// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: status.h // ----------------------------------------------------------------------------- // // This header file defines the Abseil `status` library, consisting of: // // * An `absl::Status` class for holding error handling information // * A set of canonical `absl::StatusCode` error codes, and associated // utilities for generating and propagating status codes. // * A set of helper functions for creating status codes and checking their // values // // Within Google, `absl::Status` is the primary mechanism for gracefully // handling errors across API boundaries (and in particular across RPC // boundaries). Some of these errors may be recoverable, but others may not. // Most functions that can produce a recoverable error should be designed to // return an `absl::Status` (or `absl::StatusOr`). // // Example: // // absl::Status myFunction(absl::string_view fname, ...) { // ... // // encounter error // if (error condition) { // return absl::InvalidArgumentError("bad mode"); // } // // else, return OK // return absl::OkStatus(); // } // // An `absl::Status` is designed to either return "OK" or one of a number of // different error codes, corresponding to typical error conditions. // In almost all cases, when using `absl::Status` you should use the canonical // error codes (of type `absl::StatusCode`) enumerated in this header file. // These canonical codes are understood across the codebase and will be // accepted across all API and RPC boundaries. #ifndef ABSL_STATUS_STATUS_H_ #define ABSL_STATUS_STATUS_H_ #include <iostream> #include <string> #include "absl/container/inlined_vector.h" #include "absl/status/internal/status_internal.h" #include "absl/strings/cord.h" #include "absl/types/optional.h" namespace absl { ABSL_NAMESPACE_BEGIN // absl::StatusCode // // An `absl::StatusCode` is an enumerated type indicating either no error ("OK") // or an error condition. In most cases, an `absl::Status` indicates a // recoverable error, and the purpose of signalling an error is to indicate what // action to take in response to that error. These error codes map to the proto // RPC error codes indicated in https://cloud.google.com/apis/design/errors. // // The errors listed below are the canonical errors associated with // `absl::Status` and are used throughout the codebase. As a result, these // error codes are somewhat generic. // // In general, try to return the most specific error that applies if more than // one error may pertain. For example, prefer `kOutOfRange` over // `kFailedPrecondition` if both codes apply. Similarly prefer `kNotFound` or // `kAlreadyExists` over `kFailedPrecondition`. // // Because these errors may travel RPC boundaries, these codes are tied to the // `google.rpc.Code` definitions within // https://github.com/googleapis/googleapis/blob/master/google/rpc/code.proto // The string value of these RPC codes is denoted within each enum below. // // If your error handling code requires more context, you can attach payloads // to your status. See `absl::Status::SetPayload()` and // `absl::Status::GetPayload()` below. enum class StatusCode : int { // StatusCode::kOk // // kOK (gRPC code "OK") does not indicate an error; this value is returned on // success. It is typical to check for this value before proceeding on any // given call across an API or RPC boundary. To check this value, use the // `absl::Status::ok()` member function rather than inspecting the raw code. kOk = 0, // StatusCode::kCancelled // // kCancelled (gRPC code "CANCELLED") indicates the operation was cancelled, // typically by the caller. kCancelled = 1, // StatusCode::kUnknown // // kUnknown (gRPC code "UNKNOWN") indicates an unknown error occurred. In // general, more specific errors should be raised, if possible. Errors raised // by APIs that do not return enough error information may be converted to // this error. kUnknown = 2, // StatusCode::kInvalidArgument // // kInvalidArgument (gRPC code "INVALID_ARGUMENT") indicates the caller // specified an invalid argument, such a malformed filename. Note that such // errors should be narrowly limited to indicate to the invalid nature of the // arguments themselves. Errors with validly formed arguments that may cause // errors with the state of the receiving system should be denoted with // `kFailedPrecondition` instead. kInvalidArgument = 3, // StatusCode::kDeadlineExceeded // // kDeadlineExceeded (gRPC code "DEADLINE_EXCEEDED") indicates a deadline // expired before the operation could complete. For operations that may change // state within a system, this error may be returned even if the operation has // completed successfully. For example, a successful response from a server // could have been delayed long enough for the deadline to expire. kDeadlineExceeded = 4, // StatusCode::kNotFound // // kNotFound (gRPC code "NOT_FOUND") indicates some