// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // This file tests string processing functions related to numeric values. #include "absl/strings/numbers.h" #include <sys/types.h> #include <cfenv> // NOLINT(build/c++11) #include <cinttypes> #include <climits> #include <cmath> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <limits> #include <numeric> #include <random> #include <set> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/strings/internal/numbers_test_common.h" #include "absl/strings/internal/ostringstream.h" #include "absl/strings/internal/pow10_helper.h" #include "absl/strings/str_cat.h" namespace { using absl::numbers_internal::kSixDigitsToBufferSize; using absl::numbers_internal::safe_strto32_base; using absl::numbers_internal::safe_strto64_base; using absl::numbers_internal::safe_strtou32_base; using absl::numbers_internal::safe_strtou64_base; using absl::numbers_internal::SixDigitsToBuffer; using absl::strings_internal::Itoa; using absl::strings_internal::strtouint32_test_cases; using absl::strings_internal::strtouint64_test_cases; using absl::SimpleAtoi; using testing::Eq; using testing::MatchesRegex; // Number of floats to test with. // 5,000,000 is a reasonable default for a test that only takes a few seconds. // 1,000,000,000+ triggers checking for all possible mantissa values for // double-precision tests. 2,000,000,000+ triggers checking for every possible // single-precision float. const int kFloatNumCases = 5000000; // This is a slow, brute-force routine to compute the exact base-10 // representation of a double-precision floating-point number. It // is useful for debugging only. std::string PerfectDtoa(double d) { if (d == 0) return "0"; if (d < 0) return "-" + PerfectDtoa(-d); // Basic theory: decompose d into mantissa and exp, where // d = mantissa * 2^exp, and exp is as close to zero as possible. int64_t mantissa, exp = 0; while (d >= 1ULL << 63) ++exp, d *= 0.5; while ((mantissa = d) != d) --exp, d *= 2.0; // Then convert mantissa to ASCII, and either double it (if // exp > 0) or halve it (if exp < 0) repeatedly. "halve it" // in this case means multiplying it by five and dividing by 10. constexpr int maxlen = 1100; // worst case is actually 1030 or so. char buf[maxlen + 5]; for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) { buf[pos] = '0' + (num % 10); num /= 10; } char* begin = &buf[0]; char* end = buf + maxlen; for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) { int carry = 0; for (char* p = end; --p != begin;) { int dig = *p - '0'; dig = dig * (exp > 0 ? 2 : 5) + carry; carry = dig / 10; dig %= 10; *p = '0' + dig; } } if (exp < 0) { // "dividing by 10" above means we have to add the decimal point. memmove(end + 1 + exp, end + exp, 1 - exp); end[exp] = '.'; ++end; } while (*begin == '0' && begin[1] != '.') ++begin; return {begin, end}; } TEST(ToString, PerfectDtoa) { EXPECT_THAT(PerfectDtoa(1), Eq("1")); EXPECT_THAT(PerfectDtoa(0.1), Eq("0.1000000000000000055511151231257827021181583404541015625")); EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784")); EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625")); for (int i = 0; i < 100; ++i) { for (double multiplier : {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) { double d = multiplier * i; std::string s = PerfectDtoa(d); EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr)); } } } template <typename integer> struct MyInteger { integer i; explicit constexpr MyInteger(integer i) : i(i) {} constexpr operator integer() const { return i; } constexpr MyInteger operator+(MyInteger other) const { return i + other.i; } constexpr MyInteger operator-(MyInteger other) const { return i - other.i; } constexpr MyInteger operator*(MyInteger other) const { return i * other.i; } constexpr MyInteger operator/(MyInteger other) const { return i / other.i; } constexpr bool operator<(MyInteger other) const { return i < other.i; } constexpr bool operator<=(MyInteger other) const { return i <= other.i; } constexpr bool operator==(MyInteger other) const { return i == other.i; } constexpr bool operator>=(MyInteger other) const { return i >= other.i; } constexpr bool operator>(MyInteger other) const { return i > other.i; } constexpr bool operator!