint32_t n) { while (capacity_ < n) { capacity_ *= 2; } size_t request = static_cast<size_t>(capacity_) * sizeof(T); T* copy = static_cast<T*>( base_internal::LowLevelAlloc::AllocWithArena(request, arena)); std::copy(ptr_, ptr_ + size_, copy); Discard(); ptr_ = copy; } Vec(const Vec&) = delete; Vec& operator=(const Vec&) = delete; }; // A hash set of non-negative int32_t that uses Vec for its underlying storage. class NodeSet { public: NodeSet() { Init(); } void clear() { Init(); } bool contains(int32_t v) const { return table_[FindIndex(v)] == v; } bool insert(int32_t v) { uint32_t i = FindIndex(v); if (table_[i] == v) { return false; } if (table_[i] == kEmpty) { // Only inserting over an empty cell increases the number of occupied // slots. occupied_++; } table_[i] = v; // Double when 75% full. if (occupied_ >= table_.size() - table_.size()/4) Grow(); return true; } void erase(uint32_t v) { uint32_t i = FindIndex(v); if (static_cast<uint32_t>(table_[i]) == v) { table_[i] = kDel; } } // Iteration: is done via HASH_FOR_EACH // Example: // HASH_FOR_EACH(elem, node->out) { ... } #define HASH_FOR_EACH(elem, eset) \ for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); ) bool Next(int32_t* cursor, int32_t* elem) { while (static_cast<uint32_t>(*cursor) < table_.size()) { int32_t v = table_[*cursor]; (*cursor)++; if (v >= 0) { *elem = v; return true; } } return false; } private: enum : int32_t { kEmpty = -1, kDel = -2 }; Vec<int32_t> table_; uint32_t occupied_; // Count of non-empty slots (includes deleted slots) static uint32_t Hash(uint32_t a) { return a * 41; } // Return index for storing v. May return an empty index or deleted index int FindIndex(int32_t v) const { // Search starting at hash index. const uint32_t mask = table_.size() - 1; uint32_t i = Hash(v) & mask; int deleted_index = -1; // If >= 0, index of first deleted element we see while (true) { int32_t e = table_[i]; if (v == e) { return i; } else if (e == kEmpty) { // Return any previously encountered deleted slot. return (deleted_index >= 0) ? deleted_index : i; } else if (e == kDel && deleted_index < 0) { // Keep searching since v might be present later. deleted_index = i; } i = (i + 1) & mask; // Linear probing; quadratic is slightly slower. } } void Init() { table_.clear(); table_.resize(kInline); table_.fill(kEmpty); occupied_ = 0; } void Grow() { Vec<int32_t> copy; copy.MoveFrom(&table_); occupied_ = 0; table_.resize(copy.size() * 2); table_.fill(kEmpty); for (const auto& e : copy) { if (e >= 0) insert(e); } } NodeSet(const NodeSet&) = delete; NodeSet& operator=(const NodeSet&) = delete; }; // We encode a node index and a node version in GraphId. The version // number is incremented when the GraphId is freed which automatically // invalidates all copies of the GraphId. inline GraphId MakeId(int32_t index, uint32_t version) { GraphId g; g.handle = (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index); return g; } inline int32_t NodeIndex(GraphId id) { return static_cast<uint32_t>(id.handle & 0xfffffffful); } inline uint32_t NodeVersion(GraphId id) { return static_cast<uint32_t>(id.handle >> 32); } struct Node { int32_t rank; // rank number assigned by Pearce-Kelly algorithm uint32_t version; // Current version number int32_t next_hash; // Next entry in hash table bool visited; // Temporary marker used by depth-first-search uintptr_t masked_ptr; // User-supplied pointer NodeSet in; // List of immediate predecessor nodes in graph NodeSet out; // List of immediate successor nodes in graph int priority; // Priority of recorded stack trace. int nstack; // Depth of recorded stack trace. void* stack[40]; // stack[0,nstack-1] holds stack trace for node. }; // Hash table for pointer to node index lookups. class PointerMap { public: explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) { table_.fill(-1); } int32_t Find(void* ptr) { auto masked = base_internal::HidePtr(ptr); for (int32_t i = table_[Hash(ptr)]; i != -1;) { Node* n = (*nodes_)[i]; if (n->masked_ptr == masked) return i; i = n->next_hash; } return -1; } void Add(void* ptr, int32_t i) { int32_t* head = &table_[Hash(ptr)]; (*nodes_)[i]->next_hash = *head; *head = i; } int32_t Remove(void* ptr) { // Advance through linked list while keeping track of the // predecessor slot that points to the current entry. auto masked = base_internal::HidePtr(ptr); for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) { int32_t index = *slot; Node* n = (*nodes_)[index]; if (n->masked_ptr == masked) { *slot = n->next_hash; // Remove n from linked list n->next_hash = -1; return index; } slot = &n->next_hash; } return -1; } private: // Number of buckets in hash table for pointer lookups. static constexpr uint32_t kHashTableSize = 8171; // should be prime const Vec<Node*>* nodes_; std::array<int32_t, kHashTableSize> table_; static uint32_t Hash(void* ptr) { return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize; } }; } // namespace struct GraphCycles::Rep { Vec<Node*> nodes_; Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_ PointerMap ptrmap_; // Temporary state. Vec<int32_t> deltaf_; // Results of forward DFS Vec<int32_t> deltab_; // Results of backward DFS Vec<int32_t> list_; // All nodes to reprocess Vec<int32_t> merged_; // Rank values to assign to list_ entries Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches Rep() : ptrmap_(&nodes_) {} }; static Node* FindNode(GraphCycles::Rep* rep, GraphId id) { Node* n = rep->nodes_[NodeIndex(id)]; return (n->version == NodeVersion(id)) ? n : nullptr; } GraphCycles::GraphCycles() { InitArenaIfNecessary(); rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena)) Rep; } GraphCycles::~GraphCycles() { for (auto* node : rep_->nodes_) { node->Node::~Node(); base_internal::LowLevelAlloc::Free(node); } rep_->Rep::~Rep(); base_internal::LowLevelAlloc::Free(rep_); } bool GraphCycles::CheckInvariants() const { Rep* r = rep_; NodeSet ranks; // Set of ranks seen so far. for (uint32_t x = 0; x < r->nodes_.size(); x++) { Node* nx = r->nodes_[x]; void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr); if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) { ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr); } if (nx->visited) { ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x); } if (!ranks.insert(nx->rank)) { ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank); } HASH_FOR_EACH(y, nx->out) { Node* ny = r->nodes_[y]; if (nx->rank >= ny->rank) { ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y, nx->rank, ny->rank); } } } return true; } GraphId GraphCycles::GetId(void* ptr) { int32_t i = rep_->ptrmap_.Find(ptr); if (i != -1) { return MakeId(i, rep_->nodes_[i]->version); } else if (rep_->free_nodes_.empty()) { Node* n = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena)) Node; n->version = 1; // Avoid 0 since it is used by InvalidGraphId() n->visited = false; n->rank = rep_->nodes_.size(); n->masked_ptr = base_internal::HidePtr(ptr); n->nstack = 0; n->priority = 0; rep_->nodes_.push_back(n); rep_->ptrmap_.Add(ptr, n->rank); return MakeId(n->rank, n->version); } else { // Preserve preceding rank since the set of ranks in use must be // a permutation of [0,rep_->nodes_.size()-1]. int32_t r = rep_->free_nodes_.back(); rep_->free_nodes_.pop_back(); Node* n = rep_->nodes_[r]; n->masked_ptr = base_internal::HidePtr(ptr); n->nstack = 0; n->priority = 0; rep_->ptrmap_.Add(ptr, r); return MakeId(r, n->version); } } void GraphCycles::RemoveNode(void* ptr) { int32_t i = rep_->ptrmap_.Remove(ptr); if (i == -1) { return; } Node* x = rep_->nodes_[i]; HASH_FOR_EACH(y, x->out) { rep_->nodes_[y]->in.erase(i); } HASH_FOR_EACH(y, x->in) { rep_->nodes_[y]->out.erase(i); } x->in.clear(); x->out.clear(); x->masked_ptr = base_internal::HidePtr<void>(nullptr); if (x->version == std::numeric_limits<uint32_t>::max()) { // Cannot use x any more } else { x->version++; // Invalidates all copies of node. rep_->free_nodes_.push_back(i); } } void* GraphCycles::Ptr(GraphId id) { Node* n = FindNode(rep_, id); return n == nullptr ? nullptr : base_internal::UnhidePtr<void>(n->masked_ptr); } bool GraphCycles::HasNode(GraphId node) { return FindNode(rep_, node) != nullptr; } bool GraphCycles::HasEdge(GraphId x, GraphId y) const { Node* xn = FindNode(rep_, x); return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y)); } void GraphCycles::RemoveEdge(GraphId x, GraphId y) { Node* xn = FindNode(rep_, x); Node* yn = FindNode(rep_, y); if (xn && yn) { xn->out.erase(NodeIndex(y)); yn->in.erase(NodeIndex(x)); // No need to update the rank assignment since a previous valid // rank assignment remains valid after an edge deletion. } } static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound); static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound); static void Reorder(GraphCycles::Rep* r); static void Sort(const Vec<Node*>&, Vec<int32_t>* delta); static void MoveToList( GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) { Rep* r = rep_; const int32_t x = NodeIndex(idx); const int32_t y = NodeIndex(idy); Node* nx = FindNode(r, idx); Node* ny = FindNode(r, idy); if (nx == nullptr || ny == nullptr) return true; // Expired ids if (nx == ny) return false; // Self edge if (!nx->out.insert(y)) { // Edge already exists. return true; } ny->in.insert(x); if (nx->rank <= ny->rank) { // New edge is consistent with existing rank assignment. return true; } // Current rank assignments are incompatible with the new edge. Recompute. // We only need to consider nodes that fall in the range [ny->rank,nx->rank]. if (!ForwardDFS(r, y, nx->rank)) { // Found a cycle. Undo the insertion and tell caller. nx->out.erase(y); ny->in.erase(x); // Since we do not call Reorder() on this path, clear any visited // markers left by ForwardDFS. for (const auto& d : r->deltaf_) { r->nodes_[d]->visited = false; } return false; } BackwardDFS(r, x, ny->rank); Reorder(r); return true; } static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) { // Avoid recursion since stack space might be limited. // We instead keep a stack of nodes to visit. r->deltaf_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltaf_.push_back(n); HASH_FOR_EACH(w, nn->out) { Node* nw = r->nodes_[w]; if (nw->rank == upper_bound) { return false; // Cycle } if (!nw->visited && nw->rank < upper_bound) { r->stack_.push_back(w); } } } return true; } static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) { r->deltab_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltab_.push_back(n); HASH_FOR_EACH(w, nn->in) { Node* nw = r->nodes_[w]; if (!nw->visited && lower_bound < nw->rank) { r->stack_.push_back(w); } } } } static void Reorder(GraphCycles::Rep* r) { Sort(r->nodes_, &r->deltab_); Sort(r->nodes_, &r->deltaf_); // Adds contents of delta lists to list_ (backwards deltas first). r->list_.clear(); MoveToList(r, &r->deltab_, &r->list_); MoveToList(r, &r->deltaf_, &r->list_); // Produce sorted list of all ranks that will be reassigned. r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); std::merge(r->deltab_.begin(), r->deltab_.end(), r->deltaf_.begin(), r->deltaf_.end(), r->merged_.begin()); // Assign the ranks in order to the collected list. for (uint32_t i = 0; i < r->list_.size(); i++) { r->nodes_[r->list_[i]]->rank = r->merged_[i]; } } static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { struct ByRank { const Vec<Node*>* nodes; bool operator()(int32_t a, int32_t b) const { return (*nodes)[a]->rank < (*nodes)[b]->rank; } }; ByRank cmp; cmp.nodes = &nodes; std::sort(delta->begin(), delta->end(), cmp); } static void MoveToList( GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { for (auto& v : *src) { int32_t w = v; v = r->nodes_[w]->rank; // Replace v entry with its rank r->nodes_[w]->visited = false; // Prepare for future DFS calls dst->push_back(w); } } int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len, GraphId path[]) const { Rep* r = rep_; if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0; const int32_t x = NodeIndex(idx); const int32_t y = NodeIndex(idy); // Forward depth first search starting at x until we hit y. // As we descend into a node, we push it onto the path. // As we leave a node, we remove it from the path. int path_len = 0; NodeSet seen; r->stack_.clear(); r->stack_.push_back(x); while (!r->stack_.empty()) { int32_t n = r->stack_.back(); r->stack_.pop_back(); if (n < 0) { // Marker to indicate that we are leaving a node path_len--; continue; } if (path_len < max_path_len) { path[path_len] = MakeId(n, rep_->nodes_[n]->version); } path_len++; r->stack_.push_back(-1); // Will remove tentative path entry if (n == y) { return path_len; } HASH_FOR_EACH(w, r->nodes_[n]->out) { if (seen.insert(w)) { r->stack_.push_back(w); } } } return 0; } bool GraphCycles::IsReachable(GraphId x, GraphId y) const { return FindPath(x, y, 0, nullptr) > 0; } void GraphCycles::UpdateStackTrace(GraphId id, int priority, int (*get_stack_trace)(void** stack, int)) { Node* n = FindNode(rep_, id); if (n == nullptr || n->priority >= priority) { return; } n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack)); n->priority = priority; } int GraphCycles::GetStackTrace(GraphId id, void*** ptr) { Node* n = FindNode(rep_, id); if (n == nullptr) { *ptr = nullptr; return 0; } else { *ptr = n->stack; return n->nstack; } } } // namespace synchronization_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_LOW_LEVEL_ALLOC_MISSING