requested entity (such as // a file or directory) was not found. // // `kNotFound` is useful if a request should be denied for an entire class of // users, such as during a gradual feature rollout or undocumented allow list. // If, instead, a request should be denied for specific sets of users, such as // through user-based access control, use `kPermissionDenied` instead. kNotFound = 5, // StatusCode::kAlreadyExists // // kAlreadyExists (gRPC code "ALREADY_EXISTS") indicates the entity that a // caller attempted to create (such as file or directory) is already present. kAlreadyExists = 6, // StatusCode::kPermissionDenied // // kPermissionDenied (gRPC code "PERMISSION_DENIED") indicates that the caller // does not have permission to execute the specified operation. Note that this // error is different than an error due to an *un*authenticated user. This // error code does not imply the request is valid or the requested entity // exists or satisfies any other pre-conditions. // // `kPermissionDenied` must not be used for rejections caused by exhausting // some resource. Instead, use `kResourceExhausted` for those errors. // `kPermissionDenied` must not be used if the caller cannot be identified. // Instead, use `kUnauthenticated` for those errors. kPermissionDenied = 7, // StatusCode::kResourceExhausted // // kResourceExhausted (gRPC code "RESOURCE_EXHAUSTED") indicates some resource // has been exhausted, perhaps a per-user quota, or perhaps the entire file // system is out of space. kResourceExhausted = 8, // StatusCode::kFailedPrecondition // // kFailedPrecondition (gRPC code "FAILED_PRECONDITION") indicates that the // operation was rejected because the system is not in a state required for // the operation's execution. For example, a directory to be deleted may be // non-empty, an "rmdir" operation is applied to a non-directory, etc. // // Some guidelines that may help a service implementer in deciding between // `kFailedPrecondition`, `kAborted`, and `kUnavailable`: // // (a) Use `kUnavailable` if the client can retry just the failing call. // (b) Use `kAborted` if the client should retry at a higher transaction // level (such as when a client-specified test-and-set fails, indicating // the client should restart a read-modify-write sequence). // (c) Use `kFailedPrecondition` if the client should not retry until // the system state has been explicitly fixed. For example, if an "rmdir" // fails because the directory is non-empty, `kFailedPrecondition` // should be returned since the client should not retry unless // the files are deleted from the directory. kFailedPrecondition = 9, // StatusCode::kAborted // // kAborted (gRPC code "ABORTED") indicates the operation was aborted, // typically due to a concurrency issue such as a sequencer check failure or a // failed transaction. // // See the guidelines above for deciding between `kFailedPrecondition`, // `kAborted`, and `kUnavailable`. kAborted = 10, // StatusCode::kOutOfRange // // kOutOfRange (gRPC code "OUT_OF_RANGE") indicates the operation was // attempted past the valid range, such as seeking or reading past an // end-of-file. // // Unlike `kInvalidArgument`, this error indicates a problem that may // be fixed if the system state changes. For example, a 32-bit file // system will generate `kInvalidArgument` if asked to read at an // offset that is not in the range [0,2^32-1], but it will generate // `kOutOfRange` if asked to read from an offset past the current // file size. // // There is a fair bit of overlap between `kFailedPrecondition` and // `kOutOfRange`. We recommend using `kOutOfRange` (the more specific // error) when it applies so that callers who are iterating through // a space can easily look for an `kOutOfRange` error to detect when // they are done. kOutOfRange = 11, // StatusCode::kUnimplemented // // kUnimplemented (gRPC code "UNIMPLEMENTED") indicates the operation is not // implemented or supported in this service. In this case, the operation // should not be re-attempted. kUnimplemented = 12, // StatusCode::kInternal // // kInternal (gRPC code "INTERNAL") indicates an internal error has occurred // and some invariants expected by the underlying system have not been // satisfied. This error code is reserved for serious errors. kInternal = 13, // StatusCode::kUnavailable // // kUnavailable (gRPC code "UNAVAILABLE") indicates the service is currently // unavailable and that this is most likely a transient condition. An error // such as this can be corrected by retrying with a backoff scheme. Note that // it is not always safe to retry non-idempotent operations. // // See the guidelines above for deciding between `kFailedPrecondition`, // `kAborted`, and `kUnavailable`. kUnavailable = 14, // StatusCode::kDataLoss // // kDataLoss (gRPC code "DATA_LOSS") indicates that unrecoverable data loss or // corruption has occurred. As this error is serious, proper