=(MyInteger other) const { return i != other.i; } integer as_integer() const { return i; } }; typedef MyInteger<int64_t> MyInt64; typedef MyInteger<uint64_t> MyUInt64; void CheckInt32(int32_t x) { char buffer[absl::numbers_internal::kFastToBufferSize]; char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); std::string expected = std::to_string(x); EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; } void CheckInt64(int64_t x) { char buffer[absl::numbers_internal::kFastToBufferSize + 3]; buffer[0] = '*'; buffer[23] = '*'; buffer[24] = '*'; char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); std::string expected = std::to_string(x); EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; EXPECT_EQ(buffer[0], '*'); EXPECT_EQ(buffer[23], '*'); EXPECT_EQ(buffer[24], '*'); char* my_actual = absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]); EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; } void CheckUInt32(uint32_t x) { char buffer[absl::numbers_internal::kFastToBufferSize]; char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer); std::string expected = std::to_string(x); EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x; char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer); EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x; } void CheckUInt64(uint64_t x) { char buffer[absl::numbers_internal::kFastToBufferSize + 1]; char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); std::string expected = std::to_string(x); EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x; char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]); EXPECT_EQ(expected, std::string(&buffer[1], generic_actual)) << " Input " << x; char* my_actual = absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]); EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x; } void CheckHex64(uint64_t v) { char expected[16 + 1]; std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16)); snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v)); EXPECT_EQ(expected, actual) << " Input " << v; actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16)); snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v)); EXPECT_EQ(expected, actual) << " Input " << v; } TEST(Numbers, TestFastPrints) { for (int i = -100; i <= 100; i++) { CheckInt32(i); CheckInt64(i); } for (int i = 0; i <= 100; i++) { CheckUInt32(i); CheckUInt64(i); } // Test min int to make sure that works CheckInt32(INT_MIN); CheckInt32(INT_MAX); CheckInt64(LONG_MIN); CheckInt64(uint64_t{1000000000}); CheckInt64(uint64_t{9999999999}); CheckInt64(uint64_t{100000000000000}); CheckInt64(uint64_t{999999999999999}); CheckInt64(uint64_t{1000000000000000000}); CheckInt64(uint64_t{1199999999999999999}); CheckInt64(int64_t{-700000000000000000}); CheckInt64(LONG_MAX); CheckUInt32(std::numeric_limits<uint32_t>::max()); CheckUInt64(uint64_t{1000000000}); CheckUInt64(uint64_t{9999999999}); CheckUInt64(uint64_t{100000000000000}); CheckUInt64(uint64_t{999999999999999}); CheckUInt64(uint64_t{1000000000000000000}); CheckUInt64(uint64_t{1199999999999999999}); CheckUInt64(std::numeric_limits<uint64_t>::max()); for (int i = 0; i < 10000; i++) { CheckHex64(i); } CheckHex64(uint64_t{0x123456789abcdef0}); } template <typename int_type, typename in_val_type> void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) { std::string s; // (u)int128 can be streamed but not StrCat'd. absl::strings_internal::OStringStream(&s) << in_value; int_type x = static_cast<int_type>(~exp_value); EXPECT_TRUE(SimpleAtoi(s, &x)) << "in_value=" << in_value << " s=" << s << " x=" << x; EXPECT_EQ(exp_value, x); x = static_cast<int_type>(~exp_value); EXPECT_TRUE(SimpleAtoi(s.c_str(), &x)); EXPECT_EQ(exp_value, x); } template <typename int_type, typename in_val_type> void VerifySimpleAtoiBad(in_val_type in_value) { std::string s; // (u)int128 can be streamed but not StrCat'd. absl::strings_internal::OStringStream(&s) << in_value; int_type x; EXPECT_FALSE(SimpleAtoi(s, &x)); EXPECT_FALSE(SimpleAtoi(s.c_str(), &x)); } TEST(NumbersTest, Atoi) { // SimpleAtoi(absl::string_view, int32_t) VerifySimpleAtoiGood<int32_t>(0, 0); VerifySimpleAtoiGood<int32_t>(42, 42); VerifySimpleAtoiGood<int32_t>(-42, -42); VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); // SimpleAtoi(absl::string_view, uint32_t) VerifySimpleAtoiGood<uint32_t>(0, 0); VerifySimpleAtoiGood<uint32_t>(42, 42); VerifySimpleAtoiBad<uint32_t>(-42); VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), std::numeric_limits<uint32_t>::max()); VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); // SimpleAtoi(absl::string_view, int64_t) VerifySimpleAtoiGood<int64_t>(0, 0); VerifySimpleAtoiGood<int64_t>(42, 42); VerifySimpleAtoiGood<int64_t>(-42, -42); VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), std::numeric_limits<uint32_t>::max()); VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::min()); VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::max()); VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); // SimpleAtoi(absl::string_view, uint64_t) VerifySimpleAtoiGood<uint64_t>(0, 0); VerifySimpleAtoiGood<uint64_t>(42, 42); VerifySimpleAtoiBad<uint64_t>(-42); VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), std::numeric_limits<uint32_t>::max()); VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::max()); VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max()); // SimpleAtoi(absl::string_view, absl::uint128) VerifySimpleAtoiGood<absl::uint128>(0, 0); VerifySimpleAtoiGood<absl::uint128>(42, 