// Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: statusor.h // ----------------------------------------------------------------------------- // // An `absl::StatusOr<T>` represents a union of an `absl::Status` object // and an object of type `T`. The `absl::StatusOr<T>` will either contain an // object of type `T` (indicating a successful operation), or an error (of type // `absl::Status`) explaining why such a value is not present. // // In general, check the success of an operation returning an // `absl::StatusOr<T>` like you would an `absl::Status` by using the `ok()` // member function. // // Example: // // StatusOr<Foo> result = Calculation(); // if (result.ok()) { // result->DoSomethingCool(); // } else { // LOG(ERROR) << result.status(); // } #ifndef ABSL_STATUS_STATUSOR_H_ #define ABSL_STATUS_STATUSOR_H_ #include <exception> #include <initializer_list> #include <new> #include <string> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/meta/type_traits.h" #include "absl/status/internal/statusor_internal.h" #include "absl/status/status.h" #include "absl/types/variant.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN // BadStatusOrAccess // // This class defines the type of object to throw (if exceptions are enabled), // when accessing the value of an `absl::StatusOr<T>` object that does not // contain a value. This behavior is analogous to that of // `std::bad_optional_access` in the case of accessing an invalid // `std::optional` value. // // Example: // // try { // absl::StatusOr<int> v = FetchInt(); // DoWork(v.value()); // Accessing value() when not "OK" may throw // } catch (absl::BadStatusOrAccess& ex) { // LOG(ERROR) << ex.status(); // } class BadStatusOrAccess : public std::exception { public: explicit BadStatusOrAccess(absl::Status status); ~BadStatusOrAccess() override; // BadStatusOrAccess::what() // // Returns the associated explanatory string of the `absl::StatusOr<T>` // object's error code. This function only returns the string literal "Bad // StatusOr Access" for cases when evaluating general exceptions. // // The pointer of this string is guaranteed to be valid until any non-const // function is invoked on the exception object. const char* what() const noexcept override; // BadStatusOrAccess::status() // // Returns the associated `absl::Status` of the `absl::StatusOr<T>` object's // error. const absl::Status& status() const; private: absl::Status status_; }; // Returned StatusOr objects may not be ignored. template <typename T> class ABSL_MUST_USE_RESULT StatusOr; // absl::StatusOr<T> // // The `absl::StatusOr<T>` class template is a union of an `absl::Status` object // and an object of type `T`. The `absl::StatusOr<T>` models an object that is // either a usable object, or an error (of type `absl::Status`) explaining why // such an object is not present. An `absl::StatusOr<T>` is typically the return // value of a function which may fail. // // An `absl::StatusOr<T>` can never hold an "OK" status (an // `absl::StatusCode::kOk` value); instead, the presence of an object of type // `T` indicates success. Instead of checking for a `kOk` value, use the // `absl::StatusOr<T>::ok()` member function. (It is for this reason, and code // readability, that using the `ok()` function is preferred for `absl::Status` // as well.) // // Example: // // StatusOr<Foo> result = DoBigCalculationThatCouldFail(); // if (result.ok()) { // result->DoSomethingCool(); // } else { // LOG(ERROR) << result.status(); // } // // Accessing the object held by an `absl::StatusOr<T>` should be performed via // `operator*` or `operator->`, after a call to `ok()` confirms that the // `absl::StatusOr<T>` holds an object of type `T`: // // Example: // // absl::StatusOr<int> i = GetCount(); // if (i.ok()) { // updated_total += *i // } // // NOTE: using `absl::StatusOr<T>::value()` when no valid value is present will // throw an exception if exceptions are enabled or terminate the process when // execeptions are not enabled. // // Example: // // StatusOr<Foo> result = DoBigCalculationThatCouldFail(); // const Foo& foo = result.value(); // Crash/exception if no value present // foo.DoSomethingCool(); // // A `absl::StatusOr<T*>` can be constructed from a null pointer like any other // pointer value, and the result will be that `ok()` returns `true` and // `value()` returns `nullptr`. Checking the value of pointer in an // `absl::StatusOr<T>` generally requires a bit more care, to ensure both that a // value is present and that value is not null: // // StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg); // if (!result.ok()) { // LOG(ERROR) << result.status(); // } else if (*result == nullptr) { // LOG(ERROR) << "Unexpected null pointer"; // } else { // (*result)->DoSomethingCool(); // } // // Example factory implementation returning StatusOr<T>: // // StatusOr<Foo> FooFactory::MakeFoo(int arg) { // if (arg <= 0) { // return absl::Status(absl::StatusCode::kInvalidArgument, // "Arg must be positive"); // } // return Foo(arg); // } template <typename T> class StatusOr : private internal_statusor::StatusOrData<T>, private internal_statusor::CopyCtorBase<T>, private internal_statusor::MoveCtorBase<T>, private internal_statusor::CopyAssignBase<T>, private internal_statusor::MoveAssignBase<T> { template <typename U> friend class StatusOr; typedef internal_statusor::StatusOrData<T> Base; public: // StatusOr<T>::value_type // // This instance data provides a generic `value_type` member for use within // generic programming. This usage is analogous to that of // `optional::value_type` in the case of `std::optional`. typedef T value_type; // Constructors // Constructs a new `absl::StatusOr` with an `absl::StatusCode::kUnknown` // status. This constructor is marked 'explicit' to prevent usages in return // values such as 'return {};', under the misconception that // `absl::StatusOr<std::vector<int>>` will be initialized with an empty // vector, instead of an `absl::StatusCode::kUnknown` error code. explicit StatusOr(); // `StatusOr<T>` is copy constructible if `T` is copy constructible. StatusOr(const StatusOr&) = default; // `StatusOr<T>` is copy assignable if `T` is copy constructible and copy // assignable. StatusOr& operator=(const StatusOr&) = default; // `StatusOr<T>` is move constructible if `T` is move constructible. StatusOr(StatusOr&&) = default; // `StatusOr<T>` is moveAssignable if `T` is move constructible and move // assignable. StatusOr& operator=(StatusOr&&) = default; // Converting Constructors // Constructs a new `absl::StatusOr<T>` from an `absl::StatusOr<U>`, when `T` // is constructible from `U`. To avoid ambiguity, these constructors are // disabled if `T` is also constructible from `StatusOr<U>.`. This constructor // is explicit if and only if the corresponding construction of `T` from `U` // is explicit. (This constructor inherits its explicitness from the // underlying constructor.) template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, const U&>, std::is_convertible<const U&, T>, absl::negation< internal_statusor::IsConstructibleOrConvertibleFromStatusOr< T, U>>>::value, int> = 0> StatusOr(const StatusOr<U>& other) // NOLINT : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {} template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, const U&>, absl::negation<std::is_convertible<const U&, T>>, absl::negation< internal_statusor::IsConstructibleOrConvertibleFromStatusOr< T, U>>>::value, int> = 0> explicit StatusOr(const StatusOr<U>& other) : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {} template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>, std::is_convertible<U&&, T>, absl::negation< internal_statusor::IsConstructibleOrConvertibleFromStatusOr< T, U>>>::value, int> = 0> StatusOr(StatusOr<U>&& other) // NOLINT : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {} template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>, absl::negation<std::is_convertible<U&&, T>>, absl::negation< internal_statusor::IsConstructibleOrConvertibleFromStatusOr< T, U>>>::value, int> = 0> explicit StatusOr(StatusOr<U>&& other) : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {} // Converting Assignment Operators // Creates an `absl::StatusOr<T>` through assignment from an // `absl::StatusOr<U>` when: // // * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` are OK by assigning // `U` to `T` directly. // * `absl::StatusOr<T>` is OK and `absl::StatusOr<U>` contains an error // code by destroying `absl::StatusOr<T>`'s value and assigning from // `absl::StatusOr<U>' // * `absl::StatusOr<T>` contains an error code and `absl::StatusOr<U>` is // OK by directly initializing `T` from `U`. // * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` contain an error // code by assigning the `Status` in `absl::StatusOr<U>` to // `absl::StatusOr<T>` // // These overloads only apply if `absl::StatusOr<T>` is constructible and // assignable from `absl::StatusOr<U>` and `StatusOr<T>` cannot be directly // assigned from `StatusOr<U>`. template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, const U&>, std::is_assignable<T, const