alerting should // be attached to errors such as this. kDataLoss = 15, // StatusCode::kUnauthenticated // // kUnauthenticated (gRPC code "UNAUTHENTICATED") indicates that the request // does not have valid authentication credentials for the operation. Correct // the authentication and try again. kUnauthenticated = 16, // StatusCode::DoNotUseReservedForFutureExpansionUseDefaultInSwitchInstead_ // // NOTE: this error code entry should not be used and you should not rely on // its value, which may change. // // The purpose of this enumerated value is to force people who handle status // codes with `switch()` statements to *not* simply enumerate all possible // values, but instead provide a "default:" case. Providing such a default // case ensures that code will compile when new codes are added. kDoNotUseReservedForFutureExpansionUseDefaultInSwitchInstead_ = 20 }; // StatusCodeToString() // // Returns the name for the status code, or "" if it is an unknown value. std::string StatusCodeToString(StatusCode code); // operator<< // // Streams StatusCodeToString(code) to `os`. std::ostream& operator<<(std::ostream& os, StatusCode code); // absl::Status // // The `absl::Status` class is generally used to gracefully handle errors // across API boundaries (and in particular across RPC boundaries). Some of // these errors may be recoverable, but others may not. Most // functions which can produce a recoverable error should be designed to return // either an `absl::Status` (or the similar `absl::StatusOr<T>`, which holds // either an object of type `T` or an error). // // API developers should construct their functions to return `absl::OkStatus()` // upon success, or an `absl::StatusCode` upon another type of error (e.g // an `absl::StatusCode::kInvalidArgument` error). The API provides convenience // functions to constuct each status code. // // Example: // // absl::Status myFunction(absl::string_view fname, ...) { // ... // // encounter error // if (error condition) { // // Construct an absl::StatusCode::kInvalidArgument error // return absl::InvalidArgumentError("bad mode"); // } // // else, return OK // return absl::OkStatus(); // } // // Users handling status error codes should prefer checking for an OK status // using the `ok()` member function. Handling multiple error codes may justify // use of switch statement, but only check for error codes you know how to // handle; do not try to exhaustively match against all canonical error codes. // Errors that cannot be handled should be logged and/or propagated for higher // levels to deal with. If you do use a switch statement, make sure that you // also provide a `default:` switch case, so that code does not break as other // canonical codes are added to the API. // // Example: // // absl::Status result = DoSomething(); // if (!result.ok()) { // LOG(ERROR) << result; // } // // // Provide a default if switching on multiple error codes // switch (result.code()) { // // The user hasn't authenticated. Ask them to reauth // case absl::StatusCode::kUnauthenticated: // DoReAuth(); // break; // // The user does not have permission. Log an error. // case absl::StatusCode::kPermissionDenied: // LOG(ERROR) << result; // break; // // Propagate the error otherwise. // default: // return true; // } // // An `absl::Status` can optionally include a payload with more information // about the error. Typically, this payload serves one of several purposes: // // * It may provide more fine-grained semantic information about the error to // facilitate actionable remedies. // * It may provide human-readable contexual information that is more // appropriate to display to an end user. // // Example: // // absl::Status result = DoSomething(); // // Inform user to retry after 30 seconds // // See more error details in googleapis/google/rpc/error_details.proto // if (absl::IsResourceExhausted(result)) { // google::rpc::RetryInfo info; // info.retry_delay().seconds() = 30; // // Payloads require a unique key (a URL to ensure no collisions with // // other payloads), and an `absl::Cord` to hold the encoded data. // absl::string_view url = "type.googleapis.com/google.rpc.RetryInfo"; // result.SetPayload(url, info.SerializeAsCord()); // return result; // } // class ABSL_MUST_USE_RESULT Status final { public: // Constructors // This default constructor creates an OK status with no message or payload. // Avoid this constructor and prefer explicit construction of an OK status // with `absl::OkStatus()`. Status(); // Creates a status in the canonical error space with the specified // `absl::StatusCode` and error message. If `code == absl::StatusCode::kOk`, // `msg` is ignored and an object identical to an OK status is constructed. // // The `msg` string must be in UTF-8. The implementation may complain (e.g., // by printing a warning) if it is not. Status(absl::StatusCode code, absl::string_view msg); Status(const