// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ #define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ #include <algorithm> #include <cinttypes> #include <cstdlib> #include <iostream> #include <iterator> #include <limits> #include <type_traits> #include "absl/meta/type_traits.h" #include "absl/random/internal/iostream_state_saver.h" #include "absl/random/internal/randen.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { // Deterministic pseudorandom byte generator with backtracking resistance // (leaking the state does not compromise prior outputs). Based on Reverie // (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated // with an improved Simpira-like permutation. // Returns values of type "T" (must be a built-in unsigned integer type). // // RANDen = RANDom generator or beetroots in Swiss High German. // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. template <typename T> class alignas(16) randen_engine { public: // C++11 URBG interface: using result_type = T; static_assert(std::is_unsigned<result_type>::value, "randen_engine template argument must be a built-in unsigned " "integer type"); static constexpr result_type(min)() { return (std::numeric_limits<result_type>::min)(); } static constexpr result_type(max)() { return (std::numeric_limits<result_type>::max)(); } explicit randen_engine(result_type seed_value = 0) { seed(seed_value); } template <class SeedSequence, typename = typename absl::enable_if_t< !std::is_same<SeedSequence, randen_engine>::value>> explicit randen_engine(SeedSequence&& seq) { seed(seq); } randen_engine(const randen_engine&) = default; // Returns random bits from the buffer in units of result_type. result_type operator()() { // Refill the buffer if needed (unlikely). if (next_ >= kStateSizeT) { next_ = kCapacityT; impl_.Generate(state_); } return state_[next_++]; } template <class SeedSequence> typename absl::enable_if_t< !std::is_convertible<SeedSequence, result_type>::value> seed(SeedSequence&& seq) { // Zeroes the state. seed(); reseed(seq); } void seed(result_type seed_value = 0) { next_ = kStateSizeT; // Zeroes the inner state and fills the outer state with seed_value to // mimics behaviour of reseed std::fill(std::begin(state_), std::begin(state_) + kCapacityT, 0); std::fill(std::begin(state_) + kCapacityT, std::end(state_), seed_value); } // Inserts entropy into (part of) the state. Calling this periodically with // sufficient entropy ensures prediction resistance (attackers cannot predict // future outputs even if state is compromised). template <class SeedSequence> void reseed(SeedSequence& seq) { using sequence_result_type = typename SeedSequence::result_type; static_assert(sizeof(sequence_result_type) == 4, "SeedSequence::result_type must be 32-bit"); constexpr size_t kBufferSize = Randen::kSeedBytes / sizeof(sequence_result_type); alignas(16) sequence_result_type buffer[kBufferSize]; // Randen::Absorb XORs the seed into state, which is then mixed by a call // to Randen::Generate. Seeding with only the provided entropy is preferred // to using an arbitrary generate() call, so use [rand.req.seed_seq] // size as a proxy for the number of entropy units that can be generated // without relying on seed sequence mixing... const size_t entropy_size = seq.size(); if (entropy_size < kBufferSize) { // ... and only request that many values, or 256-bits, when unspecified. const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size; std::fill(std::begin(buffer) + requested_entropy, std::end(buffer), 0); seq.generate(std::begin(buffer), std::begin(buffer) + requested_entropy); // The Randen paper suggests preferentially initializing even-numbered // 128-bit vectors of the randen state (there are 16 such vectors). // The seed data is merged into the state offset by 128-bits, which // implies prefering seed bytes [16..31, ..., 208..223]. Since the // buffer is 32-bit values, we swap the corresponding buffer positions in // 128-bit chunks. size_t dst = kBufferSize; while (dst > 7) { // leave the odd bucket as-is. dst -= 4; size_t src = dst >> 1; // swap 128-bits into the even bucket std::swap(buffer[--dst], buffer[--src]); std::swap(buffer[--dst], buffer[--src]); std::swap(buffer[--dst], buffer[--src]); std::swap(buffer[--dst], buffer[--src]); } } else { seq.generate(std::begin(buffer), std::end(buffer)); } impl_.Absorb(buffer, state_); // Generate will be called when operator() is called next_ = kStateSizeT; } void discard(uint64_t count) { uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count); count -= step; constexpr uint64_t kRateT = kStateSizeT - kCapacityT; while (count > 0) { next_ = kCapacityT; impl_.Generate(state_); step = std::min<uint64_t>(kRateT, count); count -= step; } next_ += step; } bool operator==(const randen_engine& other) const { return next_ == other.next_ && std::equal(std::begin(state_), std::end(state_), std::begin(other.state_)); } bool operator!=(const randen_engine& other) const { return !(*this == other); } template <class CharT, class Traits> friend std::basic_ostream<CharT, Traits>& operator<<( std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) const randen_engine<T>& engine) { // NOLINT(runtime/references) using numeric_type = typename random_internal::stream_format_type<result_type>::type; auto saver = random_internal::make_ostream_state_saver(os); for (const auto& elem : engine.state_) { // In the case that `elem` is `uint8_t`, it must be cast to something // larger so that it prints as an integer rather than a character. For // simplicity, apply the cast all circumstances. os << static_cast<numeric_type>(elem) << os.fill(); } os << engine.next_; return os; } template <class CharT, class Traits> friend std::basic_istream<CharT, Traits>& operator>>( std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) randen_engine<T>& engine) { // NOLINT(runtime/references) using numeric_type = typename random_internal::stream_format_type<result_type>::type; result_type state[kStateSizeT]; size_t next; for (auto& elem : state) { // It is not possible to read uint8_t from wide streams, so it is // necessary to read a wider type and then cast it to uint8_t. numeric_type value; is >> value; elem = static_cast<result_type>(value); } is >> next; if (is.fail()) { return is; } std::memcpy(engine.state_, state, sizeof(engine.state_)); engine.next_ = next; return is; } private: static constexpr size_t kStateSizeT = Randen::kStateBytes / sizeof(result_type); static constexpr size_t kCapacityT = Randen::kCapacityBytes / sizeof(result_type); // First kCapacityT are `inner', the others are accessible random bits. alignas(16) result_type state_[kStateSizeT]; size_t next_; // index within state_ Randen impl_; }; } // namespace random_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_