42); VerifySimpleAtoiBad<absl::uint128>(-42); VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(), std::numeric_limits<uint32_t>::max()); VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min()); VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::max()); VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max()); VerifySimpleAtoiGood<absl::uint128>( std::numeric_limits<absl::uint128>::max(), std::numeric_limits<absl::uint128>::max()); // SimpleAtoi(absl::string_view, absl::int128) VerifySimpleAtoiGood<absl::int128>(0, 0); VerifySimpleAtoiGood<absl::int128>(42, 42); VerifySimpleAtoiGood<absl::int128>(-42, -42); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::min()); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(), std::numeric_limits<int32_t>::max()); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(), std::numeric_limits<uint32_t>::max()); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::min()); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::max()); VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max()); VerifySimpleAtoiGood<absl::int128>( std::numeric_limits<absl::int128>::min(), std::numeric_limits<absl::int128>::min()); VerifySimpleAtoiGood<absl::int128>( std::numeric_limits<absl::int128>::max(), std::numeric_limits<absl::int128>::max()); VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max()); // Some other types VerifySimpleAtoiGood<int>(-42, -42); VerifySimpleAtoiGood<int32_t>(-42, -42); VerifySimpleAtoiGood<uint32_t>(42, 42); VerifySimpleAtoiGood<unsigned int>(42, 42); VerifySimpleAtoiGood<int64_t>(-42, -42); VerifySimpleAtoiGood<long>(-42, -42); // NOLINT(runtime/int) VerifySimpleAtoiGood<uint64_t>(42, 42); VerifySimpleAtoiGood<size_t>(42, 42); VerifySimpleAtoiGood<std::string::size_type>(42, 42); } TEST(NumbersTest, Atod) { double d; EXPECT_TRUE(absl::SimpleAtod("nan", &d)); EXPECT_TRUE(std::isnan(d)); } TEST(NumbersTest, Atoenum) { enum E01 { E01_zero = 0, E01_one = 1, }; VerifySimpleAtoiGood<E01>(E01_zero, E01_zero); VerifySimpleAtoiGood<E01>(E01_one, E01_one); enum E_101 { E_101_minusone = -1, E_101_zero = 0, E_101_one = 1, }; VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone); VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero); VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one); enum E_bigint { E_bigint_zero = 0, E_bigint_one = 1, E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF), }; VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero); VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one); VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31); enum E_fullint { E_fullint_zero = 0, E_fullint_one = 1, E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF), E_fullint_min32 = INT32_MIN, }; VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero); VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one); VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31); VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32); enum E_biguint { E_biguint_zero = 0, E_biguint_one = 1, E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF), E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF), }; VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero); VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one); VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31); VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32); } TEST(stringtest, safe_strto32_base) { int32_t value; EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); EXPECT_EQ(0x34234324, value); EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); EXPECT_EQ(0x34234324, value); EXPECT_TRUE(safe_strto32_base("34234324", &value, 16)); EXPECT_EQ(0x34234324, value); EXPECT_TRUE(safe_strto32_base("0", &value, 16)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16)); EXPECT_EQ(-0x34234324, value); EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16)); EXPECT_EQ(-0x34234324, value); EXPECT_TRUE(safe_strto32_base("7654321", &value, 8)); EXPECT_EQ(07654321, value); EXPECT_TRUE(safe_strto32_base("-01234", &value, 8)); EXPECT_EQ(-01234, value); EXPECT_FALSE(safe_strto32_base("1834", &value, 8)); // Autodetect base. EXPECT_TRUE(safe_strto32_base("0", &value, 0)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto32_base("077", &value, 0)); EXPECT_EQ(077, value); // Octal interpretation // Leading zero indicates octal, but then followed by invalid digit. EXPECT_FALSE(safe_strto32_base("088", &value, 0)); // Leading 0x indicated hex, but then followed by invalid digit. EXPECT_FALSE(safe_strto32_base("0xG", &value, 0)); // Base-10 version. EXPECT_TRUE(safe_strto32_base("34234324", &value, 10)); EXPECT_EQ(34234324, value); EXPECT_TRUE(safe_strto32_base("0", &value, 10)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10)); EXPECT_EQ(-34234324, value); EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10)); EXPECT_EQ(34234324, value); // Invalid