Status&); Status& operator=(const Status& x); // Move operators // The moved-from state is valid but unspecified. Status(Status&&) noexcept; Status& operator=(Status&&); ~Status(); // Status::Update() // // Updates the existing status with `new_status` provided that `this->ok()`. // If the existing status already contains a non-OK error, this update has no // effect and preserves the current data. Note that this behavior may change // in the future to augment a current non-ok status with additional // information about `new_status`. // // `Update()` provides a convenient way of keeping track of the first error // encountered. // // Example: // // Instead of "if (overall_status.ok()) overall_status = new_status" // overall_status.Update(new_status); // void Update(const Status& new_status); void Update(Status&& new_status); // Status::ok() // // Returns `true` if `this->ok()`. Prefer checking for an OK status using this // member function. ABSL_MUST_USE_RESULT bool ok() const; // Status::code() // // Returns the canonical error code of type `absl::StatusCode` of this status. absl::StatusCode code() const; // Status::raw_code() // // Returns a raw (canonical) error code corresponding to the enum value of // `google.rpc.Code` definitions within // https://github.com/googleapis/googleapis/blob/master/google/rpc/code.proto. // These values could be out of the range of canonical `absl::StatusCode` // enum values. // // NOTE: This function should only be called when converting to an associated // wire format. Use `Status::code()` for error handling. int raw_code() const; // Status::message() // // Returns the error message associated with this error code, if available. // Note that this message rarely describes the error code. It is not unusual // for the error message to be the empty string. As a result, prefer // `Status::ToString()` for debug logging. absl::string_view message() const; friend bool operator==(const Status&, const Status&); friend bool operator!=(const Status&, const Status&); // Status::ToString() // // Returns a combination of the error code name, the message and any // associated payload messages. This string is designed simply to be human // readable and its exact format should not be load bearing. Do not depend on // the exact format of the result of `ToString()` which is subject to change. // // The printed code name and the message are generally substrings of the // result, and the payloads to be printed use the status payload printer // mechanism (which is internal). std::string ToString() const; // Status::IgnoreError() // // Ignores any errors. This method does nothing except potentially suppress // complaints from any tools that are checking that errors are not dropped on // the floor. void IgnoreError() const; // swap() // // Swap the contents of one status with another. friend void swap(Status& a, Status& b); //---------------------------------------------------------------------------- // Payload Management APIs //---------------------------------------------------------------------------- // A payload may be attached to a status to provide additional context to an // error that may not be satisifed by an existing `absl::StatusCode`. // Typically, this payload serves one of several purposes: // // * It may provide more fine-grained semantic information about the error // to facilitate actionable remedies. // * It may provide human-readable contexual information that is more // appropriate to display to an end user. // // A payload consists of a [key,value] pair, where the key is a string // referring to a unique "type URL" and the value is an object of type // `absl::Cord` to hold the contextual data. // // The "type URL" should be unique and follow the format of a URL // (https://en.wikipedia.org/wiki/URL) and, ideally, provide some // documentation or schema on how to interpret its associated data. For // example, the default type URL for a protobuf message type is // "type.googleapis.com/packagename.messagename". Other custom wire formats // should define the format of type URL in a similar practice so as to // minimize the chance of conflict between type URLs. // Users should ensure that the type URL can be mapped to a concrete // C++ type if they want to deserialize the payload and read it effectively. // // To attach a payload to a status object, call `Status::SetPayload()`, // passing it the type URL and an `absl::Cord` of associated data. Similarly, // to extract the payload from a status, call `Status::GetPayload()`. You // may attach multiple payloads (with differing type URLs) to any given // status object, provided that the status is currently exhibiting an error // code (i.e. is not OK). // Status::GetPayload() // // Gets the payload of a status given its unique `type_url` key, if present. absl::optional<absl::Cord> GetPayload(absl::string_view type_url) const; // Status::SetPayload() // // Sets