U&>, absl::negation< internal_statusor:: IsConstructibleOrConvertibleOrAssignableFromStatusOr< T, U>>>::value, int> = 0> StatusOr& operator=(const StatusOr<U>& other) { this->Assign(other); return *this; } template < typename U, absl::enable_if_t< absl::conjunction< absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>, std::is_assignable<T, U&&>, absl::negation< internal_statusor:: IsConstructibleOrConvertibleOrAssignableFromStatusOr< T, U>>>::value, int> = 0> StatusOr& operator=(StatusOr<U>&& other) { this->Assign(std::move(other)); return *this; } // Constructs a new `absl::StatusOr<T>` with a non-ok status. After calling // this constructor, `this->ok()` will be `false` and calls to `value()` will // crash, or produce an exception if exceptions are enabled. // // The constructor also takes any type `U` that is convertible to // `absl::Status`. This constructor is explicit if an only if `U` is not of // type `absl::Status` and the conversion from `U` to `Status` is explicit. // // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed. // In optimized builds, passing absl::OkStatus() here will have the effect // of passing absl::StatusCode::kInternal as a fallback. template < typename U = absl::Status, absl::enable_if_t< absl::conjunction< std::is_convertible<U&&, absl::Status>, std::is_constructible<absl::Status, U&&>, absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>, absl::negation<std::is_same<absl::decay_t<U>, T>>, absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>, absl::negation<internal_statusor::HasConversionOperatorToStatusOr< T, U&&>>>::value, int> = 0> StatusOr(U&& v) : Base(std::forward<U>(v)) {} template < typename U = absl::Status, absl::enable_if_t< absl::conjunction< absl::negation<std::is_convertible<U&&, absl::Status>>, std::is_constructible<absl::Status, U&&>, absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>, absl::negation<std::is_same<absl::decay_t<U>, T>>, absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>, absl::negation<internal_statusor::HasConversionOperatorToStatusOr< T, U&&>>>::value, int> = 0> explicit StatusOr(U&& v) : Base(std::forward<U>(v)) {} template < typename U = absl::Status, absl::enable_if_t< absl::conjunction< std::is_convertible<U&&, absl::Status>, std::is_constructible<absl::Status, U&&>, absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>, absl::negation<std::is_same<absl::decay_t<U>, T>>, absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>, absl::negation<internal_statusor::HasConversionOperatorToStatusOr< T, U&&>>>::value, int> = 0> StatusOr& operator=(U&& v) { this->AssignStatus(std::forward<U>(v)); return *this; } // Perfect-forwarding value assignment operator. // If `*this` contains a `T` value before the call, the contained value is // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized // from `std::forward<U>(v)`. // This function does not participate in overload unless: // 1. `std::is_constructible_v<T, U>` is true, // 2. `std::is_assignable_v<T&, U>` is true. // 3. `std::is_same_v<StatusOr<T>, std::remove_cvref_t<U>>` is false. // 4. Assigning `U` to `T` is not ambiguous: // If `U` is `StatusOr<V>` and `T` is constructible and assignable from // both `StatusOr<V>` and `V`, the assignment is considered bug-prone and // ambiguous thus will fail to compile. For example: // StatusOr<bool> s1 = true; // s1.ok() && *s1 == true // StatusOr<bool> s2 = false; // s2.ok() && *s2 == false // s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`? template < typename U = T, typename = typename std::enable_if<absl::conjunction< std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>, absl::disjunction< std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>, absl::conjunction< absl::negation<std::is_convertible<U&&, absl::Status>>, absl::negation<internal_statusor:: HasConversionOperatorToStatusOr<T, U&&>>>>, internal_statusor::IsForwardingAssignmentValid<T, U&&>>::value>::type> StatusOr& operator=(U&& v) { this->Assign(std::forward<U>(v)); return *this; } // Constructs the inner value `T` in-place using the provided args, using the // `T(args...)