// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/chi_square.h" #include <cmath> #include "absl/random/internal/distribution_test_util.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { namespace { #if defined(__EMSCRIPTEN__) // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. inline double fma(double x, double y, double z) { return (x * y) + z; } #endif // Use Horner's method to evaluate a polynomial. template <typename T, unsigned N> inline T EvaluatePolynomial(T x, const T (&poly)[N]) { #if !defined(__EMSCRIPTEN__) using std::fma; #endif T p = poly[N - 1]; for (unsigned i = 2; i <= N; i++) { p = fma(p, x, poly[N - i]); } return p; } static constexpr int kLargeDOF = 150; // Returns the probability of a normal z-value. // // Adapted from the POZ function in: // Ibbetson D, Algorithm 209 // Collected Algorithms of the CACM 1963 p. 616 // double POZ(double z) { static constexpr double kP1[] = { 0.797884560593, -0.531923007300, 0.319152932694, -0.151968751364, 0.059054035642, -0.019198292004, 0.005198775019, -0.001075204047, 0.000124818987, }; static constexpr double kP2[] = { 0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108, -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214, -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986, -0.000019538132, 0.000152529290, -0.000045255659, }; const double kZMax = 6.0; // Maximum meaningful z-value. if (z == 0.0) { return 0.5; } double x; double y = 0.5 * std::fabs(z); if (y >= (kZMax * 0.5)) { x = 1.0; } else if (y < 1.0) { double w = y * y; x = EvaluatePolynomial(w, kP1) * y * 2.0; } else { y -= 2.0; x = EvaluatePolynomial(y, kP2); } return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5); } // Approximates the survival function of the normal distribution. // // Algorithm 26.2.18, from: // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932] // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf // double normal_survival(double z) { // Maybe replace with the alternate formulation. // 0.5 * erfc((x - mean)/(sqrt(2) * sigma)) static constexpr double kR[] = { 1.0, 0.196854, 0.115194, 0.000344, 0.019527, }; double r = EvaluatePolynomial(z, kR); r *= r; return 0.5 / (r * r); } } // namespace // Calculates the critical chi-square value given degrees-of-freedom and a // p-value, usually using bisection. Also known by the name CRITCHI. double ChiSquareValue(int dof, double p) { static constexpr double kChiEpsilon = 0.000001; // Accuracy of the approximation. static constexpr double kChiMax = 99999.0; // Maximum chi-squared value. const double p_value = 1.0 - p; if (dof < 1 || p_value > 1.0) { return 0.0; } if (dof > kLargeDOF) { // For large degrees of freedom, use the normal approximation by // Wilson, E. B. and Hilferty, M. M. (1931) // chi^2 - mean // Z = -------------- // stddev const double z = InverseNormalSurvival(p_value); const double mean = 1 - 2.0 / (9 * dof); const double variance = 2.0 / (9 * dof); // Cannot use this method if the variance is 0. if (variance != 0) { return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; } } if (p_value <= 0.0) return kChiMax; // Otherwise search for the p value by bisection double min_chisq = 0.0; double max_chisq = kChiMax; double current = dof / std::sqrt(p_value); while ((max_chisq - min_chisq) > kChiEpsilon) { if (ChiSquarePValue(current, dof) < p_value) { max_chisq = current; } else { min_chisq = current; } current = (max_chisq + min_chisq) * 0.5; } return current; } // Calculates the p-value (probability) of a given chi-square value // and degrees of freedom. // // Adapted from the POCHISQ function from: // Hill, I. D. and Pike, M. C. Algorithm 299 // Collected Algorithms of the CACM 1963 p. 243 // double ChiSquarePValue(double chi_square, int dof) { static constexpr double kLogSqrtPi = 0.5723649429247000870717135; // Log[Sqrt[Pi]] static constexpr double kInverseSqrtPi = 0.5641895835477562869480795; // 1/(Sqrt[Pi]) // For large degrees of freedom, use the normal approximation by // Wilson, E. B. and Hilferty, M. M. (1931) // Via Wikipedia: // By the Central Limit Theorem, because the chi-square distribution is the // sum of k independent random variables with finite mean and variance, it // converges to a normal distribution for large k. if (dof > kLargeDOF) { // Re-scale everything. const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3); const double mean = 1 - 2.0 / (9 * dof); const double variance = 2.0 / (9 * dof); // If variance is 0, this method cannot be used. if (variance != 0) { const double z = (chi_square_scaled - mean) / std::sqrt(variance); if (z > 0) { return normal_survival(z); } else if (z < 0) { return 1.0 - normal_survival(-z); } else { return 0.5; } } } // The chi square function is >= 0 for any degrees of freedom. // In other words, probability that the chi square function >= 0 is 1. if (chi_square <= 0.0) return 1.0; // If the degrees of freedom is zero, the chi square function is always 0 by // definition. In other words, the probability that the chi square function // is > 0 is zero (chi square values <= 0 have been filtered above). if (dof < 1) return 0; auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); }; static constexpr double kBigX = 20; double a = 0.5 * chi_square; const bool even = !(dof & 1); // True if dof is an even number. const double y = capped_exp(-a); double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square))); if (dof <= 2) { return s; } chi_square = 0.5 * (dof - 1.0); double z = (even ? 1.0 : 0.5); if (a > kBigX) { double e = (even ? 0.0 : kLogSqrtPi); double c = std::log(a); while (z <= chi_square) { e = std::log(z) + e; s += capped_exp(c * z - a - e); z += 1.0; } return s; } double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a))); double c = 0.0; while (z <= chi_square) { e = e * (a / z); c = c + e; z += 1.0; } return c * y + s; } } // namespace random_internal ABSL_NAMESPACE_END } // namespace absl