ints. EXPECT_FALSE(safe_strto32_base("", &value, 10)); EXPECT_FALSE(safe_strto32_base(" ", &value, 10)); EXPECT_FALSE(safe_strto32_base("abc", &value, 10)); EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10)); EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10)); // Out of bounds. EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); // String version. EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16)); EXPECT_EQ(0x1234, value); // Base-10 string version. EXPECT_TRUE(safe_strto32_base("1234", &value, 10)); EXPECT_EQ(1234, value); } TEST(stringtest, safe_strto32_range) { // These tests verify underflow/overflow behaviour. int32_t value; EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); EXPECT_EQ(std::numeric_limits<int32_t>::max(), value); EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10)); EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); } TEST(stringtest, safe_strto64_range) { // These tests verify underflow/overflow behaviour. int64_t value; EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); EXPECT_EQ(std::numeric_limits<int64_t>::max(), value); EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10)); EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); } TEST(stringtest, safe_strto32_leading_substring) { // These tests verify this comment in numbers.h: // On error, returns false, and sets *value to: [...] // conversion of leading substring if available ("123@@@" -> 123) // 0 if no leading substring available int32_t value; EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10)); EXPECT_EQ(4069, value); EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8)); EXPECT_EQ(0406, value); EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10)); EXPECT_EQ(4069, value); EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16)); EXPECT_EQ(0x4069ba, value); EXPECT_FALSE(safe_strto32_base("@@@", &value, 10)); EXPECT_EQ(0, value); // there was no leading substring } TEST(stringtest, safe_strto64_leading_substring) { // These tests verify this comment in numbers.h: // On error, returns false, and sets *value to: [...] // conversion of leading substring if available ("123@@@" -> 123) // 0 if no leading substring available int64_t value; EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10)); EXPECT_EQ(4069, value); EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8)); EXPECT_EQ(0406, value); EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10)); EXPECT_EQ(4069, value); EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16)); EXPECT_EQ(0x4069ba, value); EXPECT_FALSE(safe_strto64_base("@@@", &value, 10)); EXPECT_EQ(0, value); // there was no leading substring } TEST(stringtest, safe_strto64_base) { int64_t value; EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16)); EXPECT_EQ(int64_t{0x3423432448783446}, value); EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16)); EXPECT_EQ(int64_t{0x3423432448783446}, value); EXPECT_TRUE(safe_strto64_base("0", &value, 16)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16)); EXPECT_EQ(int64_t{-0x3423432448783446}, value); EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16)); EXPECT_EQ(int64_t{-0x3423432448783446}, value); EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8)); EXPECT_EQ(int64_t{0123456701234567012}, value); EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8)); EXPECT_EQ(int64_t{-017777777777777}, value); EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8)); // Autodetect base. EXPECT_TRUE(safe_strto64_base("0", &value, 0)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto64_base("077", &value, 0)); EXPECT_EQ(077, value); // Octal interpretation // Leading zero indicates octal, but then followed by invalid digit. EXPECT_FALSE(safe_strto64_base("088", &value, 0)); // Leading 0x indicated hex, but then followed by invalid digit. EXPECT_FALSE(safe_strto64_base("0xG", &value, 0)); // Base-10 version. EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10)); EXPECT_EQ(int64_t{34234324487834466}, value); EXPECT_TRUE(safe_strto64_base("0", &value, 10)); EXPECT_EQ(0, value); EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10)); EXPECT_EQ(int64_t{-34234324487834466}, value); EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10)); EXPECT_EQ(int64_t{34234324487834466}, value); // Invalid ints. EXPECT_FALSE(safe_strto64_base("", &value, 10)); EXPECT_FALSE(safe_strto64_base(" ", &value, 10)); EXPECT_FALSE(safe_strto64_base("abc", &value, 10)); EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10)); EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10)); // Out of bounds. EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); // String version. EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16)); EXPECT_EQ(0x1234, value); // Base-10 string version. EXPECT_TRUE(safe_strto64_base("1234", &value, 