// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "absl/random/internal/randen.h" #include <cstdint> #include <cstdio> #include <cstring> #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/nanobenchmark.h" #include "absl/random/internal/platform.h" #include "absl/random/internal/randen_engine.h" #include "absl/random/internal/randen_hwaes.h" #include "absl/random/internal/randen_slow.h" #include "absl/strings/numbers.h" namespace { using absl::random_internal::Randen; using absl::random_internal::RandenHwAes; using absl::random_internal::RandenSlow; using absl::random_internal_nanobenchmark::FuncInput; using absl::random_internal_nanobenchmark::FuncOutput; using absl::random_internal_nanobenchmark::InvariantTicksPerSecond; using absl::random_internal_nanobenchmark::MeasureClosure; using absl::random_internal_nanobenchmark::Params; using absl::random_internal_nanobenchmark::PinThreadToCPU; using absl::random_internal_nanobenchmark::Result; // Local state parameters. static constexpr size_t kStateSizeT = Randen::kStateBytes / sizeof(uint64_t); static constexpr size_t kSeedSizeT = Randen::kSeedBytes / sizeof(uint32_t); // Randen implementation benchmarks. template <typename T> struct AbsorbFn : public T { mutable uint64_t state[kStateSizeT] = {}; mutable uint32_t seed[kSeedSizeT] = {}; static constexpr size_t bytes() { return sizeof(seed); } FuncOutput operator()(const FuncInput num_iters) const { for (size_t i = 0; i < num_iters; ++i) { this->Absorb(seed, state); } return state[0]; } }; template <typename T> struct GenerateFn : public T { mutable uint64_t state[kStateSizeT]; GenerateFn() { std::memset(state, 0, sizeof(state)); } static constexpr size_t bytes() { return sizeof(state); } FuncOutput operator()(const FuncInput num_iters) const { const auto* keys = this->GetKeys(); for (size_t i = 0; i < num_iters; ++i) { this->Generate(keys, state); } return state[0]; } }; template <typename UInt> struct Engine { mutable absl::random_internal::randen_engine<UInt> rng; static constexpr size_t bytes() { return sizeof(UInt); } FuncOutput operator()(const FuncInput num_iters) const { for (size_t i = 0; i < num_iters - 1; ++i) { rng(); } return rng(); } }; template <size_t N> void Print(const char* name, const size_t n, const Result (&results)[N], const size_t bytes) { if (n == 0) { ABSL_RAW_LOG( WARNING, "WARNING: Measurement failed, should not happen when using " "PinThreadToCPU unless the region to measure takes > 1 second.\n"); return; } static const double ns_per_tick = 1e9 / InvariantTicksPerSecond(); static constexpr const double kNsPerS = 1e9; // ns/s static constexpr const double kMBPerByte = 1.0 / 1048576.0; // Mb / b static auto header = [] { return printf("%20s %8s: %12s ticks; %9s (%9s) %8s\n", "Name", "Count", "Total", "Variance", "Time", "bytes/s"); }(); (void)header; for (size_t i = 0; i < n; ++i) { const double ticks_per_call = results[i].ticks / results[i].input; const double ns_per_call = ns_per_tick * ticks_per_call; const double bytes_per_ns = bytes / ns_per_call; const double mb_per_s = bytes_per_ns * kNsPerS * kMBPerByte; // Output printf("%20s %8zu: %12.2f ticks; MAD=%4.2f%% (%6.1f ns) %8.1f Mb/s\n", name, results[i].input, results[i].ticks, results[i].variability * 100.0, ns_per_call, mb_per_s); } } // Fails here template <typename Op, size_t N> void Measure(const char* name, const FuncInput (&inputs)[N]) { Op op; Result results[N]; Params params; params.verbose = false; params.max_evals = 6; // avoid test timeout const size_t num_results = MeasureClosure(op, inputs, N, results, params); Print(name, num_results, results, op.bytes()); } // unpredictable == 1 but the compiler does not know that. void RunAll(const int argc, char* argv[]) { if (argc == 2) { int cpu = -1; if (!absl::SimpleAtoi(argv[1], &cpu)) { ABSL_RAW_LOG(FATAL, "The optional argument must be a CPU number >= 0.\n"); } PinThreadToCPU(cpu); } // The compiler cannot reduce this to a constant. const FuncInput unpredictable = (argc != 999); static const FuncInput inputs[] = {unpredictable * 100, unpredictable * 1000}; #if !defined(ABSL_INTERNAL_DISABLE_AES) && ABSL_HAVE_ACCELERATED_AES Measure<AbsorbFn<RandenHwAes>>("Absorb (HwAes)", inputs); #endif Measure<AbsorbFn<RandenSlow>>("Absorb (Slow)", inputs); #if !defined(ABSL_INTERNAL_DISABLE_AES) && ABSL_HAVE_ACCELERATED_AES Measure<GenerateFn<RandenHwAes>>("Generate (HwAes)", inputs); #endif Measure<GenerateFn<RandenSlow>>("Generate (Slow)", inputs); // Measure the production engine. static const FuncInput inputs1[] = {unpredictable * 1000, unpredictable * 10000}; Measure<Engine<uint64_t>>("randen_engine<uint64_t>", inputs1); Measure<Engine<uint32_t>>("randen_engine<uint32_t>", inputs1); } } // namespace int main(int argc, char* argv[]) { RunAll(argc, argv); return 0; }