the payload for a non-ok status using a `type_url` key, overwriting // any existing payload for that `type_url`. // // NOTE: This function does nothing if the Status is ok. void SetPayload(absl::string_view type_url, absl::Cord payload); // Status::ErasePayload() // // Erases the payload corresponding to the `type_url` key. Returns `true` if // the payload was present. bool ErasePayload(absl::string_view type_url); // Status::ForEachPayload() // // Iterates over the stored payloads and calls the // `visitor(type_key, payload)` callable for each one. // // NOTE: The order of calls to `visitor()` is not specified and may change at // any time. // // NOTE: Any mutation on the same 'absl::Status' object during visitation is // forbidden and could result in undefined behavior. void ForEachPayload( const std::function<void(absl::string_view, const absl::Cord&)>& visitor) const; private: friend Status CancelledError(); // Creates a status in the canonical error space with the specified // code, and an empty error message. explicit Status(absl::StatusCode code); static void UnrefNonInlined(uintptr_t rep); static void Ref(uintptr_t rep); static void Unref(uintptr_t rep); // REQUIRES: !ok() // Ensures rep_ is not shared with any other Status. void PrepareToModify(); const status_internal::Payloads* GetPayloads() const; status_internal::Payloads* GetPayloads(); // Takes ownership of payload. static uintptr_t NewRep(absl::StatusCode code, absl::string_view msg, std::unique_ptr<status_internal::Payloads> payload); static bool EqualsSlow(const absl::Status& a, const absl::Status& b); // MSVC 14.0 limitation requires the const. static constexpr const char kMovedFromString[] = "Status accessed after move."; static const std::string* EmptyString(); static const std::string* MovedFromString(); // Returns whether rep contains an inlined representation. // See rep_ for details. static bool IsInlined(uintptr_t rep); // Indicates whether this Status was the rhs of a move operation. See rep_ // for details. static bool IsMovedFrom(uintptr_t rep); static uintptr_t MovedFromRep(); // Convert between error::Code and the inlined uintptr_t representation used // by rep_. See rep_ for details. static uintptr_t CodeToInlinedRep(absl::StatusCode code); static absl::StatusCode InlinedRepToCode(uintptr_t rep); // Converts between StatusRep* and the external uintptr_t representation used // by rep_. See rep_ for details. static uintptr_t PointerToRep(status_internal::StatusRep* r); static status_internal::StatusRep* RepToPointer(uintptr_t r); // Returns string for non-ok Status. std::string ToStringSlow() const; // Status supports two different representations. // - When the low bit is off it is an inlined representation. // It uses the canonical error space, no message or payload. // The error code is (rep_ >> 2). // The (rep_ & 2) bit is the "moved from" indicator, used in IsMovedFrom(). // - When the low bit is on it is an external representation. // In this case all the data comes from a heap allocated Rep object. // (rep_ - 1) is a status_internal::StatusRep* pointer to that structure. uintptr_t rep_; }; // OkStatus() // // Returns an OK status, equivalent to a default constructed instance. Prefer // usage of `absl::OkStatus()` when constructing such an OK status. Status OkStatus(); // operator<<() // // Prints a human-readable representation of `x` to `os`. std::ostream& operator<<(std::ostream& os, const Status& x); // IsAborted() // IsAlreadyExists() // IsCancelled() // IsDataLoss() // IsDeadlineExceeded() // IsFailedPrecondition() // IsInternal() // IsInvalidArgument() // IsNotFound() // IsOutOfRange() // IsPermissionDenied() // IsResourceExhausted() // IsUnauthenticated() // IsUnavailable() // IsUnimplemented() // IsUnknown() // // These convenience functions return `true` if a given status matches the // `absl::StatusCode` error code of its associated function. ABSL_MUST_USE_RESULT bool IsAborted(const Status& status); ABSL_MUST_USE_RESULT bool IsAlreadyExists(const Status& status); ABSL_MUST_USE_RESULT bool IsCancelled(const Status& status); ABSL_MUST_USE_RESULT bool IsDataLoss(const Status& status); ABSL_MUST_USE_RESULT bool IsDeadlineExceeded(const Status& status); ABSL_MUST_USE_RESULT bool IsFailedPrecondition(const Status& status); ABSL_MUST_USE_RESULT bool IsInternal(const Status& status); ABSL_MUST_USE_RESULT bool IsInvalidArgument(const Status& status); ABSL_MUST_USE_RESULT bool IsNotFound(const Status& status); ABSL_MUST_USE_RESULT bool IsOutOfRange(const Status& status); ABSL_MUST_USE_RESULT bool IsPermissionDenied(const Status& status); ABSL_MUST_USE_RESULT bool IsResourceExhausted(const Status& status); ABSL_MUST_USE_RESULT bool IsUnauthenticated(const Status& status); ABSL_MUST_USE_RESULT bool IsUnavailable(const Status& status); ABSL_MUST_USE_RESULT bool IsUnimplemented(const Status& status); ABSL_MUST_USE_RESULT bool