10)); EXPECT_EQ(1234, value); } const size_t kNumRandomTests = 10000; template <typename IntType> void test_random_integer_parse_base(bool (*parse_func)(absl::string_view, IntType* value, int base)) { using RandomEngine = std::minstd_rand0; std::random_device rd; RandomEngine rng(rd()); std::uniform_int_distribution<IntType> random_int( std::numeric_limits<IntType>::min()); std::uniform_int_distribution<int> random_base(2, 35); for (size_t i = 0; i < kNumRandomTests; i++) { IntType value = random_int(rng); int base = random_base(rng); std::string str_value; EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); IntType parsed_value; // Test successful parse EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); EXPECT_EQ(parsed_value, value); // Test overflow EXPECT_FALSE( parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value), &parsed_value, base)); // Test underflow if (std::numeric_limits<IntType>::min() < 0) { EXPECT_FALSE( parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value), &parsed_value, base)); } else { EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base)); } } } TEST(stringtest, safe_strto32_random) { test_random_integer_parse_base<int32_t>(&safe_strto32_base); } TEST(stringtest, safe_strto64_random) { test_random_integer_parse_base<int64_t>(&safe_strto64_base); } TEST(stringtest, safe_strtou32_random) { test_random_integer_parse_base<uint32_t>(&safe_strtou32_base); } TEST(stringtest, safe_strtou64_random) { test_random_integer_parse_base<uint64_t>(&safe_strtou64_base); } TEST(stringtest, safe_strtou128_random) { // random number generators don't work for uint128, and // uint128 can be streamed but not StrCat'd, so this code must be custom // implemented for uint128, but is generally the same as what's above. // test_random_integer_parse_base<absl::uint128>( // &absl::numbers_internal::safe_strtou128_base); using RandomEngine = std::minstd_rand0; using IntType = absl::uint128; constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base; std::random_device rd; RandomEngine rng(rd()); std::uniform_int_distribution<uint64_t> random_uint64( std::numeric_limits<uint64_t>::min()); std::uniform_int_distribution<int> random_base(2, 35); for (size_t i = 0; i < kNumRandomTests; i++) { IntType value = random_uint64(rng); value = (value << 64) + random_uint64(rng); int base = random_base(rng); std::string str_value; EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); IntType parsed_value; // Test successful parse EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); EXPECT_EQ(parsed_value, value); // Test overflow std::string s; absl::strings_internal::OStringStream(&s) << std::numeric_limits<IntType>::max() << value; EXPECT_FALSE(parse_func(s, &parsed_value, base)); // Test underflow s.clear(); absl::strings_internal::OStringStream(&s) << "-" << value; EXPECT_FALSE(parse_func(s, &parsed_value, base)); } } TEST(stringtest, safe_strto128_random) { // random number generators don't work for int128, and // int128 can be streamed but not StrCat'd, so this code must be custom // implemented for int128, but is generally the same as what's above. // test_random_integer_parse_base<absl::int128>( // &absl::numbers_internal::safe_strto128_base); using RandomEngine = std::minstd_rand0; using IntType = absl::int128; constexpr auto parse_func = &absl::numbers_internal::safe_strto128_base; std::random_device rd; RandomEngine rng(rd()); std::uniform_int_distribution<int64_t> random_int64( std::numeric_limits<int64_t>::min()); std::uniform_int_distribution<uint64_t> random_uint64( std::numeric_limits<uint64_t>::min()); std::uniform_int_distribution<int> random_base(2, 35); for (size_t i = 0; i < kNumRandomTests; ++i) { int64_t high = random_int64(rng); uint64_t low = random_uint64(rng); IntType value = absl::MakeInt128(high, low); int base = random_base(rng); std::string str_value; EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); IntType parsed_value; // Test successful parse EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); EXPECT_EQ(parsed_value, value); // Test overflow std::string s; absl::strings_internal::OStringStream(&s) << std::numeric_limits<IntType>::max() << value; EXPECT_FALSE(parse_func(s, &parsed_value, base)); // Test underflow s.clear(); absl::strings_internal::OStringStream(&s) << std::numeric_limits<IntType>::min() << value; EXPECT_FALSE(parse_func(s, &parsed_value, base)); } } TEST(stringtest, safe_strtou32_base) { for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { const auto& e = strtouint32_test_cases()[i]; uint32_t value; EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base)) << "str=\"" << e.str << "\" base=" << e.base; if (e.expect_ok) { EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str << "\" base=" << e.base; } } } TEST(stringtest, safe_strtou32_base_length_delimited) { for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) { const