` constructor. template <typename... Args> explicit StatusOr(absl::in_place_t, Args&&... args); template <typename U, typename... Args> explicit StatusOr(absl::in_place_t, std::initializer_list<U> ilist, Args&&... args); // Constructs the inner value `T` in-place using the provided args, using the // `T(U)` (direct-initialization) constructor. This constructor is only valid // if `T` can be constructed from a `U`. Can accept move or copy constructors. // // This constructor is explicit if `U` is not convertible to `T`. To avoid // ambiguity, this constuctor is disabled if `U` is a `StatusOr<J>`, where `J` // is convertible to `T`. template < typename U = T, absl::enable_if_t< absl::conjunction< internal_statusor::IsDirectInitializationValid<T, U&&>, std::is_constructible<T, U&&>, std::is_convertible<U&&, T>, absl::disjunction< std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>, absl::conjunction< absl::negation<std::is_convertible<U&&, absl::Status>>, absl::negation< internal_statusor::HasConversionOperatorToStatusOr< T, U&&>>>>>::value, int> = 0> StatusOr(U&& u) // NOLINT : StatusOr(absl::in_place, std::forward<U>(u)) { } template < typename U = T, absl::enable_if_t< absl::conjunction< internal_statusor::IsDirectInitializationValid<T, U&&>, absl::disjunction< std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>, absl::conjunction< absl::negation<std::is_constructible<absl::Status, U&&>>, absl::negation< internal_statusor::HasConversionOperatorToStatusOr< T, U&&>>>>, std::is_constructible<T, U&&>, absl::negation<std::is_convertible<U&&, T>>>::value, int> = 0> explicit StatusOr(U&& u) // NOLINT : StatusOr(absl::in_place, std::forward<U>(u)) { } // StatusOr<T>::ok() // // Returns whether or not this `absl::StatusOr<T>` holds a `T` value. This // member function is analagous to `absl::Status::ok()` and should be used // similarly to check the status of return values. // // Example: // // StatusOr<Foo> result = DoBigCalculationThatCouldFail(); // if (result.ok()) { // // Handle result // else { // // Handle error // } ABSL_MUST_USE_RESULT bool ok() const { return this->status_.ok(); } // StatusOr<T>::status() // // Returns a reference to the current `absl::Status` contained within the // `absl::StatusOr<T>`. If `absl::StatusOr<T>` contains a `T`, then this // function returns `absl::OkStatus()`. const Status& status() const &; Status status() &&; // StatusOr<T>::value() // // Returns a reference to the held value if `this->ok()`. Otherwise, throws // `absl::BadStatusOrAccess` if exceptions are enabled, or is guaranteed to // terminate the process if exceptions are disabled. // // If you have already checked the status using `this->ok()`, you probably // want to use `operator*()` or `operator->()` to access the value instead of // `value`. // // Note: for value types that are cheap to copy, prefer simple code: // // T value = statusor.value(); // // Otherwise, if the value type is expensive to copy, but can be left // in the StatusOr, simply assign to a reference: // // T& value = statusor.value(); // or `const T&` // // Otherwise, if the value type supports an efficient move, it can be // used as follows: // // T value = std::move(statusor).value(); // // The `std::move` on statusor instead of on the whole expression enables // warnings about possible uses of the statusor object after the move. const T& value() const&; T& value() &; const T&& value() const&&; T&& value() &&; // StatusOr<T>:: operator*() // // Returns a reference to the current value. // // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined. // // Use `this->ok()` to verify that there is a current value within the // `absl::StatusOr<T>`. Alternatively, see the `value()` member function for a // similar API that guarantees crashing or throwing an exception if there is // no current value. const T& operator*() const&; T& operator*() &; const T&& operator*() const&&; T&& operator*() &&; // StatusOr<T>::operator->() // // Returns a pointer to the current value. // // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined. // // Use `this->ok()` to verify that there is a current value. const T* operator->() const; T* operator->(); // StatusOr<T>::value_or() // // Returns the current value if `this->ok() == true`. Otherwise constructs a // value using the provided `default_value`. // // Unlike `value`, this function returns by value, copying the current value // if necessary. If the value type supports an efficient move, it can be used // as follows: // // T value = std::move(statusor).value_or(def); // // Unlike with `value`, calling `std::move()` on the result of `value_or` will // still trigger a copy. template <typename U> T value_or(U&& default_value) const&; template <typename U> T value_or(U&& default_value) &&; // StatusOr<T>::IgnoreError() // // Ignores any errors. This method does nothing except potentially suppress // complaints from any tools that are checking that errors are not dropped on // the floor. void