IsUnknown(const Status& status); // AbortedError() // AlreadyExistsError() // CancelledError() // DataLossError() // DeadlineExceededError() // FailedPreconditionError() // InternalError() // InvalidArgumentError() // NotFoundError() // OutOfRangeError() // PermissionDeniedError() // ResourceExhaustedError() // UnauthenticatedError() // UnavailableError() // UnimplementedError() // UnknownError() // // These convenience functions create an `absl::Status` object with an error // code as indicated by the associated function name, using the error message // passed in `message`. Status AbortedError(absl::string_view message); Status AlreadyExistsError(absl::string_view message); Status CancelledError(absl::string_view message); Status DataLossError(absl::string_view message); Status DeadlineExceededError(absl::string_view message); Status FailedPreconditionError(absl::string_view message); Status InternalError(absl::string_view message); Status InvalidArgumentError(absl::string_view message); Status NotFoundError(absl::string_view message); Status OutOfRangeError(absl::string_view message); Status PermissionDeniedError(absl::string_view message); Status ResourceExhaustedError(absl::string_view message); Status UnauthenticatedError(absl::string_view message); Status UnavailableError(absl::string_view message); Status UnimplementedError(absl::string_view message); Status UnknownError(absl::string_view message); //------------------------------------------------------------------------------ // Implementation details follow //------------------------------------------------------------------------------ inline Status::Status() : rep_(CodeToInlinedRep(absl::StatusCode::kOk)) {} inline Status::Status(absl::StatusCode code) : rep_(CodeToInlinedRep(code)) {} inline Status::Status(const Status& x) : rep_(x.rep_) { Ref(rep_); } inline Status& Status::operator=(const Status& x) { uintptr_t old_rep = rep_; if (x.rep_ != old_rep) { Ref(x.rep_); rep_ = x.rep_; Unref(old_rep); } return *this; } inline Status::Status(Status&& x) noexcept : rep_(x.rep_) { x.rep_ = MovedFromRep(); } inline Status& Status::operator=(Status&& x) { uintptr_t old_rep = rep_; rep_ = x.rep_; x.rep_ = MovedFromRep(); Unref(old_rep); return *this; } inline void Status::Update(const Status& new_status) { if (ok()) { *this = new_status; } } inline void Status::Update(Status&& new_status) { if (ok()) { *this = std::move(new_status); } } inline Status::~Status() { Unref(rep_); } inline bool Status::ok() const { return rep_ == CodeToInlinedRep(absl::StatusCode::kOk); } inline absl::string_view Status::message() const { return !IsInlined(rep_) ? RepToPointer(rep_)->message : (IsMovedFrom(rep_) ? absl::string_view(kMovedFromString) : absl::string_view()); } inline bool operator==(const Status& lhs, const Status& rhs) { return lhs.rep_ == rhs.rep_ || Status::EqualsSlow(lhs, rhs); } inline bool operator!=(const Status& lhs, const Status& rhs) { return !(lhs == rhs); } inline std::string Status::ToString() const { return ok() ? "OK" : ToStringSlow(); } inline void Status::IgnoreError() const { // no-op } inline void swap(absl::Status& a, absl::Status& b) { using std::swap; swap(a.rep_, b.rep_); } inline const status_internal::Payloads* Status::GetPayloads() const { return IsInlined(rep_) ? nullptr : RepToPointer(rep_)->payloads.get(); } inline status_internal::Payloads* Status::GetPayloads() { return IsInlined(rep_) ? nullptr : RepToPointer(rep_)->payloads.get(); } inline bool Status::IsInlined(uintptr_t rep) { return (rep & 1) == 0; } inline bool Status::IsMovedFrom(uintptr_t rep) { return IsInlined(rep) && (rep & 2) != 0; } inline uintptr_t Status::MovedFromRep() { return CodeToInlinedRep(absl::StatusCode::kInternal) | 2; } inline uintptr_t Status::CodeToInlinedRep(absl::StatusCode code) { return static_cast<uintptr_t>(code) << 2; } inline absl::StatusCode Status::InlinedRepToCode(uintptr_t rep) { assert(IsInlined(rep)); return static_cast<absl::StatusCode>(rep >> 2); } inline status_internal::StatusRep* Status::RepToPointer(uintptr_t rep) { assert(!IsInlined(rep)); return reinterpret_cast<status_internal::StatusRep*>(rep - 1); } inline uintptr_t Status::PointerToRep(status_internal::StatusRep* rep) { return reinterpret_cast<uintptr_t>(rep) + 1; } inline void Status::Ref(uintptr_t rep) { if (!IsInlined(rep)) { RepToPointer(rep)->ref.fetch_add(1, std::memory_order_relaxed); } } inline void Status::Unref(uintptr_t rep) { if (!IsInlined(rep)) { UnrefNonInlined(rep); } } inline Status OkStatus() { return Status(); } // Creates a `Status` object with the `absl::StatusCode::kCancelled` error code // and an empty message. It is provided only for efficiency, given that // message-less kCancelled errors are common in the infrastructure. inline Status CancelledError() { return Status(absl::StatusCode::kCancelled); } ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STATUS_STATUS_H_