auto& e = strtouint32_test_cases()[i]; std::string tmp(e.str); tmp.append("12"); // Adds garbage at the end. uint32_t value; EXPECT_EQ(e.expect_ok, safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)), &value, e.base)) << "str=\"" << e.str << "\" base=" << e.base; if (e.expect_ok) { EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str << " base=" << e.base; } } } TEST(stringtest, safe_strtou64_base) { for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { const auto& e = strtouint64_test_cases()[i]; uint64_t value; EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base)) << "str=\"" << e.str << "\" base=" << e.base; if (e.expect_ok) { EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base; } } } TEST(stringtest, safe_strtou64_base_length_delimited) { for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) { const auto& e = strtouint64_test_cases()[i]; std::string tmp(e.str); tmp.append("12"); // Adds garbage at the end. uint64_t value; EXPECT_EQ(e.expect_ok, safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)), &value, e.base)) << "str=\"" << e.str << "\" base=" << e.base; if (e.expect_ok) { EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base; } } } // feenableexcept() and fedisableexcept() are extensions supported by some libc // implementations. #if defined(__GLIBC__) || defined(__BIONIC__) #define ABSL_HAVE_FEENABLEEXCEPT 1 #define ABSL_HAVE_FEDISABLEEXCEPT 1 #endif class SimpleDtoaTest : public testing::Test { protected: void SetUp() override { // Store the current floating point env & clear away any pending exceptions. feholdexcept(&fp_env_); #ifdef ABSL_HAVE_FEENABLEEXCEPT // Turn on floating point exceptions. feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); #endif } void TearDown() override { // Restore the floating point environment to the original state. // In theory fedisableexcept is unnecessary; fesetenv will also do it. // In practice, our toolchains have subtle bugs. #ifdef ABSL_HAVE_FEDISABLEEXCEPT fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); #endif fesetenv(&fp_env_); } std::string ToNineDigits(double value) { char buffer[16]; // more than enough for %.9g snprintf(buffer, sizeof(buffer), "%.9g", value); return buffer; } fenv_t fp_env_; }; // Run the given runnable functor for "cases" test cases, chosen over the // available range of float. pi and e and 1/e are seeded, and then all // available integer powers of 2 and 10 are multiplied against them. In // addition to trying all those values, we try the next higher and next lower // float, and then we add additional test cases evenly distributed between them. // Each test case is passed to runnable as both a positive and negative value. template <typename R> void ExhaustiveFloat(uint32_t cases, R&& runnable) { runnable(0.0f); runnable(-0.0f); if (cases >= 2e9) { // more than 2 billion? Might as well run them all. for (float f = 0; f < std::numeric_limits<float>::max(); ) { f = nextafterf(f, std::numeric_limits<float>::max()); runnable(-f); runnable(f); } return; } std::set<float> floats = {3.4028234e38f}; for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) { for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf); for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf); for (float testf = f; testf < 3e38f / 2; testf *= 2.0f) floats.insert(testf); for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf); } float last = *floats.begin(); runnable(last); runnable(-last); int iters_per_float = cases / floats.size(); if (iters_per_float == 0) iters_per_float = 1; for (float f : floats) { if (f == last) continue; float testf = std::nextafter(last, std::numeric_limits<float>::max()); runnable(testf); runnable(-testf); last = testf; if (f == last) continue; double step = (double{f} - last) / iters_per_float; for (double d = last + step; d < f; d += step) { testf = d; if (testf != last) { runnable(testf); runnable(-testf); last = testf; } } testf = std::nextafter(f, 0.0f); if (testf > last) { runnable(testf); runnable(-testf); last = testf; } if (f != last) { runnable(f); runnable(-f); last = f; } } } TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) { uint64_t test_count = 0; std::vector<double> mismatches; auto checker = [&](double d) { if (d != d) return; // rule out NaNs ++test_count; char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; SixDigitsToBuffer(d, sixdigitsbuf); char snprintfbuf[kSixDigitsToBufferSize] = {0}; snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); if (strcmp(sixdigitsbuf, snprintfbuf) != 0) { mismatches.push_back(d); if (mismatches.size() < 10) { ABSL_RAW_LOG(ERROR, "%s", absl::StrCat("Six-digit failure with double. ", "d=", d, "=", d, " sixdigits=", sixdigitsbuf, " printf(%g)=", snprintfbuf) .c_str()); } } }; // Some quick sanity checks... checker(5e-324); checker(1e-308); checker(1.0); checker(1.000005); checker(1.7976931348623157e308); checker(0.00390625); #ifndef _MSC_VER // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it // to 0.00195312 (round half to even). checker(0.001953125); #endif checker(0.005859375); // Some cases where the rounding is very very close checker(1.089095e-15); checker(3.274195e-55); checker(6.534355e-146); checker(2.920845e+234); if (mismatches.empty()) { test_count = 0; ExhaustiveFloat(kFloatNumCases, checker); test_count = 0; std::vector<int> digit_testcases{ 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc 195312, 195313, // 1.953125 is a case where we round down, just barely. 