// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/uniform_int_distribution.h" #include <cmath> #include <cstdint> #include <iterator> #include <random> #include <sstream> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/chi_square.h" #include "absl/random/internal/distribution_test_util.h" #include "absl/random/internal/pcg_engine.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" namespace { template <typename IntType> class UniformIntDistributionTest : public ::testing::Test {}; using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t>; TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes); TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) { // This test essentially ensures that the parameters serialize, // not that the values generated cover the full range. using Limits = std::numeric_limits<TypeParam>; using param_type = typename absl::uniform_int_distribution<TypeParam>::param_type; const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105; const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1; constexpr int kCount = 1000; absl::InsecureBitGen gen; for (const auto& param : { param_type(), param_type(2, 2), // Same param_type(9, 32), param_type(kMin, 115), param_type(kNegOneOrZero, Limits::max()), param_type(Limits::min(), Limits::max()), param_type(Limits::lowest(), Limits::max()), param_type(Limits::min() + 1, Limits::max() - 1), }) { const auto a = param.a(); const auto b = param.b(); absl::uniform_int_distribution<TypeParam> before(a, b); EXPECT_EQ(before.a(), param.a()); EXPECT_EQ(before.b(), param.b()); { // Initialize via param_type absl::uniform_int_distribution<TypeParam> via_param(param); EXPECT_EQ(via_param, before); } // Initialize via iostreams std::stringstream ss; ss << before; absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3, Limits::max() - 5); EXPECT_NE(before.a(), after.a()); EXPECT_NE(before.b(), after.b()); EXPECT_NE(before.param(), after.param()); EXPECT_NE(before, after); ss >> after; EXPECT_EQ(before.a(), after.a()); EXPECT_EQ(before.b(), after.b()); EXPECT_EQ(before.param(), after.param()); EXPECT_EQ(before, after); // Smoke test. auto sample_min = after.max(); auto sample_max = after.min(); for (int i = 0; i < kCount; i++) { auto sample = after(gen); EXPECT_GE(sample, after.min()); EXPECT_LE(sample, after.max()); if (sample > sample_max) { sample_max = sample; } if (sample < sample_min) { sample_min = sample; } } std::string msg = absl::StrCat("Range: ", +sample_min, ", ", +sample_max); ABSL_RAW_LOG(INFO, "%s", msg.c_str()); } } TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) { #if GTEST_HAS_DEATH_TEST // Hi < Lo EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); }, ""); #endif // GTEST_HAS_DEATH_TEST #if defined(NDEBUG) // opt-mode, for invalid parameters, will generate a garbage value, // but should not enter an infinite loop. absl::InsecureBitGen gen; absl::uniform_int_distribution<TypeParam> dist(10, 1); auto x = dist(gen); // Any value will generate a non-empty string. EXPECT_FALSE(absl::StrCat(+x).empty()) << x; #endif // NDEBUG } TYPED_TEST(UniformIntDistributionTest, TestMoments) { constexpr int kSize = 100000; using Limits = std::numeric_limits<TypeParam>; using param_type = typename absl::uniform_int_distribution<TypeParam>::param_type; // We use a fixed bit generator for distribution accuracy tests. This allows // these tests to be deterministic, while still testing the qualify of the // implementation. absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; std::vector<double> values(kSize); for (const auto& param : {param_type(0, Limits::max()), param_type(13, 127)}) { absl::uniform_int_distribution<TypeParam> dist(param); for (int i = 0; i < kSize; i++) { const auto sample = dist(rng); ASSERT_LE(dist.param().a(), sample); ASSERT_GE(dist.param().b(), sample); values[i] = sample; } auto moments = absl::random_internal::ComputeDistributionMoments(values); const double a = dist.param().a(); const double b = dist.param().b(); const double n = (b - a + 1); const double mean = (a + b) / 2; const double var = ((b - a + 1) * (b - a + 1) - 1) / 12; const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1)); // TODO(ahh): this is not the right bound // empirically validated with --runs_per_test=10000. EXPECT_NEAR(mean, moments.mean, 0.01 * var); EXPECT_NEAR(var, moments.variance, 0.015 * var); EXPECT_NEAR(0.0, moments.skewness, 0.025); EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis); } } TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) { using absl::random_internal::kChiSquared; constexpr size_t kTrials = 1000; constexpr int kBuckets = 50; // inclusive, so actally +1 constexpr double kExpected = static_cast<double>(kTrials) / static_cast<double>(kBuckets); // Empirically validated with --runs_per_test=10000. const int kThreshold = absl::random_internal::ChiSquareValue(kBuckets, 0.999999); const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37; const TypeParam max = min + kBuckets; // We use a fixed bit generator for distribution accuracy tests. This allows // these tests to be deterministic, while still testing the qualify of the // implementation. absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; absl::uniform_int_distribution<TypeParam> dist(min, max); std::vector<int32_t> counts(kBuckets + 1, 0); for (size_t i = 0; i < kTrials; i++) { auto x = dist(rng); counts[x - min]++; } double chi_square = absl::random_internal::ChiSquareWithExpected( std::begin(counts), std::end(counts), kExpected); if (chi_square > kThreshold) { double p_value = absl::random_internal::ChiSquarePValue(chi_square, kBuckets); // Chi-squared test failed. Output does not appear to be uniform. std::string msg; for (const auto& a : counts) { absl::StrAppend(&msg, a, "\n"); } absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n"); absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ", kThreshold); ABSL_RAW_LOG(INFO, "%s", msg.c_str()); FAIL() << msg; } } TEST(UniformIntDistributionTest, StabilityTest) { // absl::uniform_int_distribution stability relies only on integer operations. absl::random_internal::sequence_urbg urbg( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); std::vector<int> output(12); { absl::uniform_int_distribution<int32_t> dist(0, 4); for (auto& v : output) { v = dist(urbg); } } EXPECT_EQ(12, urbg.invocations()); EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1)); { urbg.reset(); absl::uniform_int_distribution<int32_t> dist(0, 100); for (auto& v : output) { v = dist(urbg); } } EXPECT_EQ(12, urbg.invocations()); EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67, 30, 80, 38)); { urbg.reset(); absl::uniform_int_distribution<int32_t> dist(0, 10000); for (auto& v : output) { v = dist(urbg); } } EXPECT_EQ(12, urbg.invocations()); EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602, 3813, 9195, 6641, 2986, 7956, 3765)); } } // namespace