// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/fastmath.h" #include "gtest/gtest.h" #if defined(__native_client__) || defined(__EMSCRIPTEN__) // NACL has a less accurate implementation of std::log2 than most of // the other platforms. For some values which should have integral results, // sometimes NACL returns slightly larger values. // // The MUSL libc used by emscripten also has a similar bug. #define ABSL_RANDOM_INACCURATE_LOG2 #endif namespace { TEST(DistributionImplTest, LeadingSetBit) { using absl::random_internal::LeadingSetBit; constexpr uint64_t kZero = 0; EXPECT_EQ(0, LeadingSetBit(kZero)); EXPECT_EQ(64, LeadingSetBit(~kZero)); for (int index = 0; index < 64; index++) { uint64_t x = static_cast<uint64_t>(1) << index; EXPECT_EQ(index + 1, LeadingSetBit(x)) << index; EXPECT_EQ(index + 1, LeadingSetBit(x + x - 1)) << index; } } TEST(FastMathTest, IntLog2FloorTest) { using absl::random_internal::IntLog2Floor; constexpr uint64_t kZero = 0; EXPECT_EQ(0, IntLog2Floor(0)); // boundary. return 0. EXPECT_EQ(0, IntLog2Floor(1)); EXPECT_EQ(1, IntLog2Floor(2)); EXPECT_EQ(63, IntLog2Floor(~kZero)); // A boundary case: Converting 0xffffffffffffffff requires > 53 // bits of precision, so the conversion to double rounds up, // and the result of std::log2(x) > IntLog2Floor(x). EXPECT_LT(IntLog2Floor(~kZero), static_cast<int>(std::log2(~kZero))); for (int i = 0; i < 64; i++) { const uint64_t i_pow_2 = static_cast<uint64_t>(1) << i; EXPECT_EQ(i, IntLog2Floor(i_pow_2)); EXPECT_EQ(i, static_cast<int>(std::log2(i_pow_2))); uint64_t y = i_pow_2; for (int j = i - 1; j > 0; --j) { y = y | (i_pow_2 >> j); EXPECT_EQ(i, IntLog2Floor(y)); } } } TEST(FastMathTest, IntLog2CeilTest) { using absl::random_internal::IntLog2Ceil; constexpr uint64_t kZero = 0; EXPECT_EQ(0, IntLog2Ceil(0)); // boundary. return 0. EXPECT_EQ(0, IntLog2Ceil(1)); EXPECT_EQ(1, IntLog2Ceil(2)); EXPECT_EQ(64, IntLog2Ceil(~kZero)); // A boundary case: Converting 0xffffffffffffffff requires > 53 // bits of precision, so the conversion to double rounds up, // and the result of std::log2(x) > IntLog2Floor(x). EXPECT_LE(IntLog2Ceil(~kZero), static_cast<int>(std::log2(~kZero))); for (int i = 0; i < 64; i++) { const uint64_t i_pow_2 = static_cast<uint64_t>(1) << i; EXPECT_EQ(i, IntLog2Ceil(i_pow_2)); #ifndef ABSL_RANDOM_INACCURATE_LOG2 EXPECT_EQ(i, static_cast<int>(std::ceil(std::log2(i_pow_2)))); #endif uint64_t y = i_pow_2; for (int j = i - 1; j > 0; --j) { y = y | (i_pow_2 >> j); EXPECT_EQ(i + 1, IntLog2Ceil(y)); } } } TEST(FastMathTest, StirlingLogFactorial) { using absl::random_internal::StirlingLogFactorial; EXPECT_NEAR(StirlingLogFactorial(1.0), 0, 1e-3); EXPECT_NEAR(StirlingLogFactorial(1.50), 0.284683, 1e-3); EXPECT_NEAR(StirlingLogFactorial(2.0), 0.69314718056, 1e-4); for (int i = 2; i < 50; i++) { double d = static_cast<double>(i); EXPECT_NEAR(StirlingLogFactorial(d), std::lgamma(d + 1), 3e-5); } } } // namespace