200000, 500000, 800000, // misc mid-range cases 585937, 585938, // 5.859375 is a case where we round up, just barely. 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999}; if (kFloatNumCases >= 1e9) { // If at least 1 billion test cases were requested, user wants an // exhaustive test. So let's test all mantissas, too. constexpr int min_mantissa = 100000, max_mantissa = 999999; digit_testcases.resize(max_mantissa - min_mantissa + 1); std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa); } for (int exponent = -324; exponent <= 308; ++exponent) { double powten = absl::strings_internal::Pow10(exponent); if (powten == 0) powten = 5e-324; if (kFloatNumCases >= 1e9) { // The exhaustive test takes a very long time, so log progress. char buf[kSixDigitsToBufferSize]; ABSL_RAW_LOG( INFO, "%s", absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten, ") (", std::string(buf, SixDigitsToBuffer(powten, buf)), ")") .c_str()); } for (int digits : digit_testcases) { if (exponent == 308 && digits >= 179769) break; // don't overflow! double digiform = (digits + 0.5) * 0.00001; double testval = digiform * powten; double pretestval = nextafter(testval, 0); double posttestval = nextafter(testval, 1.7976931348623157e308); checker(testval); checker(pretestval); checker(posttestval); } } } else { EXPECT_EQ(mismatches.size(), 0); for (size_t i = 0; i < mismatches.size(); ++i) { if (i > 100) i = mismatches.size() - 1; double d = mismatches[i]; char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; SixDigitsToBuffer(d, sixdigitsbuf); char snprintfbuf[kSixDigitsToBufferSize] = {0}; snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); double before = nextafter(d, 0.0); double after = nextafter(d, 1.7976931348623157e308); char b1[32], b2[kSixDigitsToBufferSize]; ABSL_RAW_LOG( ERROR, "%s", absl::StrCat( "Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")", " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf, "'", " Before.=", PerfectDtoa(before), " ", (SixDigitsToBuffer(before, b2), b2), " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1), " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2), " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1), " After.=.", PerfectDtoa(after), " ", (SixDigitsToBuffer(after, b2), b2), " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1)) .c_str()); } } } TEST(StrToInt32, Partial) { struct Int32TestLine { std::string input; bool status; int32_t value; }; const int32_t int32_min = std::numeric_limits<int32_t>::min(); const int32_t int32_max = std::numeric_limits<int32_t>::max(); Int32TestLine int32_test_line[] = { {"", false, 0}, {" ", false, 0}, {"-", false, 0}, {"123@@@", false, 123}, {absl::StrCat(int32_min, int32_max), false, int32_min}, {absl::StrCat(int32_max, int32_max), false, int32_max}, }; for (const Int32TestLine& test_line : int32_test_line) { int32_t value = -2; bool status = safe_strto32_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = -2; status = safe_strto32_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = -2; status = safe_strto32_base(absl::string_view(test_line.input), &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; } } TEST(StrToUint32, Partial) { struct Uint32TestLine { std::string input; bool status; uint32_t value; }; const uint32_t uint32_max = std::numeric_limits<uint32_t>::max(); Uint32TestLine uint32_test_line[] = { {"", false, 0}, {" ", false, 0}, {"-", false, 0}, {"123@@@", false, 123}, {absl::StrCat(uint32_max, uint32_max), false, uint32_max}, }; for (const Uint32TestLine& test_line : uint32_test_line) { uint32_t value = 2; bool status = safe_strtou32_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = 2; status = safe_strtou32_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = 2; status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; } } TEST(StrToInt64, Partial) { struct Int64TestLine { std::string input; bool status; int64_t value; }; const int64_t int64_min = std::numeric_limits<int64_t>::min(); const int64_t int64_max = std::numeric_limits<int64_t>::max(); Int64TestLine int64_test_line[] = { {"", false, 0}, {" ", false, 0}, {"-", false, 0}, {"123@@@", false, 123}, {absl::StrCat(int64_min, int64_max), false, int64_min}, {absl::StrCat(int64_max, int64_max), false, int64_max}, }; for (const Int64TestLine& test_line : int64_test_line) { int64_t value = -2; bool status = safe_strto64_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = -2; status = safe_strto64_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = -2; status = safe_strto64_base(absl::string_view(test_line.input), &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; } } TEST(StrToUint64, Partial) { struct Uint64TestLine { std::string input; bool status; uint64_t value; }; const uint64_t uint64_max = std::numeric_limits<uint64_t>::max(); Uint64TestLine uint64_test_line[] = { {"", false, 0}, {" ", false, 0}, {"-", false, 0}, {"123@@@", false, 123}, {absl::StrCat(uint64_max, uint64_max), false, uint64_max}, }; for (const Uint64TestLine& test_line : uint64_test_line) { uint64_t value = 2; bool status = safe_strtou64_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = 2; status = safe_strtou64_base(test_line.input, &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; value = 2; status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10); EXPECT_EQ(test_line.status, status) << test_line.input; EXPECT_EQ(test_line.value, value) << test_line.input; } } TEST(StrToInt32Base, PrefixOnly) { struct Int32TestLine { std::string input; bool status; int32_t value; }; Int32TestLine int32_test_line[] = { { "", false, 0 }, { "-", false, 0 }, { "-0", true, 0 }, { "0", true, 0 }, { "0x", false, 0 }, { "-0x", false, 0 }, }; const int base_array[] = { 0, 2, 8, 10, 16 }; for (const Int32TestLine& line : int32_test_line) { for (const int base : base_array) { int32_t value = 2; bool status = safe_strto32_base(line.input.c_str(), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strto32_base(line.input, &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strto32_base(absl::string_view(line.input), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; } } } TEST(StrToUint32Base, PrefixOnly) { struct Uint32TestLine { std::string input; bool status; uint32_t value; }; Uint32TestLine uint32_test_line[] = { { "", false, 0 }, { "0", true, 0 }, { "0x", false, 0 }, }; const int base_array[] = { 0, 2, 8, 10, 16 }; for (const Uint32TestLine& line : uint32_test_line) { for (const int base : base_array) { uint32_t value = 2; bool status = safe_strtou32_base(line.input.c_str(), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strtou32_base(line.input, &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strtou32_base(absl::string_view(line.input), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; } } } TEST(StrToInt64Base, PrefixOnly) { struct Int64TestLine { std::string input; bool status; int64_t value; }; Int64TestLine int64_test_line[] = { { "", false, 0 }, { "-", false, 0 }, { "-0", true, 0 }, { "0", true, 0 }, { "0x", false, 0 }, { "-0x", false, 0 }, }; const int base_array[] = { 0, 2, 8, 10, 16 }; for (const Int64TestLine& line : int64_test_line) { for (const int base : base_array) { int64_t value = 2; bool status = safe_strto64_base(line.input.c_str(), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strto64_base(line.input, &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strto64_base(absl::string_view(line.input), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; } } } TEST(StrToUint64Base, PrefixOnly) { struct Uint64TestLine { std::string input; bool status; uint64_t value; }; Uint64TestLine uint64_test_line[] = { { "", false, 0 }, { "0", true, 0 }, { "0x", false, 0 }, }; const int base_array[] = { 0, 2, 8, 10, 16 }; for (const Uint64TestLine& line : uint64_test_line) { for (const int base : base_array) { uint64_t value = 2; bool status = safe_strtou64_base(line.input.c_str(), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strtou64_base(line.input, &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; value = 2; status = safe_strtou64_base(absl::string_view(line.input), &value, base); EXPECT_EQ(line.status, status) << line.input << " " << base; EXPECT_EQ(line.value, value) << line.input << " " << base; } } } void TestFastHexToBufferZeroPad16(uint64_t v) { char buf[16]; auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf); absl::string_view res(buf, 16); char buf2[17]; snprintf(buf2, sizeof(buf2), "%016" PRIx64, v); EXPECT_EQ(res, buf2) << v; size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v); EXPECT_EQ(digits, expected_digits) << v; } TEST(FastHexToBufferZeroPad16, Smoke) { TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min()); TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max()); TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min()); TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max()); absl::BitGen rng; for (int i = 0; i < 100000; ++i) { TestFastHexToBufferZeroPad16( absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(), std::numeric_limits<uint64_t>::max())); } } } // namespace