IgnoreError() const; // StatusOr<T>::emplace() // // Reconstructs the inner value T in-place using the provided args, using the // T(args...) constructor. Returns reference to the reconstructed `T`. template <typename... Args> T& emplace(Args&&... args) { if (ok()) { this->Clear(); this->MakeValue(std::forward<Args>(args)...); } else { this->MakeValue(std::forward<Args>(args)...); this->status_ = absl::OkStatus(); } return this->data_; } template < typename U, typename... Args, absl::enable_if_t< std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, int> = 0> T& emplace(std::initializer_list<U> ilist, Args&&... args) { if (ok()) { this->Clear(); this->MakeValue(ilist, std::forward<Args>(args)...); } else { this->MakeValue(ilist, std::forward<Args>(args)...); this->status_ = absl::OkStatus(); } return this->data_; } private: using internal_statusor::StatusOrData<T>::Assign; template <typename U> void Assign(const absl::StatusOr<U>& other); template <typename U> void Assign(absl::StatusOr<U>&& other); }; // operator==() // // This operator checks the equality of two `absl::StatusOr<T>` objects. template <typename T> bool operator==(const StatusOr<T>& lhs, const StatusOr<T>& rhs) { if (lhs.ok() && rhs.ok()) return *lhs == *rhs; return lhs.status() == rhs.status(); } // operator!=() // // This operator checks the inequality of two `absl::StatusOr<T>` objects. template <typename T> bool operator!=(const StatusOr<T>& lhs, const StatusOr<T>& rhs) { return !(lhs == rhs); } //------------------------------------------------------------------------------ // Implementation details for StatusOr<T> //------------------------------------------------------------------------------ // TODO(sbenza): avoid the string here completely. template <typename T> StatusOr<T>::StatusOr() : Base(Status(absl::StatusCode::kUnknown, "")) {} template <typename T> template <typename U> inline void StatusOr<T>::Assign(const StatusOr<U>& other) { if (other.ok()) { this->Assign(*other); } else { this->AssignStatus(other.status()); } } template <typename T> template <typename U> inline void StatusOr<T>::Assign(StatusOr<U>&& other) { if (other.ok()) { this->Assign(*std::move(other)); } else { this->AssignStatus(std::move(other).status()); } } template <typename T> template <typename... Args> StatusOr<T>::StatusOr(absl::in_place_t, Args&&... args) : Base(absl::in_place, std::forward<Args>(args)...) {} template <typename T> template <typename U, typename... Args> StatusOr<T>::StatusOr(absl::in_place_t, std::initializer_list<U> ilist, Args&&... args) : Base(absl::in_place, ilist, std::forward<Args>(args)...) {} template <typename T> const Status& StatusOr<T>::status() const & { return this->status_; } template <typename T> Status StatusOr<T>::status() && { return ok() ? OkStatus() : std::move(this->status_); } template <typename T> const T& StatusOr<T>::value() const& { if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_); return this->data_; } template <typename T> T& StatusOr<T>::value() & { if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_); return this->data_; } template <typename T> const T&& StatusOr<T>::value() const&& { if (!this->ok()) { internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_)); } return std::move(this->data_); } template <typename T> T&& StatusOr<T>::value() && { if (!this->ok()) { internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_)); } return std::move(this->data_); } template <typename T> const T& StatusOr<T>::operator*() const& { this->EnsureOk(); return this->data_; } template <typename T> T& StatusOr<T>::operator*() & { this->EnsureOk(); return this->data_; } template <typename T> const T&& StatusOr<T>::operator*() const&& { this->EnsureOk(); return std::move(this->data_); } template <typename T> T&& StatusOr<T>::operator*() && { this->EnsureOk(); return std::move(this->data_); } template <typename T> const T* StatusOr<T>::operator->() const { this->EnsureOk(); return &this->data_; } template <typename T> T* StatusOr<T>::operator->() { this->EnsureOk(); return &this->data_; } template <typename T> template <typename U> T StatusOr<T>::value_or(U&& default_value) const& { if (ok()) { return this->data_; } return std::forward<U>(default_value); } template <typename T> template <typename U> T StatusOr<T>::value_or(U&& default_value) && { if (ok()) { return std::move(this->data_); } return std::forward<U>(default_value); } template <typename T> void StatusOr<T>::IgnoreError() const { // no-op } ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STATUS_STATUSOR_H_